首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Karst aquifers supply a significant fraction of the world's drinking water. These types of aquifers are alsohighly susceptible to pollution from the surface with recharge usually occurring through fractures and solution openings at the bedrock surface. Thickness of the protective soil cover, macropores and openings within the soil cover, and the nature of the weathered bedrock surface all influence infiltration. Recharge openings at the bedrock surface, however, are often covered by unconsolidated sediments, resulting in the inadvertent placement of landfills, unregulated dump sites, tailing piles, waste lagoons and septic systems over recharge zones. In these settings surface geophysical surveys, calibrated by a few soil cores, could be employed to identify these recharge openings, and qualitatively assess the protection afforded by the soil cover. In a test of this hypothesis, geophysical measurements accurately predicted the thickness of unconsolidated deposits overlying karstic dolomite at a site ab  相似文献   

2.
Karst aquifers are highly susceptible to contamination, with numerous points of entry for contaminants through recharge features such as sinkholes, swallow holes and solutionally enlarged fractures. These recharge features may be filled or obscured at the surface, requiring the use of geophysical or remote sensing techniques for their identification. This study uses seismic refraction data collected at the Ft. Campbell Army Airfield (CAAF), Kentucky, USA, to test the hypothesis that refraction tomography is a useful tool for imaging bedrock depressions beneath thick overburden (greater than 20 m of unconsolidated sediment). Southeast of the main taxiway of CAAF seismic velocity tomograms imaged a bedrock low, possibly a closed depression, at a depth of 25 m that had been earlier identified through delay-time analysis of the same refraction data. Tomography suggests the bedrock low is about 250-m wide by 10-m deep at its widest point. High rates of contaminant vapor extraction over the western extension of this feature suggest a high concentration of contaminants above, and within, this filled bedrock low, the base of which may contain solutionally enlarged fractures (i.e. karst conduits) that could funnel these contaminants to the upper or lower bedrock aquifers. This study thus demonstrates the viability of seismic refraction tomography as a tool for identification of filled sinkholes and bedrock depressions in karst areas.  相似文献   

3.
Application of integrated methods in mapping waste disposal areas   总被引:2,自引:0,他引:2  
An integrated suite of environmental methods was used to characterize the hydrogeological, geological and tectonic regime of the largest waste disposal landfill of Crete Island, the Fodele municipal solid waste site (MSW), to determine the geometry of the landfill (depth and spatial extent of electrically conductive anomalies), to define the anisotropy caused by bedrock fabric fractures and to locate potential zones of electrically conductive contamination. A combination of geophysical methods and chemical analysis was implemented for the characterization and management of the landfill. Five different types of geophysical surveys were performed: (1) 2D electrical resistance tomography (ERT), (2) electromagnetic measurements using very low frequencies (VLF), (3) electromagnetic conductivity (EM31), (4) seismic refraction measurements (SR), and (5) ambient noise measurements (HVSR). The above geophysical methods were used with the aim of studying the subsurface properties of the landfill and to define the exact geometrical characteristics of the site under investigation.  相似文献   

4.
Integrated surface electrical resistivity and electromagnetic (EM) surveys were conducted in a hard-rock terrain of Southwestern Nigeria in the vicinity of active oxidation sewage treatment ponds. The aim was to detect soil contamination due to the spread of sewage effluent, locate possible leachate plumes and conductive lithologic layers, and access the risk of groundwater pollution in the vicinity of the sewage-ponds. Dipole–dipole resistivity profiling and very low frequency (VLF) data were acquired at 10-m intervals along five 200-m long east-west geophysical traverses. Resistivity sections obtained revealed four subsurface geologic layers comprised of lateritic clay, clayey sand/sand, weathered/fractured bedrock, and competent bedrock. A distinct low resistivity zone corresponding to the contamination plume (labeled B) was delineated from all the resistivity sections. This low zone extends into the weathered bedrock and possibly suggests contamination of this layer. The filtered real component of the processed VLF data detected three distinct anomaly zones that are representative of fractured zones filled with conductive fluids and/or lithologic boundaries that possibly serve as conduits for the movement of contaminated effluents. The results obtained from the two methods suggest possible contamination of the subsurface soil layers and groundwater in the vicinity of the sewage-ponds. The existence of this contaminated plume poses a serious threat to the ecosystem and health of the people living in the vicinity of the sewage-ponds.  相似文献   

