首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
钒是一个重要的第一行过渡族金属元素,由于其独特的多价态性质,且在地球的各个圈层广泛分布,因此钒元素的丰度变化被广泛用来研究和氧化还原反应相关的地球化学过程。随着基于多接收电感耦合等离子体质谱仪(MC-ICP-MS)的同位素分析技术的发展,钒同位素地球化学的研究也取得初步进展。目前的观测已经初步确定硅酸盐地球的钒同位素组成及其和陨石钒同位素组成的差异,这个差异为了解地球最初的物质来源和形成过程提供了新的制约。对高温岩石样品的测量发现钒同位素在岩浆分离结晶过程中存在显著分馏,因此钒同位素是潜在的研究高温岩浆过程的物理化学条件特别是氧化还原状态的新工具。推测低温下同位素的分馏应更显著,因此钒同位素在环境和生物地球化学领域也有望得到更广泛的应用。  相似文献   

2.
铬(Cr)属于氧化还原敏感元素,在岩浆过程中是一种中度相容和轻度亲铁元素。Cr在硅酸盐地球中主要有三种价态:Cr2+、Cr3+和Cr6+。Cr存在于不同来源的矿物和岩石中,其氧化还原状态和同位素组成可以为其成因、氧化还原条件和相关成矿历史提供有价值的信息。近年来,铬同位素越来越多地应用到现代环境、古环境、行星的演化以及高温地质过程等领域中,而高温地质过程中储库的铬同位素及其分馏机理研究是其他工作的基础。尤其是随着质谱技术的发展,Cr同位素在高温环境中的分馏机制及行为也引起了更多的关注。本文主要介绍不同储库的Cr同位素组成及高温岩浆过程中Cr同位素研究的最新进展。  相似文献   

3.
铜同位素地球化学及研究新进展   总被引:3,自引:0,他引:3  
多接收杯电感耦合等离子体质谱仪(MC-ICPMS)的应用极大地提高了铜(Cu)同位素的分析精度和效率,推进了铜同位素地球化学的发展和应用。文中对Cu同位素地球化学进行了全面的综述,并更新了铜同位素研究的最新进展及其在地质与环境过程中的应用。自然界中铜同位素(δ65Cu)的变化范围可达20‰以上,高温下铜同位素分馏较小,而在低温条件下,铜同位素能产生巨大的同位素分馏,其主要取决于低温下铜的氧化还原反应。作为最重要的金属成矿元素之一、重要的重金属元素和重要的挥发性元素,铜同位素在矿床地球化学、环境地球化学和天体化学领域均显示了巨大的应用潜力。  相似文献   

4.
随着分析技术的进步,非传统稳定同位素体系在地球化学、天体化学和生物地球化学等研究领域的应用日益广泛。钛(Ti)是一个非常重要的过渡族金属元素,在地球和其他类地球行星中广泛存在。但是由于Ti是一种难熔的、流体不活动性元素,高温地质过程中Ti同位素分馏很小。人们对Ti同位素体系的地球化学应用的关注相对其他非传统稳定同位非常有限。而近年来,随着化学纯化方案的优化以及双稀释剂方法的改进和仪器质谱性能的提高,Ti同位素组成的高精度测试已经能够实现。天然样品中Ti同位素组成的变化随之得以发现,使得学者们能够利用这一新的稳定同位素体系来解决与高温和低温地球化学相关的问题。很快Ti同位素体系地球化学研究成为当前国际地质学界的前沿研究课题和新的发展方向之一。本文首先在简要介绍Ti元素和Ti同位素体地球化学性质的基础上,介绍了Ti元素化学分离和Ti同位素分析方法。随后笔者总结了已有的不同类型球粒陨石和地球样品的质量相关Ti同位素组成研究结果,对硅酸盐地球的Ti同位素组成做了初步评估。前人对高温地质样品的Ti同位素组成研究初步探明Ti同位素在岩浆演化过程,例如部分熔融和结晶分异等重要地质过程中的分馏行为。笔者在此基础上探讨了结晶分异过程中引起Ti同位素分馏的主要控制因素,指出Ti同位素是潜在的研究岩浆演化过程的新工具。最后笔者探讨了Ti同位素地球化学未来的发展方向,以加速我国在Ti同位素地球化学方面的应用研究。  相似文献   

