首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have used the Australia Telescope Compact Array (ATCA) to make a sensitive  (5 σ ≃100 mJy)  search for maser emission from the 4765-MHz 2Π1/2   F =1→0  transition of OH. 55 star formation regions were searched and maser emission with a peak flux density in excess of 100 mJy was detected toward 14 sites, with 10 of these being new discoveries. In addition we observed the 4750-MHz 2Π1/2   F =1→1  transition towards a sample of star formation regions known to contain 1720-MHz OH masers, detecting marginal maser emission from G348.550−0.979. If confirmed this would be only the second maser discovered from this transition.
The occurrence of 4765-MHz OH maser emission accompanying 1720-MHz OH masers in a small number of well-studied star formation regions has led to a general perception in the literature that the two transitions favour similar physical conditions. Our search has found that the presence of the excited-state 6035-MHz OH transition is a much better predictor of 4765-MHz OH maser emission from the same region than 1720-MHz OH maser emission is. Combining our results with those of previous high-resolution observations of other OH transitions we have examined the published theoretical models of OH masers and find that none of them predicts any conditions in which the 1665-, 6035- and 4765-MHz transitions are inverted simultaneously.  相似文献   

2.
MERLIN observations are presented of OH 4765-MHz and OH 1720-MHz masers in the massive star-forming region W3(OH). Two of the three intense spots of maser emission at 4765 MHz are spatially coincident with two similar spots at 1720 MHz in both left-hand circular (LHC) and right-hand circular (RHC) polarizations, to an accuracy of 15 mas. The spots also overlap in velocity when allowance is made for Zeeman splitting of the 1720-MHz line. We conclude that we have found two examples of masers in different rotational levels of OH which are co-propagating through the same column of gas and experiencing competitive gain effects. The third 4765-MHz maser spot was found to have no overlapping counterpart amongst the 1720-MHz masers.  相似文献   

3.
Using the Very Large Array (VLA), we observed all three of the 6-cm lines of the  2Π1/2, J = 1/2  state of OH with sub-arcsecond resolution (∼0.4 arcsec) in W49A. While the spatial distribution and the range in velocities of the 6-cm lines are similar to those of the ground-state (18-cm) OH lines, a large fraction of the total emission in all three 6-cm lines has large linewidths (∼5–10 km s−1) and is spatially extended, very unlike typical ground-state OH masers, which typically are point-like at VLA resolutions and have linewidths ≤1 km s−1. We find brightness temperatures of 5900, 4700 and ≥730 K for the 4660, 4750 and 4765-MHz lines, respectively. We conclude that these are indeed maser lines. However, the gains are ∼0.3, again very unlike the 18-cm lines, which have gains  ≥104  . We compare the excited-state OH emission with that from other molecules observed with comparable angular resolution to estimate physical conditions in the regions emitting the peculiar, low-gain maser lines. We also comment on the relationship with the 18-cm masers.  相似文献   

4.
Class II methanol masers are found in close association with OH main-line masers in many star-forming regions, where both are believed to flag the early stages in the evolution of a massive star. We have studied the formation of masers in methanol and OH under identical model conditions for the first time. Infrared pumping by radiation from warm dust at temperatures >100 K can account for the known maser lines in both molecules, many of which develop simultaneously under a range of conditions. The masers form most readily in cooler gas (<100 K) of moderately high density  (105–108 cm-3)  , although higher gas temperatures and/or lower densities are also compatible with maser action. The agreement between the current model (developed for methanol) and the established OH maser trends is very encouraging, and we anticipate that further tuning of the model will further improve such agreement.
We find the gas-phase molecular abundance to be the key determinant of observable maser activity for both molecules. Sources exhibiting both 6668-MHz methanol and 1665-MHz OH masers have a typical flux density ratio of 16; our model suggests that this may be a consequence of maser saturation. We find that the 1665-MHz maser approaches the saturated limit for OH abundances >10−7.3, while the 6668-MHz maser requires a greater methanol abundance >10−6. OH-favoured sources are likely to be less abundant in methanol, while methanol-favoured sources may be less abundant in OH or experiencing warm (>125 K), dense (∼107 cm−3) conditions. These abundance requirements offer the possibility of tying the appearance of masers to the age of the new-born star via models of gas-phase chemical evolution following the evaporation of icy grain mantles.  相似文献   

