首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
An alternate formulation of the ‘substructure deletion method’ suggested by Dasgupta in 19791 has been successfully implemented. The idea is to utilize simple Green's functions developed for a surface problem to replace the more complicated Green's functions required for embedded problems while still being able to generate an accurate solution. Since the exterior medium is usually represented by a continuum model, the interior medium in the present approach will also be represented by a continuum model rather than a finite element model as suggested originally, thereby eliminating the incompatibility between the solutions of the interior and exterior media. Detailed studies of the method's accuracy and limitations were performed using two-dimensional examples in wave scattering of canyons and alluvial valleys, problems which are more suitable for this method than the embedded foundation problem. The results obtained indicate that the alternate formulation gives accurate results only when the vertical dimension of the scattering object is not too large; if the aspect ratio (vertical over lateral) exceeds a certain limit, the results will not approach the known results given by boundary integral equation solutions or indirect boundary integral equations no matter what the refinement of the model may be. The greatest advantage of the present method is that the task of calculating Green's functions is reduced significantly; computational time using this new formulation is approximately five times less than for conventional boundary integral equation methods.  相似文献   

2.
—?The empirical Green's function deconvolution technique is used to retrieve the source time functions from the records of P waves of seven seismic events that occurred at the Rudna copper mine in 1996 and were located in the middle of the underground network. Their moment magnitudes ranged from 2.1 to 2.9. The records of smaller events from the same area and with similar source mechanism, with moment magnitudes ranging from 1.5 to 2.0, were accepted as empirical Green's functions. The relative source time functions were successfully retrieved at a number of stations for six events. Directivity effects, implying unilateral rupture propagation, were observed in five cases. The azimuth of rupture propagation direction and the rupture velocity were estimated from the distribution of pulse widths and pulse maximum amplitudes as a function of the cosine of station azimuths. The rupture propagated approximately either from south to north or from north to south. The rupture velocity was low, ranging from 0.25 to 0.54 of the shear-wave velocity. The source dimensions, represented by the fault length, were also small in comparison with those estimated in the frequency domain and ranged from 80 to 250?m.  相似文献   

3.
背景噪声层析成像技术已被广泛应用于地壳和上地幔速度结构的研究,这种方法不依靠地震的发生和人工源爆破,只需记录连续的噪声信号而无需产生信号,因为噪声穿过地下介质时会携带信息,然后通过利用台站记录到的连续背景噪声数据进行互相关计算和叠加,即可得到台站间的经验格林函数,从而获取对地下结构的认识。这种方法已经很好地应用于中国的东北地区、华北克拉通、青藏高原以及华南地区,并成功地揭示了这些地区地壳与上地幔顶部的速度结构。此外近年来,一些学者还利用噪声互相关技术研究地下介质地震波速度随时间的变化,通过对汶川大地震前后连续噪声记录的研究发现,大震发生后呈现同震波速降低和震后波速逐渐恢复的特点,这表明可以通过观测地震波特性的变化来监测地下应力的变化,从而为大震的预测预防工作提供科学依据。本文主要综述了近些年来背景噪声技术及其在中国大陆地区的应用。  相似文献   

4.
Time domain moment tensor analysis of 145 earthquakes (Mw 3.2 to 5.1), occurring during the period 2006–2014 in Gujarat region, has been performed. The events are mainly confined in the Kachchh area demarcated by the Island belt and Kachchh Mainland faults to its north and south, and two transverse faults to its east and west. Libraries of Green's functions were established using the 1D velocity model of Kachchh, Saurashtra and Mainland Gujarat. Green's functions and broadband displacement waveforms filtered at low frequency (0.5–0.8 Hz) were inverted to determine the moment tensor solutions. The estimated solutions were rigorously tested through number of iterations at different source depths for finding reliable source locations. The identified heterogeneous nature of the stress fields in the Kachchh area allowed us to divide this into four Zones 1–4. The stress inversion results indicate that the Zone 1 is dominated with radial compression, Zone 2 with strike-slip compression, and Zones 3 and 4 with strike-slip extensions. The analysis further shows that the epicentral region of 2001 MW 7.7 Bhuj mainshock, located at the junction of Zones 2, 3 and 4, was associated with predominant compressional stress and strike-slip motion along ∼ NNE-SSW striking fault on the western margin of the Wagad uplift. Other tectonically active parts of Gujarat (e.g. Jamnagar, Talala and Mainland) show earthquake activities are dominantly associated with strike-slip extension/compression faulting. Stress inversion analysis shows that the maximum compressive stress axes (σ1) are vertical for both the Jamnagar and Talala regions and horizontal for the Mainland Gujarat. These stress regimes are distinctly different from those of the Kachchh region.  相似文献   