5.
王相力  卫炜 《地学前缘》2020,27(3):78-103
随着多接收质谱仪分析技术的进步,铬稳定同位素体系在最近二十几年的环境科学和地球化学中得到了越来越广泛的应用。铬元素属于氧化还原敏感元素,在氧化还原反应过程中伴随着较大的同位素分馏。因此,铬同位素在指示现代或古代环境的氧化还原状态方面有着重要的应用。同时,铬也是中度相容和轻度亲铁元素,使得铬稳定同位素体系也可用来制约高温地质过程(如核幔分异、地幔熔融和岩浆分异结晶等)以及地外行星的演化。本综述首先介绍铬稳定同位素体系,随后讲述分析方法、铬同位素分馏原理以及铬同位素在高温、低温地球化学中的应用。  相似文献   

6.
硒同位素地球化学研究进展与应用   总被引:1,自引:0,他引:1  
朱建明  谭德灿  王静  曾理 《地学前缘》2015,22(5):102-114
多接收杯电感耦合等离子体质谱仪(MC ICPMS)与氢化物发生系统(HG)在线联机自动测样的实现,极大提高了硒(Se)同位素的分析精度和效率,推进了Se同位素地球化学的发展。本文综述了Se稳定同位素研究的最新进展及其在地质与环境中的应用。自然界中Se同位素(δ82/76Se)的变化范围可达-12.40‰~11.37‰。其同位素分馏主要取决于硒氧阴离子团的氧化还原反应,而地表水体与氧化海洋环境中的硒同位素分馏极可能与铁氧化物吸附、浮游生物的吸收有关,均可引起约1‰的分馏,且在吸附/吸收相中均倾向富集Se的轻同位素。黑色岩系中Se同位素尚未明确对古海洋还原环境的指示,但近地表中Se同位素存在的强烈分馏,指示大陆地表发生的氧化还原事件极可能导致Se同位素的明显分馏,使河流相倾向富集Se的重同位素。因此,Se同位素有可能成为了解局域至区域沉积环境的氧化还原条件以及古海洋化学演化的潜在指标。随着其分馏机制的进一步阐明,Se同位素有可能在地球、环境与生命科学中得到更为广泛的应用。  相似文献   

7.
近年来,研究铀(U)及其同位素有关的地球化学指标在地球环境科学领域发挥着越来越重要的作用。为加快我国U同位素发展和应用,本文系统回顾了近20年来U及其同位素的地球化学行为、U同位素分析测试技术、U循环与地表U同位素组成、U同位素分馏机理以及U同位素在环境科学领域的应用进展与技术壁垒。综述表明:U作为氧化还原敏感元素,在自然和人为活动中,U同位素存在显著分馏现象。U同位素已初步成功应用于示踪现代陆地表生环境系统中U的分布、迁移和扩散行为,重建地质历史时期环境与生命协同演化过程等地球环境科学领域。但总体而言,国内外U同位素研究工作仍处于起步阶段,多数局限于定性分析,在应用中也存在一些问题亟待解决,例如:特殊价态的U同位素仍无法测量,这制约了进一步对氧化还原过程中U同位素分馏机理的认识;地下水U污染处理手段缺失,表生沉积物的U同位素测试数据缺乏系统性和区域性,大气定量源计算解析模型还未完全建立;碳酸盐岩成岩过程中的U同位分馏机理尚不清楚,其分馏校正因子难以确定;黑色页岩包含海水和沉积物混杂的化学信号,难以准确扣除局部无效分馏信号;对非重大地质事件时期的关注较少导致无法恢复地球完整的氧化还原历...  相似文献   

8.
近年来多接收杯电感耦合等离子体质谱仪(MC-ICP-MS)的广泛应用,大大提高了Mo同位素分析方法的精度和效率,使Mo同位素地球化学成为当前地学研究领域中的一个前沿方向.本文综述了Mo稳定同位素的最新研究进展及其地质应用.自然界中的Mo同位素(δ98/95Mo)的一般变化范围是-1.35‰~2.60‰.Mo同位素分馏在充氧环境下取决于Mn氧化物的吸附或共沉淀,贫氧一缺氧环境下受控于水溶液中的[H2S].沉积物中的Mo同位素既能指示古沉积环境的氧化还原条件,也能够指示与之相关的古海洋地理环境,因此,Mo同位素是了解局域至区域沉积环境的氧化还原条件、硫和碳地球化学循环及古海洋化学演化等的强有力工具.随着其分馏机理的进一步阐明和应用范围的拓展,Mo同位素将在地球与环境科学研究中得到广泛的应用.  相似文献   