5.
We present single-baseline Multi-Element Radio-Linked Interferometer Network (MERLIN) measurements of excited OH 6.0-GHz masers and methanol 6.7-GHz masers for the source W3(OH). These allow us to compare the positions of individual maser spots of these two species to ∼15 mas accuracy for the first time, and to compare these with previously published positions of ground-state OH masers near 1.7 GHz and excited-state OH masers near 4.7 GHz. There is a strong association between OH 6035-MHz and 1665-MHz masers. OH and methanol have very similar distributions, but associations of individual masers are relatively rare: most methanol 6.7-GHz masers are within 100 mas of OH 6.0-GHz masers, but only four methanol masers are within 15 mas of an OH 6.0-GHz maser. There are no correspondences of either species with excited OH 4.7-GHz masers. Zeeman splitting of the 6.0-GHz OH lines indicates an ordered magnetic field ranging from 3.2 to 14.4 mG. The magnetic fields estimated from co-propagating masers such as 6035 and 1665 MHz are generally in good agreement with each other.  相似文献   

6.
Two star-forming regions Cepheus A and W75N, were searched for the 4765-MHz OH maser emission using the multi-element radio linked interferometer network (MERLIN). The excited OH emission has an arc-like structure of 40 mas in Cep A and a linear structure of size 45 mas in W75N. We also found the 1720-MHz line in Cep A and Hutawarakorn [MNRAS 330 (2002) 349] reported the 1720-MHz emission in W75N. The 1720- and 4765-MHz OH spots coincided in space within 60 mas and in velocity within 0.3 km s–1 in both targets implying that both maser transitions arise from the same region. According to the modelling by Gray [MNRAS 252 (1991) 30] the 1720/4765-MHz co-propagation requires a low density, warm environment. The masers lie at the edges of H II regions where such conditions are expected.  相似文献   

7.
We have found a bar of shocked molecular hydrogen (H2) towards the OH(1720 MHz) maser located at the projected intersection of supernova remnant (SNR)  G359.1–0.5  and the non-thermal radio filament known as the Snake. The H2 bar is well aligned with the SNR shell and almost perpendicular to the Snake. The OH(1720 MHz) maser is located inside the sharp western edge of the H2 emission, which is consistent with the scenario in which the SNR drives a shock into a molecular cloud at that location. The spectral line profiles of 12CO, HCO+ and CS towards the maser show broad-line absorption, which is absent in the 13CO spectra and most probably originates from the pre-shock gas. A density gradient is present across the region and is consistent with the passage of the SNR shock, while the H2 filament is located at the boundary between the pre-shock and post-shock regions.  相似文献   

8.
We report observations of the 4765-MHz maser transition of OH (2Π1/2, J=1/2, F=1→0) towards 57 star-forming regions, taken with the 32-m Toruń telescope. Nine maser sources were detected, of which two had not been reported previously. The newly discovered sources in W75N and Cep A and four previously known sources were monitored over periods ranging from a few weeks to six months. Significant variations of the maser intensity occurred on time-scales of one week to two months. The relationships between the flux density and the linewidth for the new sources, established during the rise and fall phases of bursts that lasted 6–8 weeks, are consistent with a model of saturated masers.  相似文献   

9.
The southern maser site OH 300.969+1.147 has been studied using the Long Baseline Array of the Australia Telescope National Facility. The 1665- and 1667-MHz hydroxyl ground-state transitions were observed simultaneously. A series of maps with 0.1-arcsec spatial resolution, at velocity spacing  0.09 km s−1  , and in both senses of circular polarization reveals 59 small diameter maser spots. The spots are scattered over 2 arcsec, coincident with a strong ultracompact H  ii region, at a distance of 4.3 kpc. 17 Zeeman pairs of oppositely polarized spots were found, all yielding magnetic field estimates towards us (negative), ranging from −1.1 to −4.7 mG, with a median value of −3.5 mG. Excited state masers of OH at 6035 and 6030 MHz at this site also display Zeeman pairs revealing a magnetic field of −5.0 mG. Weak methanol maser emission is intermingled with the OH masers, but there is no detectable closely related water maser. The consistent magnetic field direction found within this site is a striking feature of several other maser sites associated with strong H  ii regions studied in comparable detail. We interpret the site as a mature region nearing the end of the brief evolutionary stage that can support maser emission.  相似文献   