5.
Sinkhole collapse is one of the main limitations on the development of karst areas, especially where bedrock is covered by unconsolidated material. Studies of sinkhole formation have shown that sinkholes are likely to develop in cutter (enlarged joint) zones as a result of subterranean erosion by flowing groundwater. Electrical resistivity imaging or tomography (RESTOM) is well suited to mapping sinkholes because of the ability of the technique for detecting resistive features and discriminating subtle resistivity variations. Two-dimensional electrical resistivity tomography surveys were conducted at two sinkhole sites near Cheria city where limestone is covered by about 10 m of clayey soils. A Wenner transect was conducted between the two sinkholes. The electrode spacing was 2 m. The length of transect is about 80 m. The survey results suggest that RESTOM is an ideal geophysical tool to aid in the detection and monitoring of sinkholes and other subsurface cavities.  相似文献   

6.
The karsted limestone valleys of central Pennsylvania contain two populations of sinkholes. Solution sinkholes occur in the Champlainian limestone units along the margins of the valleys. Solution sinkholes are permanent parts of the landscape and, although a nuisance to construction, do not present other problems. The second population is the suffosional or soil-piping sinkholes These occur on all carbonate rock units including the Beekmantown and Gatesburg dolomites that comprise the two principal carbonate aquifers in the valley. Suffosional sinkholes are the principal land-use hazard. Suffosional sinkholes are transient phonomena. They occur naturally but are exacerbated by runoff modifications that accompany urbanization Suffosional sinkholes are typically 1.5–2.5 m in diameter depending on soil thickness and soil type. The vertical transport of soil to form the void space and soil arch that are the precursors to sinkhole collapse is through solutionally widened fractures and cross-joints and less often through large vertical openings in the bedrock. The limited solution development on the dolomite bedrock combined with soil thickness, seldom greater than 2 m, limits the size of the sinkholes. All aspects of suffosional sinkhole development are shallow processes: transport, piping, void and arch formation, and subsequent collapse take place usually less than 10 m below the land surface Factors exacerbating sinkhole development include pavement, street, and roof runoff which accelerates soil transport Such seemingly minor activities as replacing high grass and brush with mowed grass is observed to accelerate sinkhole development. Dewatering of the aquifer is not a major factor in this region  相似文献   

7.
《Applied Geochemistry》1993,8(3):223-233
Surveys of the distribution and migration of He and Rn were carried out in the well-characterized granitic terrane of the AECL Underground Research Laboratory (URL), Manitoba as part of a joint AECL Research, United Kingdom Department of the Environment, and United States Department of Energy research initiative. The investigations were designed to determine whether concentrations of He and Rn in soil gases could be used to identify locations of groundwater recharge and discharge from bedrock fractures. The results obtained indicate that subsurface transport of He and possibly Rn in this setting appears to be controlled largely by the groundwater flow system in the bedrock. Release of dissolved gases near the ground surface causes soil gas anomalies, which reflect discharge from the deeper flow system. In the recharge area of the deep groundwater flow system at the URL site, He abundances are close to the atmospheric level, but the discharge area of the deep flow system is characterized by significant He anomalies (up to 0.5 ppm above atmosphere levels). For Rn, the recharge area has broadly distributed high concentrations, probably caused by local Rn production in U-rich overburden, while the discharge area has only localized concentrations of Rn, which are not at the same location as the He anomalies. The general nature of the groundwater flow regime in both areas is reflected in the presence and distribution of the soil gas anomalies. In addition, major fractures in bedrock, which act as preferential groundwater flow paths, have been located from soil gas anomalies, even when obscured by overburden of variable thickness and character. The distribution of He in soil gas appears to be most representative of groundwater recharge and discharge conditions in the granitic rock, while Rn may be useful for locating specific channels where more rapid groundwater discharge is occurring from deep fracture zones.  相似文献   

