首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 106 毫秒
1.
Accurate measurements of Stokes IQUV in spectral lines is required for precise reconstruction of stellar magnetic field geometries with Zeeman‐Dopper imaging. Spectral Zeeman features are intrinsically weak and subjected to a number of instrumental uncertainties. The aim of this work is to study the details of the instrumental uncertainties in the Stokes IQUV measurements in spectral lines and ways of their reduction. We make a practical comparison of the polarimetric performances of two high‐resolution échelle spectropolarimeters, namely SOFIN at the NOT, and HARPS at ESO. We show the residual spectra for both instruments to characterize the cross‐talk between the observed Stokes parameters. We employ a self‐calibrating least‐squares fit to eliminate some of the polarization uncertainties to derive the full Stokes vector from stellar spectra (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
In this paper we describe a new approach for measuring the mean longitudinal magnetic field and net linear polarization of Ap and Bp stars. As was demonstrated by Wade et al., least-squares deconvolution (LSD; Donati et al.) provides a powerful technique for detecting weak Stokes V , Q and U Zeeman signatures in stellar spectral lines. These signatures have the potential to apply strong new constraints to models of stellar magnetic field structure. Here we point out two important uses of LSD Stokes profiles. First, they can provide very precise determinations of the mean longitudinal magnetic field. In particular, this method allows one frequently to obtain 1 σ error bars better than 50 G, and smaller than 20 G in some cases. This method is applicable to both broad- and sharp-lined stars, with both weak and strong magnetic fields, and effectively redefines the quality standard of longitudinal field determinations. Secondly, LSD profiles can in some cases provide a measure of the net linear polarization, a quantity analogous to the broad-band linear polarization recently used to derive detailed magnetic field models for a few stars (e.g. Leroy et al.). In this paper we report new high-precision measurements of the longitudinal fields of 14 magnetic Ap/Bp stars, as well as net linear polarization measurements for four of these stars, derived from LSD profiles.  相似文献   

3.
Two solar flares of 25 July 1981 and 5 November 2004 of importance 2N and M4.1/1B, respectively, were investigated using observational data obtained with the Echelle spectrograph of the Kyiv University Astronomical Observatory. Stokes I and V profiles of the FeI lines 5233, 5247.1, 5250.2, 5250.6, 5576.1 and of CrI 5247.6 Å have been analyzed. We found several evidences for the existence of spatially unresolved magnetic field structures with kG strengths. In particular, the values of the measured average longitudinal field B depend on the Lande factors g of the lines: in general, B increases with increasing factor g. Analogously, the observed line ratio B (5250.2)/B (5247.1) is increasing with increasing distance Δλ from the line center. The observed Stokes V profiles show some deviations from that of an assumed homogeneous field, presented by the Stokes I gradient, dI/dλ. A comparison with the non-split line FeI 5576.1 Å shows that some of these deviations are real and indicate the presence of subtelescopic magnetic elements with discrete field strengths of several kG. The lines with large Lande factors have considerable broadenings of the Stokes I profiles, indicating a strong background magnetic field of mixed polarity. On the basis of all these data we conclude that a four-component magnetic field structure is a possible explanation. The field strengths are about ±1.05 kG in the background field, and 1.3?1.5, 3.9?4.0, and 7.4?7.8 kG at level of middle photosphere (h ≈ 300 km) in the spatially unresolved, small-scale magnetic elements.  相似文献   

4.
Based on the spectropolarimetric data obtained at the 6-m telescope, a study of the magnetic field and physical parameters of the magnetic He-weak star HD 35298 was performed. A comparison of the results of magnetic field measurements by various methods has been carried out. The star’s magnetic field varies in the range from ?3 to +3 kG. The field geometry is explained in terms of the oblique rotator model. The obtained magnetic field variation curve can be described by a central dipole with the dipole axis inclined to the axis of rotation by β = 60°, and the magnetic field strength at the pole of B p = 11.5 kG. The data on the variability of spectral lines of some metals are presented, allowing to make an assumption that the stellar surface is heavily spotted.  相似文献   

