首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hybrid digital terrain models combine terrain data with different topologies and resolutions. Cartographic digital terrain models are typically composed of regular grid data that can be locally refined by adding a Triangulated Irregular Network (TIN) that represents morphologically complex terrain parts. Direct rendering of both datasets to visualize the digital terrain model generates discontinuities, as the meshes are disconnected. The utilization of complete/partial precomputed tessellation solutions solves the problem of quality, but limits the applicability of the representation to models with a fixed relative position between datasets. In this paper, we present a new scheme for hybrid terrain representation that permits the dynamic generation of the adaptive tessellation required to join the grid and TIN models. Our proposal permits the dynamic modification of the relative position between datasets. This increases the representation capabilities for those applications where this property is interesting as, for example, urban and landscape planning applications. The algorithm we propose is based on the identification of convex areas on the TIN and the efficient generation of triangles to join the models based on this convex structure. As a result, high quality models without discontinuities are obtained, increasing the flexibility of previous solutions based on fixed precomputations.  相似文献   

2.
Hybrid terrains are a convenient approach for the representation of digital terrain models, integrating heterogeneous data from different sources. In this article, we present a general, efficient scheme for achieving interactive level-of-detail rendering of hybrid terrain models, without the need for a costly preprocessing or resampling of the original data. The presented method works with hybrid digital terrains combining regular grid data and local high-resolution triangulated irregular networks. Since grid and triangulated irregular network data may belong to different datasets, a straightforward combination of both geometries would lead to meshes with holes and overlapping triangles. Our method generates a single multiresolution model integrating the different parts in a coherent way, by performing an adaptive tessellation of the region between their boundaries. Hence, our solution is one of the few existing approaches for integrating different multiresolution algorithms within the same terrain model, achieving a simple interactive rendering of complex hybrid terrains.  相似文献   

3.
为实现大规模地形的多分辨率显示与实时绘制,基于LOD技术给出了多尺度TIN的管理和表达算法。探讨该算法相关的数据组织、LOD层次表达、实时刷新等关键问题。该算法使用分级策略,在不影响视觉效果前提下对TIN进行分级表达;使用分区策略,在可视化过程中对TIN进行局部更新。采取不同分辨率TIN模型间逐步过渡策略,基本上消除了视图变换时的跳跃感。实验结果表明,这种紧凑有效的TIN表示方法实现简单,内存开销较少,CPU耗费小,大大缩短了视图刷新切换时间,能够在普通机器上实现大规模地形的实时漫游。  相似文献   

4.
The simulation of surface flow dynamics using a flow-path network model   总被引:1,自引:0,他引:1  
This paper proposes a flow-path network (FPN) model to simulate complex surface flow based on a drainage-constrained triangulated irregular network (TIN). The TIN was constructed using critical points and drainage lines extracted from a digital terrain surface. Runoff generated on the surface was simplified as ‘water volumes’ at constrained random points that were then used as the starting points of flow paths (i.e. flow source points). The flow-path for each ‘water volume’ was constructed by tracing the direction of flow from the flow source point over the TIN surface to the stream system and then to the outlet of the watershed. The FPN was represented by a set of topologically defined one-dimensional line segments and nodes. Hydrologic variables, such as flow velocity and volume, were computed and integrated into the FPN to support dynamic surface flow simulation. A hypothetical rainfall event simulation on a hilly landscape showed that the FPN model was able to simulate the dynamics of surface flow over time. A real-world catchment test demonstrated that flow rates predicted by the FPN model agreed well with field observations. Overall, the FPN model proposed in this study provides a vector-based modeling framework for simulating surface flow dynamics. Further studies are required to enhance the simulations of individual hydrologic processes such as flow generation and overland and channel flows, which were much simplified in this study.  相似文献   