10.
We present high angular resolution MERLIN observations of the 18-cm OH maser and continuum emission associated with the active core of the ultraluminous infrared galaxy Markarian 273. The continuum emission comes from three distinct regions in the central arcsecond of the galaxy. The brightest region of emission has a double-peaked structure which is spatially coincident with similar structures observed at 6 cm and 2.2 μm. The peak of the OH maser emission is spatially coincident with the peak in the continuum. For the first time the maser emission is spatially resolved, allowing us to measure the gas motion within the central 100 pc of the galaxy. Maser emission is found in both the 1665- and 1667-MHz lines, with no systematic offset found in the spatial locations of the two lines. The brighter component of the maser emission shows ordered motion and is aligned along the axis of the double-peaked structure in the brightest continuum region. The gas motion enables us to estimate the central mass density to be 850±50 M pc−3, which corresponds to a total mass of ≈1.5×108 M.  相似文献   

11.
The maser site OH 323.459−0.079 has been studied using the Long Baseline Array of the Australia Telescope National Facility. Simultaneous observations of the 1665- and 1667-MHz hydroxyl ground-state transitions yielded a series of maps at a velocity spacing of 0.18 km s−1, in both senses of circular polarization, with tenth-arcsec spatial resolution. Many small-diameter maser spots were detected within a 2-arcsec region. Pairs of spots with the same position, but with right- and left-hand circular polarization offset in frequency, reveal Zeeman splitting. Six pairs were found, and in four cases, the pairs at 1667 and 1665 MHz mutually corroborate the derived values of magnetic field and (central) kinematic velocity. Over the whole site, magnetic field estimates range from +1.47 to +4.13 mG with a median value of +2.5 mG. The excited state of OH at 6035 MHz also displays Zeeman pairs revealing a similar magnetic field, and we show that the most prominent of these pairs coincides with the most prominent pair at 1665 and 1667 MHz.
We also compared the morphology and kinematics at 1665 and 1667 MHz with those of maser emission from the excited state of OH at 6035 MHz and from methanol at 6668 MHz. All three varieties of masers appear intermingled, and associated with an ultracompact H  ii region. In many respects we find that OH 323.459−0.079 is similar to W3(OH), one of the few other maser sites yet studied in comparable detail.  相似文献   

12.
We have made observations of the four hyperfine transitions of the 2Π3/2,     ground state of OH at 1612, 1665, 1667 and 1720 MHz and the related 1.6-GHz continuum emission towards NGC 6334 using the Australia Telescope Compact Array. The observations covered all the major radio continuum concentrations aligned along the axis of NGC 6334 (V, A to F). We have detected seven OH masers plus a possible faint eighth maser; two of these masers are located towards NGC 6334-A. Absorption at 1665 and 1667 MHz was detected towards almost all the continuum distribution. All transitions show non-LTE behaviour. The 1667-/1665-MHz intensity ratios range from 1.0 to 1.2, significantly less than their LTE value of 1.8. The results of the OH 'Sum Rule' suggest that this discrepancy cannot be explained solely by high optical depths. The 1612- and 1720-MHz line profiles show conjugate behaviour whereby one line is in absorption and the other in emission. In addition, the profiles commonly showed a flip from absorption to emission and vice versa, which is interpreted as a density gradient. The OH line-to-continuum distribution, optical depth and velocity trends are consistent with a bar-like shape for the molecular gas which wraps around the continuum emission.  相似文献   

