首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
A detailed dynamical analysis of the nearby rich Norma cluster (ACO 3627) is presented. From radial velocities of 296 cluster members, we find a mean velocity of 4871 ± 54 km s−1 and a velocity dispersion of 925 km s−1. The mean velocity of the E/S0 population (4979 ± 85 km s−1) is offset with respect to that of the S/Irr population (4812 ± 70 km s−1) by  Δ v = 164 km s−1  in the cluster rest frame. This offset increases towards the core of the cluster. The E/S0 population is free of any detectable substructure and appears relaxed. Its shape is clearly elongated with a position angle that is aligned along the dominant large-scale structures in this region, the so-called Norma wall. The central cD galaxy has a very large peculiar velocity of 561 km s−1 which is most probably related to an ongoing merger at the core of the cluster. The spiral/irregular galaxies reveal a large amount of substructure; two dynamically distinct subgroups within the overall spiral population have been identified, located along the Norma wall elongation. The dynamical mass of the Norma cluster within its Abell radius is  1–1.1 × 1015  h −173 M  . One of the cluster members, the spiral galaxy WKK 6176 which recently was observed to have a 70 kpc X-ray tail, reveals numerous striking low-brightness filaments pointing away from the cluster centre suggesting strong interaction with the intracluster medium.  相似文献   

2.
We present a catalogue of galaxies in Abell 3653 from observations made with the 2-degree field (2dF) spectrograph at the Anglo-Australian Telescope. Of the 391 objects observed, we find 111 are bona fide members of Abell 3653. We show that the cluster has a velocity of   cz = 32 214 ± 83  km s−1 ( z = 0.10 738 ± 0.00 027)  , with a velocity dispersion typical of rich, massive clusters of  σ cz = 880+66−54  . We find that the cD galaxy has a peculiar velocity of  683 ± 96  km s−1  in the cluster rest frame – some 7σ away from the mean cluster velocity, making it one of the largest and most significant peculiar velocities found for a cD galaxy to date. We investigate the cluster for signs of substructure, but do not find any significant groupings on any length scale. We consider the implications of our findings on cD formation theories.  相似文献   

3.
We present optical and near-infrared spectroscopic observations of the optical Einstein ring 0047 – 2808. We detect both [O III ] lines λλ4959, 5007 near ∼ 2.3 μm, confirming the redshift of the lensed source as z  = 3.595. The Lyα line is redshifted relative to the [O III ] line by 140 ± 20 km s−1. Similar velocity shifts have been seen in nearby starburst galaxies. The [O III ] line is very narrow, 130 km s−1 FWHM. If the ring is the image of the centre of a galaxy, the one-dimensional stellar velocity dispersion σ = 55 km s−1 is considerably smaller than the value predicted by Baugh et al. for the somewhat brighter Lyman-break galaxies. The Lyα line is significantly broader than the [O III ] line, probably due to resonant scattering. The stellar central velocity dispersion of the early-type deflector galaxy at z  = 0.485 is 250 ± 30 km s−1. This value is in good agreement both with the value predicted from the radius of the Einstein ring (and a singular isothermal sphere model for the deflector), and with the value estimated from the D n −σ relation.  相似文献   

4.
We use the Least Action Principle to predict the peculiar velocities of PSC z galaxies inside cz =2000 km s−1. Linear theory is used to account for tidal effects to cz =15 000 km s−1, and we iterate galaxy positions to account for redshift distortions. As the Least Action Principle is valid beyond linear theory, we can predict reliable peculiar velocities even for very nearby galaxies (i.e., cz ≤500 km s−1). These predicted peculiar velocities are then compared with the observed velocities of 12 galaxies with Cepheid distances. The combination of the PSC z galaxy survey (with its large sky coverage and uniform selection) with the accurate Cepheid distances makes this comparison relatively free from systematic effects. We find that galaxies are good tracers of the mass, even at small (≤10  h −1 Mpc) scales; under the assumption of no biasing, 0.25≤ β ≤0.75 (at 90 per cent confidence). We use the reliable predicted peculiar velocities to estimate the Hubble constant H 0 from the local volume without 'stepping up' the distance ladder, finding a confidence range of 65–75 km s−1 Mpc−1 (at 90 per cent confidence).  相似文献   