5.
Multi‐resolution terrain models are an efficient approach to improve the speed of three‐dimensional (3D) visualizations, especially for terrain visualization in Geographical Information Systems (GIS). As a further development to existing algorithms and models, a new model is proposed for the construction of multi‐resolution terrain models in a 3D GIS. The new model represents multi‐resolution terrains using two major methods for terrain representation: Triangulated Irregular Network (TIN) and regular grid (Grid). In this paper, first, the concepts and formal definitions of the new model are presented. Second, the methodology for constructing multi‐resolution terrain models based on the new model is proposed. Third, the error of multi‐resolution terrain models is analysed, and a set of rules is proposed to retain the important features (e.g. boundaries of man‐made objects) within the multi‐resolution terrain models. Finally, several experiments are undertaken to test the performance of the new model. The experimental results demonstrate that the new model can be applied to construct multi‐resolution terrain models with good performance in terms of time cost and maintenance of the important features. Furthermore, a comparison with previous algorithms/models shows that the speed of rendering for 3D walking/flying through has been greatly improved by applying the new model.  相似文献   

6.
一种基于TIN的地形剖面线生成算法   总被引:3,自引:1,他引:3  
在目前已有基于规则格网(Grid)生成地形剖面线的基础上,提出了一种适用于不规则三角网(TIN)的剖面线生成算法。该算法充分利用TIN中各三角形间存在的拓扑关系,实现了与剖面线相交三角形的快速搜索,大大提高了算法的执行效率。由于地形简化后的TIN仍保留三角形间的拓扑关系,该剖面线生成算法还适用于多分辨率的海量TIN数据。  相似文献   

7.
基于山地灾害动态过程仿真需要的考虑,并针对该动态过程仿真时渲染数据量过大所造成的实时性较差的问题,提出了利用改进的三角形二叉树LOD算法实现地形三维建模与可视化的方法。算法对山地地形数据进行了分层和分块的预处理,用三角形二叉树表示地形网格,并结合视点和局部地形的粗糙程度,动态的载入所需的地形块和释放无用的地形块,使得内存中的地形数据维持在一定范围内。实验结果表明;在对地形渲染不失真的前提下,本方法能够有效地提高地形绘制的效率,可应用到大规模山地地形的三维建模与可视化中去,为整个山地灾害的动态过程仿真奠定了良好的基础。  相似文献   

8.
一种快速地形纹理生成和虚拟漫游方法   总被引:3,自引:1,他引:2  
复杂场景的大范围、高分辨率纹理的快速漫游是虚拟现实、GIS、仿真等领域的关键技术与难点。DEM是对地形地貌的数字描述和模拟,利用DEM数据生成可视化地形,可以更好的描述特定区域的地形特征,通过对特定区域中模型的纹理生成和映射,配合光照、大气等区域内自然场景的建模技术,可生成较为逼真的真实场景。基于OpenGL编程进行DEM地形可视化是实现地形实时漫游的方法之一,利用层次细节模型降低场景复杂度以提高漫游帧速率是该类系统中的常用方法,由于场景复杂度问题,不同的系统在具体算法实现中采用的方法也不尽相同。本文以一个虚拟校园为例,针对DEM数据转换和LOD模型面临的问题,给出了特定场景的LOD模型数据处理思想和纹理快速纹理生成、匹配、映射算法。同时给出虚拟实时漫游中第一人称漫游和飞行漫游的一般方法,讨论了在Windows环境下使用OpenGL进行虚拟漫游的基本步骤。提出了一种新的根据场景特点快速生成和映射纹理途径。结果表明,该方法在保证真实感条件情况下达到了满意的实时漫游效果。  相似文献   

9.
Because of the high number of crashes occurring on highways, it is necessary to intensify the search for new tools that help in understanding their causes. This research explores the use of a geographic information system (GIS) for an integrated analysis, taking into account two accident-related factors: design consistency (DC) (based on vehicle speed) and available sight distance (ASD) (based on visibility). Both factors require specific GIS software add-ins, which are explained. Digital terrain models (DTMs), vehicle paths, road centerlines, a speed prediction model, and crash data are integrated in the GIS. The usefulness of this approach has been assessed through a study of more than 500 crashes. From a regularly spaced grid, the terrain (bare ground) has been modeled through a triangulated irregular network (TIN). The length of the roads analyzed is greater than 100 km. Results have shown that DC and ASD could be related to crashes in approximately 4% of cases. In order to illustrate the potential of GIS, two crashes are fully analyzed: a car rollover after running off road on the right side and a rear-end collision of two moving vehicles. Although this procedure uses two software add-ins that are available only for ArcGIS, the study gives a practical demonstration of the suitability of GIS for conducting integrated studies of road safety.  相似文献   