13.
The multi-element radio-linked interferometer network (MERLIN) measurements of 1665-, 1667- and 1720-MHz OH masers associated with NGC 7538 are presented. The masers are located at the centres of three bipolar molecular outflows associated with the infrared sources IRS 1, IRS 9 and IRS 11. The distribution of OH masers in IRS 1 is more extensive than previously reported and is displaced to the south of the methanol 6.7-GHz masers. The OH masers in IRS 9 have not previously been reported. Their distribution seems to be orthogonal to the direction of the outflow and to the distribution of H2O masers. The maser distribution in IRS 11 is parallel to the dust ridge and orthogonal to the outflow. Full polarization measurements of the OH maser emission show systematic differences between the three sources. IRS 1 has moderate polarization, with linear polarization vectors partially aligned with the bipolar outflow; IRS 9 exhibits larger polarization, but little linear component; IRS 11 shows the strongest polarization and has linear polarization vectors aligned parallel to the outflow. There is also evidence for a toroidal component of the magnetic field around the IRS 11 outflow, orthogonal to the outflow direction. It is suggested that the differences in polarization trace a possible evolutionary sequence from oldest (IRS 1) to youngest (IRS 11).  相似文献   

14.
Masers at the ground-state OH satellite transitions near 1612 and 1720 MHz are occasionally found in star-forming regions, accompanying the dominant maser of OH at 1665 MHz. The satellite lines can then be valuable diagnostics of physical conditions in star-forming regions if we can first ascertain that all maser species truly arise from the same site. For this purpose, newly measured satellite line positions with subarcsecond accuracy are reported here, and compared with masers of main-line OH at 1665 MHz, with methanol masers at 6668 MHz, and with ultracompact H  ii regions. We confirm that most of the satellite-line OH masers that we have measured are associated with star-forming regions, but a few are not: several 1612-MHz masers are associated with late-type stars, and one 1720-MHz maser is associated with a supernova remnant. The 1720-MHz masers in star-forming regions are accounted for by a pumping scheme requiring high densities, and are distinctly different from those in supernova remnants where the favoured pumping scheme operates at much lower densities.  相似文献   

15.
We investigate the possibility of interstellar masers in transitions of the methanol isotopomers CH3OD, 13CH3OH and CH318OH, and of CH3SH. The model used, in which masers are pumped through the first and second torsionally excited states by IR radiation, has accounted successfully for the Class II masers in main species methanol, 12CH316OH. Several potential maser candidates are identified for CH3OD, their detectability depending on the enrichment of this species in star-forming regions. In 13CH3OH and CH318OH the best maser candidates are direct counterparts of the well-known 6.7- and 12.2-GHz methanol masers, but the lower interstellar abundance of these substituted species means that the expected brightness is greatly reduced. The maser candidates in CH3SH are also weak. By comparing these species we find that the large b -component of the dipole moment in methanol plays a significant role in its propensity to form masers, as does the strong torsion–rotation interaction due to the light hydroxyl frame. Thus the exceptional brightness of interstellar methanol masers is due to a favourable combination of molecular properties as well as high interstellar abundance.  相似文献   

16.
I re-examine the brightness temperature problem in PKS 0405-385, which is an extreme intra-day variable radio quasar with an inferred brightness temperature of  ∼5 × 1014 K  at 5 GHz, well above the Compton catastrophe limit of  ∼1011 K  that is reached when the synchrotron photon energy density exceeds the energy density of the magnetic field. If one takes into account the uncertainty in the distance to the ionized clouds responsible for interstellar scintillation causing rapid intra-day variability in PKS 0405-385, it is possible that the brightness temperature could be as low as  ∼1013 K  at 5 GHz, or even lower. The radio spectrum can be fitted by optically thin emission from mono-energetic electrons, or an electron spectrum with a low-energy cut-off such that the critical frequency of the lowest energy electrons is above the radio frequencies of interest. If one observes optically thin emission along a long narrow emission region, the average energy density in the emission region can be many orders of magnitude lower than calculated from the observed intensity if one assumed a spherical emission region. I discuss the physical conditions in the emission region and find that the Compton catastrophe can then be avoided using a reasonable Doppler factor. I also show that MeV to 100-GeV gamma-ray emission at observable flux levels should be expected from extreme intra-day variable sources such as PKS 0405-385.  相似文献   