9.
地下水中稳定铬同位素的生物地球化学作用   总被引:2,自引:0,他引:2  
铬是地下水中常见的一种变价重金属污染物,在自然界中广泛分布且应用广泛。将Cr(Ⅵ)还原为Cr(Ⅲ)是地下水铬污染防治中的主要策略。在Cr(Ⅵ)的非生物还原过程中存在铬同位素分馏现象,通过地下水中铬同位素组成的变化情况可以定量地指示Cr(Ⅵ)的还原程度和速率。这被认为是一个重要发现,在地下水铬污染防治中有着广阔的应用前景。文中对铬与铬的来源、地下水中铬同位素的测定方法、铬同位素的生物地球化学作用、铬同位素在地下水污染防治中的应用等进行了系统综述。研究认为:微生物广泛参与地下水中铬的氧化与还原作用,并有可能产生显著的铬同位素分馏。地下水中被还原的Cr(Ⅵ)在微生物作用下有可能被活化,用非生物还原条件下的铬同位素分馏规律指示地下水中Cr(Ⅵ)还原程度可能会产生较大的误差。开展地下水中铬同位素的生物地球化学作用研究,特别是生物氧化Cr(Ⅲ)过程中的铬同位素分馏规律研究,对于更全面地认识铬同位素的指示作用具有重要意义。  相似文献   

10.
《地学前缘》2017,(5):402-415
近年来随着质谱和分析技术的进步,Ca同位素的分析精度获得了很大的提高,出现了很多高温条件下Ca同位素地球化学的研究成果。双稀释剂的合理使用在Ca同位素的分析中起关键作用。本文系统地阐述了前人对Ca同位素测试时所使用的双稀释剂技术,提供相应的计算程序,并且系统地归纳近年来高温条件下Ca同位素地球化学研究的新成果,包括单矿物对之间Ca同位素的分馏、陨石和地幔Ca同位素组成的不均一性和陨石的εCa异常及K-Ca定年等。斜方辉石和橄榄石相比于共生的单斜辉石更富集重Ca同位素,并且Δ44/40 CaOpx-Cpx受斜方辉石Ca含量和Ca—O键长的影响。地幔矿物之间具有不相同的Ca同位素组成说明地幔Ca同位素组成的不均一性。陨石及其内部难熔包裹体的Ca同位素组成变化范围很大,并且普遍存在εCa的异常。顽火辉石球粒陨石与地球具有相近的Ca同位素组成,表明它们可能具有相同的起源。但是高温条件下Ca同位素的分馏研究仍处于起步阶段,未来对于地球主要储库的Ca同位素组成、岩浆过程(部分熔融和分离结晶)和洋壳俯冲过程的Ca同位素分馏仍然需要更多地研究。  相似文献   

11.
石榴子石变斑晶微结构和成分特征对构造和变质作用研究有重要作用。本文以华北克拉通北缘西段宝音图群石榴子石云母片岩中的石榴子石变斑晶为研究对象,通过扫描电子显微镜搭载的二次电子(SE)显微结构形貌观测,背散射电子(BSE)成分分析、能谱仪(EDS)和电子探针(EPMA)分析,得到石榴子石变斑晶组构和化学成分信息,揭示出石榴子石晶界具有化学非均质性。在MnNCFMASHO体系下采用石榴子石云母石英片岩的全岩成分计算的锰铝榴石、钙铝榴石等值线图基础上,建立了石榴子石变斑晶的p-t轨迹,反映出石榴子石变斑晶在变质峰期后经历了一个近等温降压的地质动力学过程。  相似文献   

12.
摘要:南秦岭构造带出露于勉略断裂和虞关—留坝断裂之间,是一条复杂的增生杂岩带,也是秦岭造山带的重要组成部分。增生杂岩带内马道地区发育一套由黑云母片麻岩、片岩组成的变泥质岩,内部包含有石英岩、大理岩及超基性岩等岩块,构成了典型的“block in matrix”结构。选取了含石榴子石黑云母片麻岩样品进行详细的岩石学研究。结果显示,北部变质岩样品中的石榴子石具有弱退变质成分环带,利用岩石矿物组合中的石榴子石-黑云母温度计、石榴子石-黑云母-斜长石-石英组合温度-压力计,估算峰期压力为078~079 GPa,温度为705~707 ℃,退变质时期压力为064~076 GPa,温度为602~650 ℃,揭示出岩石峰期高角闪岩相变质后,经历降温减压过程。南部岩石样品中含有特征的十字石+蓝晶石组合,样品中的石榴子石具有进变质成分环带,其峰期压力为049~057 GPa,温度为553~562 ℃,相当于低角闪岩相。通过与其他典型增生杂岩带变质岩的剥露机制对比,认为马道变泥质岩的变质作用演化与南秦岭地区碰撞作用有关,而其剥露过程则主要受到双重逆冲构造控制。  相似文献   