5.
The influence of the elastic Earth properties on seasonal or shorter periodic surface deformations due to atmospheric surface pressure and terrestrial water storage variations is usually modeled by applying a local half-space model or an one dimensional spherical Earth model like PREM from which a unique set of elastic load Love numbers, or alternatively, elastic Green's functions are derived. The first model is valid only if load and observer almost coincide, the second model considers only the response of an average Earth structure. However, for surface loads with horizontal scales less than 2500 km2, as for instance, for strong localized hydrological signals associated with heavy precipitation events and river floods, the Earth elastic response becomes very sensitive to inhomogeneities in the Earth crustal structure.We derive a set of local Green's functions defined globally on a 1° × 1° grid for the 3-layer crustal structure TEA12. Local Green's functions show standard deviations of ±12% in the vertical and ±21% in the horizontal directions for distances in the range from 0.1° to 0.5°. By means of Green's function scatter plots, we analyze the dependence of the load response to various crustal rocks and layer thicknesses. The application of local Green's functions instead of a mean global Green's function introduces a variability of 0.5–1.0 mm into the hydrological loading displacements, both in vertical and in horizontal directions. Maximum changes due to the local crustal structures are from −25% to +26% in the vertical and −91% to +55% in the horizontal displacements. In addition, the horizontal displacement can change its direction significantly. The lateral deviations in surface deformation due to local crustal elastic properties are found to be much larger than the differences between various commonly used one-dimensional Earth models.  相似文献   

6.
The contribution of the (linear) unbounded soil to the basic equation of motion of a non-linear analysis of soil-structure interaction consists of convolution integrals of the displacement-force relationship in the time domain and the history of the interaction forces. The former is calculated using the indirect boundary-element method, which is based on a weighted-residual technique and involves Green's functions. As an example of a non-linear soil-structure-interaction analysis, the partial uplift of the basemat of a structure is examined. As the convolution integrals have to be recalculated for each time step, the computational effort in this rigorous procedure is substantial. A reduction can be achieved by simplifying the Green's function by ‘concentrating’ the region of influence. Alternatively, assuming a specified wave pattern, a coupled system of springs and dashpots with frequency-independent coefficients can be used as an approximation.  相似文献   

7.
High-speed train seismology has come into being recently. This new kind of seismology uses a high-speed train as a repeatable moving seismic source. Therefore, Green's function for a moving source is needed to make theoretical studies of the high-speed train seismology. Green's function for three-dimensional elastic wave equation with a moving point source on the free surface is derived. It involves a line integral of the Green's function for a fixed point source with different positions and corresponding time delays. We give a rigorous mathematical proof of this Green's function. According to the principle of linear superposition, we have also obtained the Green's function for a group of moving sources which can be regarded as a model of a traveling high-speed train. Based on a temporal convolution, an analytical formula for other moving sources is also given. In terms of a moving Gaussian source, we deal with the issue of numerical calculations of the analytical formula. Applications to modelling of a traveling high-speed train are presented. We have considered both the land case and the bridge case for a traveling high-speed train. The theoretical seismograms show different waveform features for these two cases.  相似文献   