17.
Positions with subarcsecond accuracy have been measured for seven 22-GHz H2O masers associated with H  ii regions in the Large Magellanic Cloud (LMC); two of the masers are new detections. Initial position measurements were obtained with the 70-m antenna of the Canberra NASA Deep Space Network during a period of more than two years in which the antenna was used to monitor the maser emission. The positions were further improved using 22-GHz observations involving three antennas of the Australia Telescope Compact Array.
The positions have been compared with those of 1.6-GHz continuum emission and other LMC masers (of OH and CH3OH). The H2O maser positions range from within 1 arcsec (270 mpc) of the centre of a compact H  ii component to beyond the boundary of significant continuum emission. Three of the four masers located near continuum peaks are close to OH masers. In two cases the positional agreement is better than 0.2 arcsec (53 mpc); in the third case the agreement is worse (0.9 arcsec) but the positions of the individual H2O features appear to be spread over more than 1 arcsec. The velocities of the OH masers are within the spread of the H2O velocities. The three H2O masers offset from continuum centres are located  3–7 arcsec  from optical or infrared phenomena probably associated with very early stages of star formation; no other molecular masers are known in these directions.  相似文献   

18.
We present evidence for interaction between the supernova remnant (SNR) G357.7+0.3 and nearby molecular clouds, leading to the formation of wind-swept structures and bright emission rims. These features are not observed at visual wavelengths, but are clearly visible in mid-infrared mapping undertaken using the Spitzer Space Telescope . Analysis of one of these clouds, the bright cometary structure G357.46+0.60, suggests that it contains strong polycyclic aromatic hydrocarbon emission features in the 5.8 and 8.0 μm photometric bands, and that these are highly variable over relatively small spatial scales. The source is also associated with strong variations in electron density; a far-infrared continuum peak associated with dust temperatures of ∼30 K; and has previously been observed in the 1720 MHz maser transition of OH, known to be associated with SNR shock excitation of interstellar clouds. This source also appears to contain a young stellar object (YSO) within the bright rim structure, with a steeply rising spectrum between 1.25 and 24 μm. If the formation of this star has been triggered recently by the SNR, then YSO modelling suggests a stellar mass  ∼5–10 M  , and luminosity   L YSO∼102–2 × 103 L  .
Finally, it is noted that a further, conical emission region appears to be associated with the Mira V1139 Sco, and it is suggested that this may represent the case of a Mira outflow interacting with a SNR. If this is the case, however, then the distance to the SNR must be ∼half of that determined from CS   J = 2–1  and 3–2 line radial velocities.  相似文献   

19.
We present measurements of the distribution of the OH masers at 1665 and 1667 MHz towards the cometary ultracompact H  ii region in the complex G34.3+0.2. The results are based on observations made in both senses of circular polarization with a very long baseline interferometry (VLBI) array having an angular resolution of 5×20 mas2. 38 maser features are identified in the region. 33 of these lie on an arc at the edge of the cometary H  ii region. Five are located in a cluster offset toward the north-east by 3 arcsec, and are probably associated with an independent ultracompact H  ii region. There is a velocity gradient of 30 km s−1 pc−1 across the arc. We identify five Zeeman pairs and determine that the magnetic field varies between 1 and 7 mG, but is always directed away from the Earth.
The OH masers may arise in clumps in a shell of gas in a bow shock caused by the motion of the exciting star through the molecular cloud. The stand-off distance and the thickness of the shocked shell are roughly consistent with those predicted by such a bow-shock model. Also, the position of the exciting star(s), as estimated from the focus of the parabolic bow shock, closely matches that of the peak emission from the cometary H  ii region. However, the north–south velocity gradient in the ionized material remains difficult to explain in the context of the bow-shock model.  相似文献   

20.
OH maser emission from the circumstellar envelope of the M-type supergiant VX Sagittarii has been mapped at 1612 MHz in both hands of circular polarization using MERLIN, with an angular resolution of 0.4 arcsec and a velocity resolution of 0.3 km s−1. Four likely Zeeman pairs of maser components are identified, each with a similar Zeeman splitting. The inferred magnetic field strength is approximately −1 mG in each case, with the field directed towards us. The Zeeman components lie ∼ 1400 au from the star. The data lend support to the dipole magnetic field model which has recently been suggested for this circumstellar envelope.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号