5.
We use updated data on distances and velocities of galaxies in the proximity of the Local Group (LG) in order to establish properties of the local Hubble flow. For 30 neighbouring galaxies with distances  0.7 < D LG < 3.0  Mpc, the local flow is characterized by the Hubble parameter   H loc= (78 ± 2) km s−1 Mpc−1  , the mean-square peculiar velocity  σv= 25 km s−1  , corrected for errors of radial velocity measurements  (∼4 km s−1)  and distance measurements  (∼10 km s−1)  , as well as the radius of the zero-velocity surface   R 0= (0.96 ± 0.03)  Mpc. The minimum value for σv is achieved when the barycentre of the LG is located at the distance   Dc = (0.55 ± 0.05) D M31  towards Andromeda galaxy (M31) corresponding to the Milky Way (MW)-to-M31 mass ratio   M MW/ M M31≃ 4/5  . In the reference frame of the 30 galaxies at 0.7–3.0 Mpc, the LG barycentre has a small peculiar velocity  ∼(24 ± 4) km s−1  towards the Sculptor constellation. The derived value of R 0 corresponds to the total mass   M T(LG) = (1.9 ± 0.2) 1012 M  with  Ωm= 0.24  and a topologically flat universe, a value in good agreement with the sum of virial mass estimates for the MW and M31.  相似文献   

6.
We investigate the correlation between the supermassive black holes (SMBHs) mass ( M bh) and the stellar velocity dispersion  (σ*)  in two types of host galaxies: the early-type bulges (disc galaxies with classical bulges or elliptical galaxies) and pseudo-bulges. In the form  log ( M bh/M) =α+β log (σ*/200 km s−1)  , the best-fitting results for the 39 early-type bulges are the slope  β= 4.06 ± 0.28  and the normalization  α= 8.28 ± 0.05  ; the best-fitting results for the nine pseudo-bulges are  β= 4.5 ± 1.3  and  α= 7.50 ± 0.18  . Both relations have intrinsic scatter in  log  M bh  of ≲0.27 dex. The   M bh–σ*  relation for pseudo-bulges is different from the relation in the early-type bulges over the 3σ significance level. The contrasting relations indicate the formation and growth histories of SMBHs depend on their host type. The discrepancy between the slope of the   M bh–σ*  relations using different definition of velocity dispersion vanishes in our sample, a uniform slope will constrain the coevolution theories of the SMBHs and their host galaxies more effectively. We also find the slope for the 'core' elliptical galaxies at the high-mass range of the relation appears steeper  (β≃ 5–6)  , which may be the imprint of their origin of dissipationless mergers.  相似文献   

7.
Redshifts of several galaxies thought to be associated with NGC 326 are determined. The results confirm the presence of a cluster and find a mean redshift of     and a line-of-sight velocity dispersion σ z =599 (+230,−110) km s−1. The velocity dispersion and previously measured X-ray gas temperature of kT ≃1.9 keV are consistent with the cluster σ z kT relation, and NGC 326 is seen to be a slowly moving member of the cluster.  相似文献   

8.
This paper reports the results of a modest redshift survey carried out, at generally low Galactic latitudes, in the vicinity of the South Celestial Pole. Target galaxies were selected as a 'representative' sample of underlying large-scale structures. Dimensions, approximate magnitudes and radial velocity measurements, are reported for 336 galaxies. Two obvious Seyfert 1 galaxies, one probably Seyfert 1 and three Seyfert 2 galaxies have been discovered. The redshifts are used to supplement existing data and serve to map southern voids and features out to 25 000 km s−1 in the region  270° < l < 330°, 0° > b > −45°  . Three distinct superclusters and twenty apparent voids are tentatively identified. One Void, at   l = 300°, b =−20°, cz = 16 000 km s−1  , with a diameter of 6000 km s−1, is as large as any yet mapped. It appears as part of a general underdense region.  相似文献   

9.
The large-scale structure around the Ophiuchus cluster of galaxies in the vicinity of the Galactic Centre ( l =05, b =95, cz =8500 km s−1) is investigated on the basis of a galaxy survey and spectroscopic observations made for a 12°×17° area. The galaxy survey was performed using six ESO/SERC Sky Survey Atlas films, and 4021 galaxies were detected in total. Recession velocities were newly obtained for 179 galaxies to make the total number of galaxies in the survey area with known velocities 219.
In the distribution of bright galaxies, we identified seven new clumps of galaxies. Comparing the surface number density of bright galaxies with the Galactic extinction, which is estimated from the 100‐μm flux density in the IRAS Sky Survey Atlas, we demonstrate that the seven clumps are not spurious as a result of the inhomogeneity of the Galactic extinction. Among the seven clumps, two are found to be clusters and four to be groups on the basis of the histogram of recession velocities and the number of member galaxies. The Ophiuchus cluster, two newly identified clusters, and four groups are all concentrated at 9000 km s−1. Field galaxies are also distributed centred at 8500 km s−1. Hence field galaxies occupy a common three-dimensional region with galaxies in the clusters and groups, and altogether they form a large-scale structure of supercluster size. As opposed to the overdensity in the supercluster region, the mean number density of galaxies in the velocity range 0–5000 km s−1 is only 25 per cent of the mean number density of the Universe, comparable with the density of the well-known Böotes void. Hence this nearby three-dimensional region in Ophiuchus is a void of galaxies also.  相似文献   