8.
In spite of a geometrical rotation into radial and transverse parts, two- or three-component in-seam seismic data used for underground fault detection often suffer from the problem of overmoding ‘noise’. Special recompression filters are required to remove this multimode dispersion so that conventional reflection seismic data processing methods, e.g. CMP stacking techniques, can be applied afterwards. A normal-mode superposition approach is used to design such multimode recompression filters. Based on the determination of the Green's function in the far-field, the normal-mode superposition approach is usually used for the computation of synthetic single- and multi-mode (transmission) seismograms for vertically layered media. From the filter theory's point of view these Green's functions can be considered as dispersion filters which are convolved with a source wavelet to produce the synthetic seismograms. Thus, the design of multimode recompression filters can be reduced to a determination of the inverse of the Green's function. Two methods are introduced to derive these inverse filters. The first operates in the frequency domain and is based on the amplitude and phase spectrum of the Green's function. The second starts with the Green's function in the time domain and calculates two-sided recursive filters. To test the performance of the normal-mode superposition approach for in-seam seismic problems, it is first compared and applied to synthetic finite-difference seismograms of the Love-type which include a complete solution of the wave equation. It becomes obvious that in the case of one and two superposing normal modes, the synthetic Love seam-wave seismograms based on the normal-mode superposition approach agree exactly with the finite-difference data if the travel distance exceeds two dominant wavelengths. Similarly, the application of the one- and two-mode recompression filters to the finite-difference data results in an almost perfect reconstruction of the source wavelet already two dominant wavelengths away from the source. Subsequently, based on the dispersion analysis of an in-seam seismic transmission survey, the normal-mode superposition approach is used both to compute one- and multi-mode synthetic seismograms and to apply one- and multimode recompression filters to the field data. The comparison of the one- and two-mode synthetic seismograms with the in-seam seismic transmission data reveals that arrival times, duration and shape of the wavegroups and their relative excitation strengths could well be modelled by the normal-mode superposition approach. The one-mode recompressions of the transmission seismograms result in non-dispersive wavelets whose temporal resolution and signal-to-noise ratio could clearly be improved. The simultaneous two-mode recompressions of the underground transmission data show that, probably due to band-limitation, the dispersion characteristics of the single modes could not be evaluated sufficiently accurately from the field data in the high-frequency range. Additional techniques which overcome the problem of band-limitation by modelling all of the enclosed single-mode dispersion characteristics up to the Nyquist frequency will be mandatory for future multimode applications.  相似文献   

9.
An approximate method for computation of the compliance functions of rigid plates resting on an elastic or visco-elastic halfspace excited by forces and moments in all degrees of freedon is presented. The method is based on a Green's function approach. These functions are given for all degrees of freedom in form of well-behaved integrals. The numerical procedure is described and is used to evaluate the vertical, horizontal, rocking and torsion compliance functions of rectangular plates with side ratios 1 ≤ b/a ≤ 10 and non-dimensional frequency 0≤a0≤10. It is shown how this method can be extended to problems concerning a linear visco-elastic halfspace and a halfspace with variable stiffness.  相似文献   

10.
Scattering of plane harmonic waves by a three‐dimensional basin of arbitrary shape embedded within elastic half‐space is investigated by using an indirect boundary integral equation approach. The materials of the basin and the half‐space are assumed to be the most general anisotropic, homogeneous, linearly elastic solids without any material symmetry (i.e. triclinic). The unknown scattered waves are expressed in terms of three‐dimensional triclinic time harmonic full‐space Green's functions. The results have been tested by comparing the surface response of semi spherical isotropic and transversely isotropic basins for which the numerical solutions are available. Surface displacements are presented for a semicircular basin subjected to a vertical incident plane harmonic pseudo‐P‐, SV‐, or SH‐wave. These results are compared with the motion obtained for the corresponding equivalent isotropic models. The results show that presence of the basin may cause significant amplification of ground motion when compared to the free‐field displacements. The peak amplitude of the predominant component of surface motion is smaller for the anisotropic basin than for the corresponding isotropic one. Anisotropic response may be asymmetric even for symmetric geometry and incidence. Anisotropic surface displacement generally includes all three components of motion which may not be the case for the isotropic results. Furthermore, anisotropic response strongly depends upon the nature of the incident wave, degree of material anisotropy and the azimuthal orientation of the observation station. These results clearly demonstrate the importance of anisotropy in amplification of surface ground motion. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