13.
湖南锡矿山锑矿床是目前世界上已发现的最大的锑矿床,其硅化非常发育且与矿化关系密切,根据硅化蚀变程度的强弱,从围岩到矿石大致划分为4个带:灰岩→弱硅化灰岩→强硅化灰岩→矿石。为揭示锡矿山锑矿的成矿过程及成矿流体信息,利用Isocon标准化方法,以Al_2O_3为惰性组分,对各蚀变带围岩及矿石的主、微量元素进行质量平衡计算。结果表明,热液蚀变过程中,Si、Sb、Li和Bi等大量迁入,而Ca、Mg、Na和大离子亲石元素Sr、Ba、Rb等大量迁出;成矿热液呈酸性并富硅,其中Hg、As、Au、Tl等元素含量极低,这可能是导致锡矿山锑矿床矿种单一的原因之一。稀土元素除Eu外,其他元素未发生明显的活化迁移,水岩反应并未影响原岩的稀土元素配分模式;蚀变岩及矿石中的Eu负异常可能表明成矿过程是在相对还原的环境下进行的。  相似文献   

14.
大洋岛弧的前世今生   总被引:2,自引:2,他引:0  
根据板块构造理论,板块的边界是地质作用最为强烈的地区,因而它们是当今固体地球科学研究的重点。依据应力性质的不同,地球上板块的边界类型有扩张的洋中脊、汇聚的俯冲带和调节板块运动差异的转换断层三种。就汇聚型板块边界而言,它又可进一步划分为洋-洋俯冲的大洋或洋内岛弧带(Intra-oceanic arc)、洋-陆俯冲的安第斯型活动大陆边缘带和陆-陆接触的大陆碰撞带三种。相对而言,大洋岛弧的研究程度最低。传统认为最典型的大洋岛弧——日本诸岛,已不再被认为是洋-洋俯冲的产物,因为已有研究显示它是从亚洲大陆裂解的碎块。根据目前的调查,现今的大洋岛弧主要集中在西太平洋地区,以太平洋与菲律宾板块间的Izu-Bonin-Mariana弧和太平洋-澳大利亚间的西南太平洋岛弧为代表。大洋岛弧研究的最重要问题是,洋洋之间如何产生了俯冲。目前多倾向于认为:大洋中的转换断层可使不同时代的大洋岩石圈相互接触,在这种情况下,较老的岩石圈由于冷却时间较长而密度相对较大,因而可下沉而俯冲到较年轻的岩石圈之下。这一模型也被誉为蛇绿岩形成的初始俯冲定律(Subduction Initial Rule,简称SIR)。但存在的问题是,目前全球还没发现有转换断层转变为俯冲带的实例。更何况,全球大洋中发育如此众多的转换断层,但为何只在西太平洋发育大洋岛弧?本文通过对资料的总结还发现,这些大洋岛弧基本都是从亚洲或者澳大利亚大陆东部边缘裂解的碎块,只是后期的弧后扩张作用使裂解的碎块发生强烈的改造,形成具有类似大洋岩石圈的特点。目前提出的洋-洋自发形成俯冲带的模型并没有理论基础,也没有实际地质事实的支持。但在加勒比海、斯科舍海和阿留申地区,大洋岛弧的出现与洋底高原诱发的俯冲带跃迁或俯冲极性反转有关。因此,板块构造理论中的洋洋初始俯冲模式需要进一步资料的验证。  相似文献   

15.
小秦岭金矿区华山和文峪花岗岩体形成年龄与金成矿年龄相近,已知金矿多集中在文峪岩体周围,比较两岩体岩浆氧逸度的异同有利于判断其对金成矿影响的异同。本文利用两岩体磷灰石中锰离子价态和锆石钛含量,对岩浆的氧逸度进行了约束。计算表明,华山岩体成岩氧逸度lgf(O2)在-9.3^-5.1之间,而文峪岩体成岩氧逸度在-8.5^-6.1之间,均属大于HM缓冲线的高氧逸度环境。Au在还原状态易呈自然金而沉淀,氧化状态时易以Au+或Au3+迁移。故华山和文峪岩体的岩浆都不能对金形成地球化学障而使之分散。  相似文献   