10.
We describe a method of morphometric characterisation of landform from digital elevation models (DEMs). The method is implemented first by classifying every location into morphometric classes based on the mathematical shape of a locally fitted quadratic surface and its positional relationship with the analysis window. Single‐scale fuzzy terrain indices of peakness, pitness, passness, ridgeness, and valleyness are then calculated based on the distance of the analysis location from the ideal cases. These can then be combined into multi‐scale terrain indices to summarise terrain information across different operational scales. The algorithm has four characteristics: (1) the ideal cases of different geomorphometric features are simply and clearly defined; (2) the output is spatially continuous to reflect the inherent fuzziness of geomorphometric features; (3) the output is easily combined into a multi‐scale index across a range of operational scales; and (4) the standard general morphometric parameters are quantified as the first and second order derivatives of the quadratic surface. An additional benefit of the quadratic surface is the derivation of the R 2 goodness of fit statistic, which allows an assessment of both the reliability of the results and the complexity of the terrain. An application of the method using a test DEM indicates that the single‐ and multi‐scale terrain indices perform well when characterising the different geomorphometric features.  相似文献   

11.
This study introduces a new Triangulated Irregular Network(TIN) compression method and a progressive visualization technique using Delaunay triangulation. The compression strategy is based on the assumption that most triangulated 2.5-dimensional terrains are very similar to their Delaunay triangulation. Therefore, the compression algorithm only needs to maintain a few edges that are not included in the Delaunay edges. An efficient encoding method is presented for the set of edges by using vertex reordering and a general bracketing method. In experiments, the compression method examined several sets of TIN data with various resolutions, which were generated by five typical terrain simplification algorithms. By exploiting the results, the connecting structures of common terrain data are compressed to 0.17 bits per vertex on average, which is superior to the results of previous methods. The results are shown by a progressive visualization method for web-based GIS.  相似文献   

12.
月面形貌仿真可以为嫦娥三号着陆前地形建立及视觉导航仿真测试提供逼真的三维月面环境。利用分形随机算法并结合月面撞击坑与石块的数学分布模型,在实现月面数字地形的基础上利用纹理映射和纹理融合的方法为月面地形添加纹理,完成了月面逼真三维环境的构建。结合导航相机的外方位元素和光照条件,实现了对该仿真月面环境的模拟环拍,支撑了嫦娥三号发射前月球车导航相机数据获取、地形建立、通行代价图计算、月球车路径规划等遥操作任务过程仿真测试。测试结果表明,仿真月面三维地形具有良好的视觉效果,满足了巡视器导航相机测试验证对精细月面地形和纹理的需求,为导航相机测试验证提供了有效的月面形貌仿真数据。  相似文献   

13.
Geometric buffers are important for spatial analysis in many applications of geographic information systems (GISs), such as environmental measurement and management, human health, urban planning, etc. Geometric buffer generation algorithms are well studied in the Euclidean space where the buffer distance is measured by Euclidean metrics; however, very few algorithms are available for generating geometric buffers on the terrain surface in a virtual globe where the buffer distance is measured by geodesic metrics. This paper proposes a tile-based method for geodesic buffer generation according to the characteristics of a virtual globe. It extends the vector tile model (VTM) to organize terrain and vector data, and the XYH algorithm is improved to build geodesic distance fields for terrain meshes. Based on the data organization and the improved XYH algorithm, a geodesic buffer is generated via three main steps: selecting and assembling tiles, updating geodesic distance fields and tracing the boundaries of buffer zones. This method is implemented with multi-scale terrain and vector data, and the experimental results show that it is valid and exact and can be applied in practical applications.  相似文献   