11.
Source inversion of small-magnitude events such as aftershocks or mine collapses requires use of relatively high frequency seismic waveforms which are strongly affected by small-scale heterogeneities in the crust. In this study, we developed a new inversion method called gCAP3D for determining general moment tensor of a seismic source using Green's functions of 3D models. It inherits the advantageous features of the “Cut-and-Paste” (CAP) method to break a full seismogram into the Pnl and surface-wave segments and to allow time shift between observed and predicted waveforms. It uses grid search for 5 source parameters (relative strengths of the isotropic and compensated-linear-vector-dipole components and the strike, dip, and rake of the double-couple component) that minimize the waveform misfit. The scalar moment is estimated using the ratio of L2 norms of the data and synthetics. Focal depth can also be determined by repeating the inversion at different depths. We applied gCAP3D to the 2013 Ms 7.0 Lushan earthquake and its aftershocks using a 3D crustal-upper mantle velocity model derived from ambient noise tomography in the region. We first relocated the events using the double-difference method. We then used the finite-differences method and reciprocity principle to calculate Green's functions of the 3D model for 20 permanent broadband seismic stations within 200 km from the source region. We obtained moment tensors of the mainshock and 74 aftershocks ranging from Mw 5.2 to 3.4. The results show that the Lushan earthquake is a reverse faulting at a depth of 13–15 km on a plane dipping 40–47° to N46° W. Most of the aftershocks occurred off the main rupture plane and have similar focal mechanisms to the mainshock's, except in the proximity of the mainshock where the aftershocks' focal mechanisms display some variations.  相似文献   

12.
Green's functions for transversely isotropic thermoporoelastic bimaterials are established in the paper. We first express the compact general solutions of transversely isotropic thermoporoelastic material in terms of harmonic functions and introduce eight new harmonic functions. The three-dimensional Green's function having a concentrated liquid source or a concentrated heat source in steady state is completely solved using these new harmonic functions. The analytical results show some new phenomena of the pore fluid pressure increment, thermal increment and stress distributions at the interface. In the two materials, the pore fluid pressure has the same distribution because of the common fluid permeability, but the situation is different for the thermal increment. Shear failure is most likely at the two sources due to the highly degenerated direction of shear stress contours.  相似文献   

13.
—Systematic variations of the seismic radial anisotropy ξ to depths of 200–250 km in North America and Eurasia and their surroundings are related to the age of continental provinces, and typical depth dependences of ξ R are determined. The relative radial anisotropy ξ R in the mantle lithosphere of Phanerozoic orogenic belts is characterized by ν SH > ν SV , with its maximum depth of about 70 km, on the average, while beneath old shields and platforms, it exhibits a maximum deviation from ACY400 model (Montagner and Anderson, 1989) at depths of about 100 km with ν SV ν SH signature. An interpretation of the observed seismic anisotropy by the preferred orientation of olivine crystals results in a model of the mantle lithosphere characterized by anisotropic structures plunging steeply beneath old shields and platforms, compared to less inclined anisotropies beneath Phanerozoic regions. This observation supports the idea derived from petrological and geochemical observations that a mode of continental lithosphere generation may have changed throughout earth's history.  相似文献   