10.
Using simple stellar population synthesis, we model the bulge stellar contribution in the optical spectrum of a narrow-line Seyfert 1 galaxy, RE J1034+396. We find that its bulge stellar velocity dispersion is  67.7 ± 8 km s−1  . The supermassive black hole (SMBH) mass is about  (1–4) × 106 M  if it follows the well-known   M BH–σ*  relation found in quiescent galaxies. We also derive the SMBH mass from the Hβ second moment, which is consistent with that from its bulge stellar velocity dispersion. The SMBH mass of (1–4)  × 106 M  implies that the X-ray quasi-periodic oscillation (QPO) of RE J1034+396 can be scaled to a high-frequency QPO at 27–108 Hz found in Galactic black hole binaries with a  10-M  black hole. With the mass distribution in different age stellar populations, we find that the mean specific star formation rate (SSFR) over the past 0.1 Gyr is  0.0163 ± 0.0011  Gyr−1, the stellar mass in the logarithm is  10.155 ± 0.06  in units of solar mass and the current star formation rate is  0.23 ± 0.016 M yr−1  . For RE J1034+396, there is no relation between the Eddington ratio and the SSFR as suggested by Chen et al., despite a larger scatter in their relation. We also suggest that about 7.0 per cent of the total Hα luminosity and 50 per cent of the total [O  ii ] luminosity come from the star formation process.  相似文献   

11.
We present a measurement of the K -band luminosity function (LF) of field galaxies obtained from near-infrared imaging of a sample of 345 galaxies selected from the Stromlo-APM Redshift Survey. The LF is reasonably well fitted over the 10-mag range −26 M K −16 by a Schechter function with parameters α =−1.16±0.19, M *=−23.58±0.42 and φ *=0.012±0.008 Mpc−3, assuming a Hubble constant of H 0=100 km s−1 Mpc−1. We have also estimated the LF for two subsets of galaxies subdivided by the equivalent width of the H α emission line at EW(H α )=10 Å. There is no significant difference in LF shape between the two samples, although there is a hint (∼1 σ significance) that emission-line galaxies (ELGs) have M * roughly 1 mag fainter than non-ELGs. Contrary to the optical LF, there is no difference in faint-end slope α between the two samples.  相似文献   

12.
We present 0.15-arcsec (25-pc) resolution MERLIN observations of neutral hydrogen absorption detected towards the nuclear region of the type 2 Seyfert galaxy NGC 5929. Absorption is detected only towards the north-eastern radio component with a column density of (6.5 ± 0.6) × 1021 cm−2. Based on comparison with an HST WFPC2 continuum image, we propose that the absorption is caused by a 1.5-arcsec structure of neutral gas and dust offset 0.3 arcsec south-east of the nucleus and running NE–SW. A separate cloud of dust is apparent 1.5 arcsec to the south-west of the nucleus in the HST image. A comparison of the centroid velocity (2358 ± 5 km s−1) and full width at half-maximum (43 ± 6 km s−1) of the absorbing gas with previous [O  III ] observations suggests that both the neutral and ionized gas are undergoing galactic rotation towards the observer in the north-east and away from the observer in the south-west. The main structure is consistent with an inclined ring of gas and dust encircling the active galactic nucleus (AGN); alternatively it may be a bar or inner spiral arm. We do not detect neutral hydrogen absorption or dust obscuration against the radio nucleus (column density < 3.1 × 1021 cm−2) expected by a torus of neutral gas and dust in unified models of AGNs for a type 2 Seyfert galaxy.  相似文献   