14.
Geomorphometry, the science of digital terrain analysis (DTA), is an important focus of research in both geomorphology and geographical information science (GIS). Given that 70% of China is mountainous, geomorphological research is popular among Chinese scholars, and the development of GIS over the last 30 years has led to significant advances in geomorphometric research. In this paper, we review Chinese progress in geomorphometry based on the published literature. There are three major areas of progress: digital terrain modelling methods, DTA methods, and applications of digital terrain models (DTMs). First, traditional vector- and raster-based terrain modelling methods, including the assessment of uncertainty, have received widespread attention. New terrain modelling methods such as unified raster and vector, high-fidelity, and real-time dynamic geographical scene modelling have also attracted research attention and are now a major focus of digital terrain modelling research. Second, in addition to the popular DTA methods based on topographical derivatives, geomorphological features, and hydrological factors extracted from DTMs, DTA methods have been extended to include analyses of the structure of underlying strata, ocean surface features and even socioeconomic spatial structures. Third, DTMs have been applied to fields including global climate change, analysis of various typical regions, lunar surface and other related fields. Clearly, Chinese scholars have made significant progress in geomorphometry. Chinese scholars have had the greatest international impact in areas including high-fidelity digital terrain modelling and DTM-based regional geomorphological analysis, particularly in the Loess Plateau and the Tibetan Plateau regions.  相似文献   

15.
Geographical information systems (GIS) are important tools in coastal research and management. Coastal GIS applications involve special challenges, because the coastal environment is a complex transitional system between the terrestrial and marine realms. Also acquisition methods and responsibilities for spatial data (and thus their properties) change at the shoreline. This article explores the consequences of this land-sea divide for coastal terrain modelling. We study how methods designed for terrestrial environments can be used to create integrated raster coastal terrain models (CTMs) from coarse elevation and depth data. We focus on shore slopes, because many particularities of coastal terrain and the data which describe it as well as the resulting problems are concentrated in the shore zone. Based on shorelines, terrestrial contours, depth contours and depth points, we used the ANUDEM algorithm to interpolate CTMs at different spatial resolutions, with and without drainage enforcement, for two test areas in a highly complex archipelago coast. Slope aspect and gradient rasters were derived from the CTMs using Horn's algorithm. Values were assigned from the slope rasters to thousands of points along the test areas' shorelines in different ways. Shore slope gradients and aspects were also calculated directly from the shorelines and contours. These modelled data were compared to each other and to field-measured shore profiles using a combination of qualitative and quantitative methods. As far as the coarse source data permitted, the interpolation and slope calculations delivered good results at fine spatial resolutions. Vector-based slope calculations were very sensitive to quality problems of the source data. Fine-resolution raster data were consequently found most suitable for describing shore slopes from coarse coastal terrain data. Terrestrial and marine parts of the CTMs were subject to different errors, and modelling methods and parameters had different consequences there. Thus, methods designed for terrestrial applications can be successfully used for coastal terrain modelling, but the choice of methods and parameters and the interpretation of modelling results require special attention to the differences of terrestrial and marine topography and data.  相似文献   

16.
Terrain rendering is a crucial part of many real-time applications. The easiest way to process and visualize terrain data in real time is to constrain the terrain model in several ways. This decreases the amount of data to be processed and the amount of processing power needed, but at the cost of expressivity and the ability to create complex terrains. The most popular terrain representation is a regular 2D grid, where the vertices are displaced in a third dimension by a displacement map, called a heightmap. This is the simplest way to represent terrain, and although it allows fast processing, it cannot model terrains with volumetric features. Volumetric approaches sample the 3D space by subdividing it into a 3D grid and represent the terrain as occupied voxels. They can represent volumetric features but they require computationally intensive algorithms for rendering, and their memory requirements are high. We propose a novel representation that combines the voxel and heightmap approaches, and is expressive enough to allow creating terrains with caves, overhangs, cliffs, and arches, and efficient enough to allow terrain editing, deformations, and rendering in real time.  相似文献   