5.
The structure of the photospheric magnetic field during solar flares is examined using echelle spectropolarimetric observations. The study is based on several Fe i and Cr i lines observed at locations corresponding to brightest Hα emission during thermal phase of flares. The analysis is performed by comparing magnetic-field values deduced from lines with different magnetic sensitivities, as well as by examining the fine structure of I±V Stokes-profiles’ splitting. It is shown that the field has at least two components, with stronger unresolved flux tubes embedded in weaker ambient field. Based on a two-component magnetic-field model, we compare observed and synthetic line profiles and show that the field strength in small-scale flux tubes is about 2?–?3 kG. Furthermore, we find that the small-scale flux tubes are associated with flare emission, which may have implications for flare phenomenology.  相似文献   

6.
Strong (“kilogauss”) small-scale magnetic fields were detected outside a sunspot near the seismic source of the major X17.2/4B solar flare on October 28, 2003. Echelle Zeeman spectrograms of the flare were obtained with the horizontal solar telescope at the Astronomical Observatory of the Taras Shevchenko Kiev National University. Analysis of the Stokes I ± V profiles for the Fe I 5232.9, 5247.1, 5250.2, and 5397.1 Å lines has revealed a number of characteristic spectral features. These are indicative of both background fields with a strength of ≈300 G and small-scale fields with a strength of 1300–3100 G. Evidence for the presence of another small-scale field component of opposite polarity with a strength of 8–10 kG has been found. A redshift (downflow) with a velocity of 1 km s?1 was observed in the latter component.  相似文献   

7.
Star‐disc coupling is considered in numerical models where the stellar field is not an imposed perfect dipole, but instead a more irregular self‐adjusting dynamo‐generated field. Using axisymmetric simulations of the hydromagnetic mean‐field equations, it is shown that the resulting stellar field configuration is more complex, but significantly better suited for driving a stellar wind. In agreement with recent findings by a number of people, star‐disc coupling is less efficient in braking the star than previously thought. Moreover, stellar wind braking becomes equally important. In contrast to a perfect stellar dipole field, dynamo‐generated stellar fields favor field‐aligned accretion with considerably higher velocity at low latitudes, where the field is weaker and originating in the disc. Accretion is no longer nearly periodic (as it is in the case of a stellar dipole), but it is more irregular and episodic. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
We investigate the magnetic geometry of the active G8 dwarf ξ Bootis A (ξ Boo A), from spectropolarimetric observations obtained in 2003 with the MuSiCoS échelle spectropolarimeter at the Télescope Bernard Lyot (Observatoire du Pic du Midi, France). We repeatedly detect a photospheric magnetic field, with periodic variations consistent with rotational modulation. Circularly polarized (Stokes V) line profiles present a systematic asymmetry, showing up as an excess in amplitude and area of the blue lobe of the profiles. Direct modelling of Stokes V profiles suggests that the global magnetic field is composed of two main components, with an inclined dipole and a large-scale toroidal field. We derive a dipole intensity of about 40 G, with an inclination of 35° of the dipole with respect to the rotation axis. The toroidal field strength is of the order of 120 G. A noticeable evolution of the field geometry is observed over the 40 nights of our observation window and results in an increase in field strength and dipole inclination.
This study is the first step of a long-term monitoring of ξ Boo A and other active solar-type stars, with the aim of investigating secular fluctuations of stellar magnetic geometries induced by activity cycles.  相似文献   