13.
Intermediate-resolution (0.5–1 Å) optical spectroscopy of the cataclysmic variable (CV) SY Cnc reveals the spectrum of the donor star. Our data enable us to resolve the orbital motion of the donor and provide a new orbital solution, binary mass ratio and spectral classification. We find that the donor star has spectral-type G8 ± 2 V and orbits the white dwarf with   P = 0.382 3753 ± 0.000 0003  d,   K 2= 88.0 ± 2.9  km s−1 and   V sin  i = 75.5 ± 6.5  km s−1. Our values are significantly different from previous works and lead to   q = M 2/ M 1= 1.18 ± 0.14  . This is one of the highest mass ratios known in a CV and is very robust, because it is based on resolving the rotational broadening over a large number of metallic absorption lines. The donor could be a slightly evolved main sequence or descendant from a massive star which underwent an episode of thermal time-scale mass transfer.  相似文献   

14.
We present spectrophotometry of the eclipsing old nova BT Mon (Nova Mon 1939). By detecting weak absorption features from the secondary star, we find its radial velocity semi-amplitude to be K R = 205 ± 5 km s−1 and its rotational velocity to be v  sin  i  = 138 ± 5 km s−1. We also measure the radial velocity semi-amplitude of the primary star to be K R = 170 ± 10 km s−1. From these parameters we obtain a mass of 1.04 ± 0.06 M⊙ for the white dwarf primary star and a mass of 0.87 ⊙ 0.06 M⊙ for the G8 V secondary star. The inclination of the system is found to be 82°.2 ± 32°.2 and we estimate that the system lies at a distance of 1700 ± 300 pc. The high mass of the white dwarf and our finding that BT Mon was probably a fast nova together constitute a new piece of evidence in favour of the thermonuclear runaway model of classical nova outbursts. The emission lines are single-peaked throughout the orbital cycle, showing absorption around phase 0.5, high-velocity S-wave components and large phase offsets in their radial velocity curves. In each of these respects, BT Mon is similar to the SW Sex stars. We also find quasi-periodic flaring in the trailed spectra, which makes BT Mon a candidate intermediate polar.  相似文献   

15.
We report the results of a high-time-resolution radial velocity study of the subdwarf B star and possible Type Ia supernova progenitor KPD 1930+2752. There were no significant peaks in the power spectrum of the velocity curve above our detection limit, about 4 km s−1, at the frequencies where peaks arising from pulsation were present in the photometric data of previous researchers. We report an orbital velocity amplitude,  348.5±1 km s-1  , in agreement with that reported by previous investigators. We find an orbital period of   P =0.095 093 08±0.000 000 15 d  based on our data and the ephemeris of Maxted et al.  相似文献   

16.
Cepheid parallaxes and the Hubble constant   总被引:1,自引:0,他引:1  
Revised Hipparcos parallaxes for classical Cepheids are analysed together with 10 Hubble Space Telescope ( HST )-based parallaxes. In a reddening-free V , I relation we find that the coefficient of log  P is the same within the uncertainties in our Galaxy as in the Large Magellanic Cloud (LMC), contrary to some previous suggestions. Cepheids in the inner region of NGC 4258 with near solar metallicities confirm this result. We obtain a zero-point for the reddening-free relation and apply it to the Cepheids in galaxies used by Sandage et al. to calibrate the absolute magnitudes of Type Ia supernova (SNIa) and to derive the Hubble constant. We revise their result for H 0 from 62 to 70 ± 5 km s−1 Mpc−1. The Freedman et al. value is revised from 72 to 76 ± 8 km s−1 Mpc−1. These results are insensitive to Cepheid metallicity corrections. The Cepheids in the inner region of NGC 4258 yield a modulus of 29.22 ± 0.03 (int.) compared with a maser-based modulus of 29.29 ± 0.15. Distance moduli for the LMC, uncorrected for any metallicity effects, are 18.52 ± 0.03 from a reddening-free relation in V , I ; 18.47 ± 0.03 from a period–luminosity relation at K ; 18.45 ± 0.04 from a period–luminosity–colour relation in J , K . Adopting a metallicity correction in V , I from Macri et al. leads to a true LMC modulus of 18.39 ± 0.05.  相似文献   

17.
We have studied the poor southern cluster of galaxies S639. Based on new Strömgren photometry of stars in the direction of the cluster, we confirm that the Galactic extinction affecting the cluster is large. We find the extinction in Johnson B to be AB =0.75±0.03. We have obtained new photometry in Gunn r for E and S0 galaxies in the cluster. If the Fundamental Plane is used for determination of the relative distance and the peculiar velocity of the cluster, we find a distance, in velocity units, of (5706±350) km s−1, and a substantial peculiar velocity, (839±350) km s−1. However, the colours and the absorption line indices of the E and S0 galaxies indicate that the stellar populations in these galaxies are different from those in similar galaxies in the two rich clusters Coma and Hydra I. This difference may severely affect the distance determination and the derived peculiar velocity. The data are consistent with a non-significant peculiar velocity for S639 and the galaxies in the cluster being on average 0.2 dex younger than similar galaxies in Coma and Hydra I. The results for S639 caution that some large peculiar velocities may be spurious and caused by unusual stellar populations.  相似文献   