16.
大洋与大陆板内典型EM1型玄武岩的成因联系和区别   总被引:1,自引:0,他引:1  
前人基于大洋玄武岩的放射成因同位素组成定义了DMM、HIMU、EM1和EM2等地幔端元组分。然而,自"EM1"这一概念被提出以来,有关其成因的激烈争论持续不断,EM1因此被认为是最"神秘莫测"的地幔组分。对比研究大洋和大陆板内的EM1型玄武岩可为探讨EM1组分的属性和成因提供新的制约。本文总结了笔者最近针对典型EM1型玄武岩的研究进展,比较了南太平洋EM1型洋岛玄武岩(Pitcairn)和中国东北EM1型钾质玄武岩的元素和Mg-Sr-Nd-Pb-Hf同位素地球化学特征,阐述了这两类EM1型玄武岩在成因上的联系和区别。  相似文献   

17.
张昭杰  方石 《世界地质》2019,(2):486-491
为提高测井岩性识别的精度,本文结合乌夏地区岩芯资料和测井数据,总结该地区砂砾岩测井响应特征,优选出声波、自然伽马、密度、中子孔隙度和电阻率等5条测井曲线参数作为训练和测试样本,通过遗传算法挑选出最佳的支持向量机核函数参数σ和惩罚因子C,建立支持向量机岩性识别模型。结果表明该模型实际数据预测总体符合率为81.6%,在识别准确率上与传统测井识别砂砾岩岩性方法相比都有明显提升。  相似文献   

18.
大火成岩省(LIPs)是发生在板块内部的超大规模岩浆活动的产物,其成因一直是地学界研究的前沿和热点。影响LIPs形成的主要因素包括温度、压力、源岩性质和源区水含量,虽然已积累较多的成果,但对于地幔源区中的水是否影响及如何影响LIPs的形成,目前还知之甚少。本文回顾了已有的实测LIPS水含量研究工作,并介绍了一种新的分析手段,即利用傅里叶变换红外光谱(FTIR)测定早期结晶的单斜辉石斑晶水含量,然后结合水在单斜辉石斑晶和熔体间的分配系数来反演得到LIPs的"原始"水含量。通过塔里木和峨眉山两个大火成岩省的研究实例,综合评价了温度、压力、源岩性质和水含量这4个因素的影响,指出很可能只有当这些因素同时具备了才能产生LIPs。  相似文献   

19.
豆荚状铬铁矿主要赋存于地幔橄榄岩中,与方辉橄榄岩密切相关。在全球的分布与蛇绿岩带分布基本一致,但并非所有蛇绿岩体都赋存有铬铁矿,且其中赋存的铬铁矿体规模和分布都是很不规律的。我们对比研究了国内外9个含铬矿和4个不含铬矿蛇绿岩中地幔橄榄岩的地球化学组成,认为含铬矿地幔橄榄岩具有全岩低含量的CaO(<1.91%)和Al_2O_3(<1.76%)、方辉橄榄岩轻稀土元素富集,橄榄石高Fo值(>90),斜方辉石低Al_2O_3含量(<3.8%)以及副矿物铬尖晶石高Cr/Fe值(>1.5)等特征,可以作为该蛇绿岩体含矿评价的地球化学指标。通过这些指标可知豆荚状铬铁矿床是较高程度部分熔融和地幔交代作用的共同结果,结合前人提出的铬铁矿成矿模式,对铬铁矿的成矿过程有了进一步的认识。  相似文献   

20.
莫河下拉银多金属矿床是青海省东昆仑成矿带上近些年新发现的矿床。笔者对矿区平硐口花岗斑岩进行了LA-ICP-MS锆石U--Pb测年和岩石地球化学特征研究,以期揭示岩体的成岩时代、岩浆源区和形成的构造背景。锆石测年结果显示岩体形成于古生代晚泥盆世(371.6±2.9Ma)。元素地球化学特征表现为高硅、高碱、富铁铝、相对富钾和贫钙镁的特征;微量元素表现为明显富集Rb、Th、La、Ce、Nd、Zr、Sm和Gd等元素,强烈亏损Ba、Sr、P、Ti等元素、相对亏损Nb和Ta的特征;稀土元素表现为轻稀土元素(LREE)明显富集和Eu的强烈负异常。综合研究认为,矿区平硐口花岗斑岩的成因类型为A2型花岗岩,形成物质来源主要为部分熔融的长英质地壳,形成的大地构造背景为晚泥盆世万宝沟大洋玄武岩高原和苦海古陆拼贴到柴达木地块南缘后的后碰撞伸展环境。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号