9.
This paper presents the results of a non-adiabatic analysis for axisymmetric non-radial pulsations including the effect of a dipole magnetic field. Convection is assumed to be suppressed in the stellar envelope, and the diffusion approximation is used to radiative transport. As in a previous adiabatic analysis, the eigenfunctions are expanded in a series of spherical harmonics. The analysis is applied to a  1.9-M  , main-sequence model  (log  T eff= 3.913)  . The presence of a magnetic field always stabilizes low-order acoustic modes. All the low-order modes of the model that are excited by the κ-mechanism in the He  ii ionization zone in the absence of a magnetic field are found to be stabilized if the polar strength of the dipole magnetic field is larger than about 1 kG. For high-order p modes, on the other hand, distorted dipole and quadrupole modes excited by the κ-mechanism in the H ionization zone remain overstable, even in the presence of a strong magnetic field. It is found, however, that all the distorted radial high-order modes are stabilized by the effect of the magnetic field. Thus, our non-adiabatic analysis suggests that distorted dipole modes and distorted quadrupole modes are most likely excited in rapidly oscillating Ap stars. The latitudinal amplitude dependence is found to be in reasonable agreement with the observationally determined one for HR 3831. Finally, the expected amplitude of magnetic perturbations at the surface is found to be very small.  相似文献   

10.
Simultaneous MERLIN observations of the OH 1665- and 1667-MHz maser lines in the circumstellar envelope of the semiregular star W Hya have been taken in all Stokes parameters. The 1665-MHz emission comes from two elongated clusters located 80 au from the star. The 1667-MHz emission arises in an incomplete shell of radius 130 au, with the blueshifted features located in the northern part of the envelope and the redshifted components clustered south of the centre. The circularly polarized maser components exhibit spatial separation along the north–south direction. The linearly polarized components were found from the near side of the envelope. Their polarization position angles indicate that the projected axis of the magnetic field at PA ≃ −20° is consistent with spatial segregation of circular polarization. The intensity of the magnetic field, estimated from a tentative measurement of Zeeman splitting, is about 0.6 mG at the location of the 1667-MHz emission, with the field pointing away from the observer. A small change of position angles of linear polarization observed in both maser lines is interpreted as a weak Faraday effect in the maser regions with an electron density of about 2 cm−3. The overall polarization structure of the envelope suggests an ellipsoidal or weak bipolar geometry. In such a configuration, the circumstellar magnetic field may exert a non-negligible influence on mass loss. The velocity field in the circumstellar envelope recovered from observations of SiO, H2O, OH and CO lines at five radial distances reveals a logarithmic velocity gradient of 0.25 and 0.21 in the 1665- and 1667-MHz maser regions respectively. The acceleration within tens of stellar radii cannot be explained by the classical model of radiation pressure on dust.  相似文献   

11.
A model is constructed for the magnetic field of the He-weak CP star HD 21699. This star has the field structure of a dipole displaced by 0.4 radii from the center perpendicular to its axis. The magnetic poles appear to be close to one another on the surface; they are separated by 55°, not by 180° as in the case of a central dipole. The phase dependences of the equivalent widths of He and Si lines have extrema at the phases corresponding to passage through the visible meridian of zero magnetic field between the magnetic poles. At the magnetic poles, the intensity of the helium lines is maximal and of the silicon lines, minimal. The silicon abundance is maximal in the regions where the magnetic field is predominantly tangential to the star’s surface. Because of averaging over the visible hemisphere and owing to the closeness of the magnetic poles, only one wave of variation in the intensity of the spectral lines of these chemical elements, one wave of photometric variability, and an average surface magnetic field Bs are observed. __________ Translated from Astrofizika, Vol. 50, No. 3, pp. 441–451 (August 2007).  相似文献   