18.
We have used the European VLBI Network (EVN) at 18 cm to study five of the more compact radio sources in the starburst galaxy M82. The angular resolution of the observations is 15 mas, corresponding to 0.2 pc at the distance of M82. The observations reveal shells ranging in diameter from 40 to 90 mas (0.6 to 1.4 pc), although the strongest source (41.95+575) is only marginally resolved by these measurements (∼20×10 mas2).
We have found clear evidence for expansion in one of the shell sources (43.31+592) by re-analysing, in wide-field mode, EVN data taken in 1986. Between 1986 and 1997 this source has increased its diameter by 13.6±2 mas, corresponding to an average expansion velocity of 9850±1500 km s−1. If we assume that the remnant is in free expansion, this is consistent with a supernova event in the early 1960s. Hence this remnant is almost certainly younger than the strongest, most compact source (41.95+575) which was known to be present in the 1960s. 41.95+575 shows no clear evidence for expansion (<4000 km s−1), consistent with a greater age; this is further evidence of its anomalous status. Comparison of the EVN images with earlier MERLIN data is also consistent with expansion in at least two more of the sources. We discuss the flux density variability of the compact sources in M82 and conclude that, with the exception of 41.95+575 and two transient sources, there is little evidence for significant changes in flux density of most of the remnants since the early 1980s.  相似文献   

19.
We present a new determination of the local volume-averaged star formation rate from the 1.4-GHz luminosity function of star forming galaxies. Our sample, taken from the   B ≤12  Revised Shapley–Ames catalogue (231 normal spiral galaxies over an effective area of 7.1 sr) has ≃100 per cent complete radio detections and is insensitive to dust obscuration and cirrus contamination. After removal of known active galaxies, the best-fitting Schechter function has a faint-end slope of  −1.27±0.07  in agreement with the local H α luminosity function, characteristic luminosity   L ∗=(2.6±0.7)×1022 W Hz−1  and density   φ ∗=(4.8±1.1)×10−4 Mpc−3.  The inferred local radio luminosity density of  (1.73±0.37±0.03)×1019 W Hz−1 Mpc−3  (Poisson noise, large-scale structure fluctuations) implies a volume-averaged star formation rate ∼2 times larger than the Gallego et al. H α estimate, i.e.   ρ 1.4 GHz=(2.10±0.45±0.04)×10−2 M yr−1 Mpc−3  for a Salpeter initial mass function from  0.1–125 M  and Hubble constant of 50 km s−1 Mpc−1. We demonstrate that the Balmer decrement is a highly unreliable extinction estimator, and argue that optical–ultraviolet (UV) star formation rates (SFRs) are easily underestimated, particularly at high redshift.  相似文献   

20.
We report on a survey for narrow (full widths at half-minimum <600 km s−1) C  iv absorption lines in a sample of bright quasars at redshifts  1.8 ≤ z < 2.25  in the Sloan Digital Sky Survey. Our main goal is to understand the relationship of narrow C  iv absorbers to quasar outflows and, more generally, to quasar environments. We determine velocity zero-points using the broad Mg  ii emission line, and then measure the absorbers' quasar-frame velocity distribution. We examine the distribution of lines arising in quasar outflows by subtracting model fits to the contributions from cosmologically intervening absorbers and absorption due to the quasar host galaxy or cluster environment. We find that a substantial number (  ≥43 ± 6  per cent) of absorbers with   W λ15480 > 0.3  Å in the velocity range  +750 ≲ v ≲+ 12 000  km s−1 are intrinsic to the active galactic nucleus outflow. This 'outflow fraction' peaks near   v =+2000  km s−1 with a value of   f outflow≃ 0.81 ± 0.13  . At velocities below   v ≈+ 2000  km s−1, the incidence of outflowing systems drops, possibly due to geometric effects or to the over-ionization of gas that is nearer the accretion disc. Furthermore, we find that outflow absorbers are on average broader and stronger than cosmologically intervening systems. Finally, we find that ∼14 per cent of the quasars in our sample exhibit narrow, outflowing C  iv absorption with   W λ15480 > 0.3  Å, slightly larger than that for broad absorption line systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号