17.
山区地形开阔度的分布式模型   总被引:1,自引:0,他引:1  
孙娴  林振山  王式功 《中国沙漠》2008,28(2):344-348
 地形开阔度是影响山地辐射平衡及其分量的重要地形因子,是山区散射辐射、地形反射辐射等计算的重要参数。在复杂的地形条件下,地形开阔度的计算很难用数学公式描述。 利用数字高程模型(DEM),全面考虑了坡地自身遮蔽和周围地形相互遮蔽的影响,提出了山区地形开阔度的分布式模型和算法。以1 km×1 km分辨率的DEM数据作为地形的综合反映,计算了起伏地形下中国地形开阔度的空间分布。同时,利用100 m和1 km两个分辨率的DEM数据,从不同DEM分辨率和不同地貌类型两个方面探讨了地形开阔度的空间尺度效应,阐明了区域地形开阔度随地形地貌和空间分辨率的变化规律。所提供的山地开阔度的数据可作为基础地理数据供相关研究应用。  相似文献   

18.
数字地形分析在滑坡研究中的应用综述   总被引:2,自引:0,他引:2  
高效的数字地形分析(Digital Terrain Analysis,DTA)是滑坡预测与评估研究的重要手段。文章综述了DTA在滑坡研究中的应用现状,基本内容包括地形因子分析、地形形态分析、地形单元划分以及DEM与滑坡模型的结合分析。地形因子分析的应用多而广,主要思路是在地形因子与滑坡发育的关系研究基础上分析其滑坡敏感性,进而构建滑坡预测和评估模型;地形形态分析是滑坡识别的重要手段,加强地貌形态和滑坡发育的关系研究有助于对潜在滑坡地形的识别;地形单元划分能为滑坡研究提供统计和分析单元;DEM与滑坡专业模型的结合方式多样,程度各异。同时,从尺度选择与转换的角度探讨了DTA滑坡研究的尺度问题,分析了DTA的局限性,指出DEM不能提供完备无误的地形信息,DTA不能完全取代常规的地形分析。最后,基于以上论述对未来的研究趋势提出了展望。  相似文献   

19.
Digital elevation models (DEMs) have been widely used for a range of applications and form the basis of many GIS-related tasks. An essential aspect of a DEM is its accuracy, which depends on a variety of factors, such as source data quality, interpolation methods, data sampling density and the surface topographical characteristics. In recent years, point measurements acquired directly from land surveying such as differential global positioning system and light detection and ranging have become increasingly popular. These topographical data points can be used as the source data for the creation of DEMs at a local or regional scale. The errors in point measurements can be estimated in some cases. The focus of this article is on how the errors in the source data propagate into DEMs. The interpolation method considered is a triangulated irregular network (TIN) with linear interpolation. Both horizontal and vertical errors in source data points are considered in this study. An analytical method is derived for the error propagation into any particular point of interest within a TIN model. The solution is validated using Monte Carlo simulations and survey data obtained from a terrestrial laser scanner.  相似文献   

20.
The objective of this research is to study the relationship between terrain complexity and terrain analysis results from grid‐based digital elevation models (DEMs). The impact of terrain complexity represented by terrain steepness and orientation on derived parameters such as slope and aspect has been analysed. Experiments have been conducted to quantify the uncertainties created by digital terrain analysis algorithms. The test results show that (a) the RMSE of derived slope and aspect is negatively correlated with slope steepness; (b) the RMSE of derived aspect is more sensitive to terrain complexity than that of derived slope; and (c) the uncertainties in derived slope and aspect tend to be found in flatter areas, and decrease with increasing terrain complexity. The study shows that although primary surface parameters can be well defined mathematically, the implementation of those mathematical models in a GIS environment may generate considerable uncertainties related to terrain complexity. In general, when terrain is rugged with steep slopes, the uncertainty of derived parameters is quite minimal. While in flatter areas, the DEM‐based derivatives, particularly the aspect, may contain a great amount of uncertainty, causing significant limitation in applying the analytical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号