14.
—An algorithm has been developed to compute the dispersive and dissipative seismic response using FUTTERMAN’S (1962) third attenuation-dispersion relationship. In the computation, frequency-dependent velocity and quality factor Q have been used but in the case of the nondispersive synthetic seismogram, frequency-independent velocity has been used. The model’s parameters are density, phase velocity, quality factors and thicknesses of the layers. Dispersive and nondispersive synthetic seismograms have been computed with and without absorption for a layered earth geological model. Fast Fourier transform (FFT) technique has been adopted for converting the frequency domain response into the time domain. The frequency spacing, Δf = 0.976?Hz, has been considered to avoid the aliasing effect. The results have revealed changes in the reflected waveforms in the frequency domain as well as in the time domain for absorption and dispersion cases. It is also concluded that dispersion reduces the arrival time and this effect is increasing with the travel time. The effect of constant Q on the seismic response has also been studied.  相似文献   

15.
One of the severe problems in the semi-empirical method for the prediction of strong ground motions is that there is no objective criterion for choosing empirical Green's functions. It is undesirable that synthesized strong ground motions are affected by the source process of an earthquake whose record is adopted as an empirical Green's function. Through the analysis of strong motion accelerograms of two aftershocks of the 1983 Japan Sea earthquakes, it is found that characteristics of the accelerograms are dependent on the moment rate function derived from teleseismic observations. A procedure is presented for removing the effect of the source process from observed strong motion accelerograms. The thus obtained empirical Green's function expresses approximately the impulse response of the medium between the earthquake source and the observation site.  相似文献   

16.
—?The aim of our study consists of analyzing potentially non-double-couple seismic events recorded at regional distances. In order to define the nature of the seismic source, a moment tensor inversion is carried out as this method is general enough not to initially constrain the source mechanism. In this paper we present an application to a seismic event induced by a mine collapse which occurred near the town of Halle in Germany. Because of its induced nature, many parameters such as the location and geometry of this seismic source are known. This information allows us to test the influence of inadequate propagation modeling on the moment tensor obtained from the inversion. Green's functions have been computed with the reflectivity method in a flat layered medium, using the European model EurID (Du et? al., 1998; Dufumier et al., 1997). From the inversion of P-wave seismograms recorded by the German Regional Seismic Network will, we obtained a source time function which can be decomposed into two subevents. The first one has a large isotropic part and a deviatoric mechanism with near vertical nodal planes. No volume change is observed for the second subevent, but a deviatoric component opposite of the first one. The addition of S-waves does not change the results of the inversion which are stable. Surface waves were not used because of their poor dispersion curves. Based on the moment tensor obtained from these inversions, the physical process at the source is compatible with a large cavity collapse.  相似文献   

17.
A local plane-wave approach of generalized diffraction tomography in heterogeneous backgrounds, equivalent to Kirchhoff summation techniques when applied in seismic reflection, is re-programmed to act as repeated synthetic aperture radar (SAR) imaging for seismic prestack depth migration. Spotlight-mode SAR imaging quickly provides good images of the electromagnetic reflectivity of the ground via fast Fourier transform (FFT)-based signal processing. By calculating only the Green's functions connecting the aircraft to the centre of the illuminated patch, scattering structures around that centre are also recovered. SAR technology requires us to examine seismic imaging from the local point of view, where the quantity and quality of the available information at each image point are what are important, regardless of the survey geometry. When adapted to seismics, a local image of arbitrary size and sampling is obtained by FFT of seismic energy maps in the scattering wavenumber domain around each node of a pre-calculated grid of Green's functions. These local images can be used to generate a classic prestack depth-migrated section by collecting only their centres. However, the local images also provide valuable information around the centre, as in SAR. They can therefore help to pre-analyse prestack depth migration efficiently, and to perform velocity analysis at a very low cost. The FFT-based signal-processing approach allows local, efficient and automatic control of anti-aliasing, noise and resolution, including optimized Jacobian weights. Repeated local imaging could also be used to speed up migration, with interpolation between local images associated with a coarse grid of Green's functions, as an alternative to interpolation of Green's functions. The local images may, however, show distortions due to the local plane-wave approximation, and the velocity variations across their frame. Such effects, which are not necessarily a problem in SAR, should be controlled and corrected to further enhance seismic imaging. Applications to realistic models and to real data show that, despite the distortion effects, the local images can yield similar information to prestack depth migration, including common-image-point gathers for velocity analyses and AVO/AVA effects, at a much lower cost when a small target is considered.  相似文献   