12.
Using polarimetric spectra obtained with the SOFIN spectrograph installed at the Nordic Optical Telescope, we detect a longitudinal magnetic field 〈Bz〉 = –168±35 G in the Of?p star HD 108. This result is in agreement with the longitudinal magnetic field measurement of the order of –150 G recently reported by the MiMeS team. The measurement of the longitudinal magnetic field in the Of?p star HD 191612 results in 〈Bz〉 = +450±153 G. The only previously published magnetic field measurement for this star showed a negative longitudinal magnetic field 〈Bz〉 = –220±38 G, indicating a change of polarity over ∼100 days. Further, we report the detection of distinct Zeeman features in the narrow Ca II and Na I doublet lines for both Of?p stars, hinting at the possible presence of material around these stars. The origin of these features is not yet clear and more work is needed to investigate how magnetic fields interact with stellar wind dynamics (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
We present a new inversion code that reconstructs the stellar surface spot configuration from the light curve of a rotating star. Our code employs a method that uses the truncated least‐squares estimation of the inverse problem's objects principal components. We use spot filling factors as the unknown objects. Various test cases that represent a rapidly‐rotating K subgiant are used for the forward problem. Tests are then performed to recover the artificial input map and include data errors and input‐parameter errors. We demonstrate the robustness of the solution to false input parameters like photospheric temperature, spot temperature, gravity, inclination, unspotted brightness and different spot distributions and we also demonstrate the insensitivity of the solution to spot latitude. Tests with spots peppered over the entire stellar surface or with phase gaps do not produce fake active longitudes. The code is then applied to ten years of V and I ‐band light curve data of the spotted sub‐giant HD291095. A total of 22 light curves is presented. We find that for most of the time its spots were grouped around two active longitudes separated on average by 180°. Switches of the dominant active region between these two longitudes likely occurred about every 3.15±0.23 years while the amplitude modulation of the brightness occurred with a possible period of 3.0±0.15 years. For the first time, we found evidence that the times of the activity flips coincide with times of minimum light as well as minimum photometric amplitude, i.e. maximum spottedness. From a comparison with simultaneous Doppler images we conclude that the activity flips likely take place near the rotational pole of the star. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
Physical state of the photosphere during a 2N/M2 solar flare on July 18, 2000, was studied. We used Echelle Zeeman spectrograms obtained by V. G. Lozitsky in orthogonal circular polarizations with a solar spectrograph. Semiempirical photospheric models were constructed for three moments in time in the initial and main phases of the flare using the SIR code applied to Stokes I and V profiles of seven iron and chromium lines. The photospheric model of the flare contains two components: a magnetic-field component and nonmagnetic environment. The height distributions of the temperature, magnetic field, and line-of-sight velocity were derived. The temperature in the nonmagnetic component had a nonmonotonous run with height. The models include layers in the middle and upper photosphere in which temperature is enhanced relative to an unperturbed photosphere model. As the flare developed, the temperature in the lower layers was increasing by 500–800 K. The magnetic field increased by 0.05 T and 0.08–0.1 T in the lower and upper photosphere during the flare, respectively, with the vertical temperature gradient decreasing from 0.0012 to 0.0008 T/km. The model for the onset phase of the flare indicates that there were upflows and downflows of substance in the lower and upper photosphere, respectively. The flow velocities decreased appreciably in the main phase of the flare. The model parameters of the nonmagnetic environment were only slightly different from those of the unperturbed photosphere.  相似文献   

15.
We describe the TRAnsportable Flbre COupled échelle Spectrograph (TRAFICOS) equipped with a Zeeman analyzer and manufactured mainly for the observation of stellar magnetic fields. The spectrograph, designed at the Astrophysikalisches Institut Potsdam and constructed at the Thüringer Landessternwarte Tautenburg, is laid out in a quasi-Littrow configuration. The part attached to the Nasmyth focus of the 2 m telescope contains the telescope adapter for the fibre input and output of the star and calibration light, the cases for the flatfield and the wavelength calibration, and the Zeeman analyzer. The optical scheme and the reduction software are mentioned in some details and the first results of the determination of the magnetic field and radial velocity of several stars are given showing the performance of the device in comparison with existing data.  相似文献   

16.
The presence of hot spots on the surface of T Tau attributable to mass accretion from the protoplanetary disk is shown to have virtually no effect on the accuracy of estimating the magnetic field strength for this star. By comparing the magnetic field strengths for T Tau at the photospheric level measured by various methods, we found that if the angle i at which we see T Tau does not exceed 10°, then the magnetic field of the star could be dipolar with the angle between the dipole axis and the rotation axis of the star ?85°. If, however, it later emerges that i > 10°, its magnetic field is essentially nondipolar and/or nonstationary.  相似文献   