18.
Least-squares reverse time migration is often formulated as an iterative updating process, where estimating the gradient of the misfit function is necessary. Traditional time domain shot-profile least-squares reverse time migration is computationally expensive because computing the gradient involves solving the two-way wave equation several times in every iteration. To reduce the computational cost of least-squares reverse time migration, we propose a double-plane-wave least-squares reverse time migration method based on a misfit function for frequency-domain double-plane-wave data. In double-plane-wave least-squares reverse time migration, the gradient is computed by multiplying frequency-domain plane-wave Green's functions with the corresponding double-plane-wave data residual. Because the number of plane-wave Green's functions used for migration is relatively small, they can be pre-computed and stored in a computer's discs or memory. We can use the pre-computed plane-wave Green's functions to obtain the gradient without solving the two-way wave equation in each iteration. Therefore, the migration efficiency is significantly improved. In addition, we study the effects of using sparse frequency sampling and sparse plane-wave sampling on the proposed method. We can achieve images with correct reflector amplitudes and reasonable resolution using relatively sparse frequency sampling and plane-wave sampling, which are larger than that determined by the Nyquist theorem. The well-known wrap-around artefacts and linear artefacts generated due to under-sampling frequency and plane wave can be suppressed during iterations in cases where the sampling rates are not excessively large. Moreover, implementing the proposed method with sparse frequency sampling and sparse plane-wave sampling further improves the computational efficiency. We test the proposed double-plane-wave least-squares reverse time migration on synthetic models to show the practicality of the method.  相似文献   

19.
This study is concerned with the dynamic response of an arbitrary shaped rigid strip foundation embedded in an orthotropic elastic soil. The foundation is subjected to time-harmonic vertical, horizontal and moment loadings. The boundary-value problem related to an embedded foundation is analysed by using the indirect boundary integral equation method. The kernel functions of the integral equations are displacement and traction Green's functions of an anisotropic elastic half plane. Exact analytical solutions are used for the Green's functions. The boundary integral equation is solved by using numerical techniques. Selected numerical results are presented for the impedances of rectangular and semi-circular rigid strip foundations embedded in four types of anisotropic soils. A discussion on the influence of soil anisotropy and frequency of excitation on the impedances is presented. The versatility of the analysis is demonstrated by considering the through soil interaction between two semi-circular strip foundations.  相似文献   

20.
— Average envelope shapes (mean square amplitude time histories) of small earthquakes represent a convenient basis for the construction of semi-empirical stochastic “Green's functions,” needed for prediction of future strong ground motion. At the same time, they provide crucial evidence for verification of the theories of scattering of high-frequency seismic waves in the lithosphere. To determine such shapes in the Kamchatka region we use the records of near (R = 50–200 km) shallow earthquakes located around the broadband station PET. On these records, we select the S-wave group and determine its root-mean-square duration T rms, separately for each of the five octave frequency bands. We determine the empirical T rms vs. distance dependence and find it to be very close to a linear one. At the reference distance R = 100 km, average T rms decreases from 5.4 se c for the 0.75 Hz band to 3.9 sec for the 12 Hz band. To analyze average envelopes, we assume that the functional form of the envelope shape function is independent of distance, and stretch each of the observed envelopes along the time axis so as to reduce it to a fixed distance. Through averaging of these envelopes we obtain characteristic envelope shape functions. We qualitatively analyze these shapes and find that around the peak they are close to the shapes expected for a medium with power-law inhomogeneity spectrum, with the spectral exponent 3.5–4. From onset-to-peak delay times we derive the values of transport mean free path and of scattering Q for a set of distances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号