17.
We search for the variable component of themagnetic field in γ Equ by studying four Nd III lines with the Main Stellar Spectrograph of the 6-m BTA telescope of the Special Astrophysical Observatory via accumulation and cyclic transfer of the electronic image of the Zeeman spectrum on the CCD. The single exposure time was set equal to 1/8 of the spectral variability period. We detected no variable component in the magnetic field of γ Equ with a period of 12.1 min in the November 5/6, 2003 observations.  相似文献   

18.
Splitting of the strongest absorption lines with a lower-level excitation potential χ low < 1 eV has been detected for the first time in the optical spectra of the post-AGB star V354 Lac obtained with a spectral resolution R = 60 000 at the 6-m BTA telescope. Analysis of the kinematics shows that the short-wavelength component of the split line originates in the star’s thick gas-dust envelope. Disregarding the splitting of strong lines when the chemical composition is calculated leads to overestimated overabundances of s-process elements (Ba, La, Ce, Nd) in the stellar atmosphere. The profiles of strong absorption lines have been found to be variable. The available radial-velocity data suggest the absence of any changes in the velocity field in the atmosphere and circumstellar envelope of V354 Lac over 15 years of its observations.  相似文献   

19.
We separate and analyse the component spectra of the composite‐spectrum binary HD 208253. We find that the cool primary is an evolving star of spectral type G7 III, while its hot secondary is an early‐A dwarf. The giant is currently near the lowest point of the red‐giant branch and is slightly less luminous than its dwarf companion. We provide a set of precise radial‐velocity measurements for both stars. The double‐lined orbit which we derive from them shows that the component mass ratio is close to unity (q = 1.05 ± 0.01). We deduce the physical properties of both stars, determine their respective masses to be 2.75 ± 0.07 Me (giant) and 2.62 ± 0.07 Me (dwarf), and show that the orbit's inclination is within a degree or two of 68°. The spectrum of the A‐type component has quite component has quite narrow lines (we infer a rotational velocity of 18 km s–1), though since the period of the orbit is well over 1 year that component cannot be in synchronous rotation. An intriguing property of the dwarf is its enhanced Sr and Ba, though it does not exhibit the other spectral peculiarities that would signal a classical Am star. While by no means unique amongst the multitude of oddities exhibited by A and early‐F stars, this dwarf which we have uncovered in a long‐period binary offers valuable constraints and challenges to stellar‐evolution theory. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
In our previous search for magnetic fields in Herbig Ae stars, we pointed out that HD 101412 possesses the strongest magnetic field among the Herbig Ae stars and hence is of special interest for follow‐up studies of magnetism among young pre‐main‐sequence stars. We obtained high‐resolution, high signal‐to‐noise UVES and a few lower quality HARPS spectra revealing the presence of resolved magnetically split lines. HD 101412 is the first Herbig Ae star for which the rotational Doppler effect was found to be small in comparison to the magnetic splitting and several spectral lines observed in unpolarized light at high dispersion are resolved into magnetically split components. The measured mean magnetic field modulus varies from 2.5 to 3.5kG, while the mean quadratic field was found to vary in the range of 3.5 to 4.8 kG. To determine the period of variations, we used radial velocity, equivalent width, line width, and line asymmetry measurements of variable spectral lines of several elements, as well as magnetic field measurements. The period determination was done using the Lomb‐Scargle method. The most pronounced variability was detected for spectral lines of He I and the iron peak elements, whereas the spectral lines of CNO elements are only slightly variable. From spectral variations and magnetic field measurements we derived a potential rotation period Prot = 13.86 d, which has to be proven in future studies with a larger number of observations. It is the first time that the presence of element spots is detected on the surface of a Herbig Ae/Be star. Our previous study of Herbig Ae stars revealed a trend towards stronger magnetic fields for younger Herbig Ae stars, confirmed by statistical tests. This is in contrast to a few other (non‐statistical) studies claiming that magnetic Herbig Ae stars are progenitors of the magnetic Ap stars. New developments in MHD theory show that the measured magnetic field strengths are compatible with a current‐driven instability of toroidal fields generated by differential rotation in the stellar interior. This explanation for magnetic intermediate‐mass stars could be an alternative to a frozen‐in fossil field (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号