8.
A review of natural sinkhole phenomena in Italian plain areas   总被引:2,自引:0,他引:2  
Italian sinkholes, which are mainly related to karst phenomena (i.e., solution sinkholes, collapse sinkholes, etc.), are widespread along the Apennine ridge and in pedemontane areas where there are carbonatic bedrock outcrops. However, other collapses, which seem unrelated to karst dissolution, have been identified in plain areas with a thick sedimentary cover over buried bedrock. The main goal of this work is to study the geological, geomorphological, and structural setting of these areas to identify the possible mechanism of the generation and evolution of these collapses. About 750 cases were identified by research based on historical archives, specific geological literature, and information from local administrations. Geological, geomorphological, and hydro-geochemical surveys were conducted in 300 cases, supported by literature, borehole, and seismic data. A few examples were discarded because they could be ascribed to karst dissolution, volcanic origin (i.e., maar), or anthropogenic causes. Field studies regarding the other 450 cases are in progress. These cases occur along the Tyrrhenian margin (Latium, Abruzzo, Campania, Tuscany) in tectonic, coastal, and alluvial plains close to carbonate ridges. These plains are characterized by the presence of pressurized aquifers in the buried bedrock, overlaid by unconsolidated sediments (i.e., clay, sands, pyroclastic deposits, etc.). The majority of these collapses are aligned along regional master and seismogenetic faults. About 50% of the studied cases host small lakes or ponds, often characterized by highly mineralized springs enriched with CO2 and H2S. The Periadriatic margin does not seem to be affected by these phenomena, and only a few cases have been found in Sicily, Sardinia, and Liguria. The obtained scenarios suggests that this type of collapse could be related to upward erosion through vertical conduits (i.e., deep faults) caused by deep piping processes whose erosive strength is increased by the presence of acidic fluids. In order to distinguish these collapses from typical karst dissolution phenomena, they are defined as deep piping sinkholes (DPS).  相似文献   

9.
Sinkhole collapse is one of the main limitations in the development of karst areas, especially where bedrock is covered by unconsolidated material. Studies of sinkhole formation have shown that sinkholes are likely to develop in cutter (enlarged joint) zones as a result of subterranean erosion by flowing groundwater. Ground-penetrating radar (GPR) and electrical resistivity imaging or tomography (RESTOM) are well suited to mapping sinkholes because of the ability of these two techniques for detecting voids and discriminating subtle resistivity variations. Nine GPR profiles and two-dimensional electrical resistivity tomography have been applied, with relative success, to locate paleo-collapses and cavities, and to detect and characterize karst at two sinkhole sites near Cheria City where limestone is covered by about 10 m of clayey soils. The survey results suggest that GPR and RESTOM are ideal geophysical tools to aid in the detection and monitoring of sinkholes and other subsurface cavities.  相似文献   

10.
A case study describes the recent catastrophic subsidence of the land surface neighboring the Lepini karstic range (Lazio region). A number of sinkholes in the Pontina plain are shown on the early topographic maps (dated 1850). Their origin is natural and related to subsidence that occurred during the Holocene. A review of sinkholes in central Italy was made by Facenna and others (1993). The aim of this study is to clarify the possible relationships between tectonics and sinkhole formation. The subsidence phenomena have been related to the slow dissolution of the buried carbonate bedrock due to fluids rich in CO2, H2S, and SO2, which migrate through major tectonic fractures. Lowering of piezometric levels in waterbearing formations and seismic events are also important factors as they may upset the stability of a cave system buried by unconsolidated deposits.  相似文献   

11.
 Sinkhole collapse is one of the main limitations on the development of karst areas, especially where bedrock is covered by unconsolidated material. Studies of sinkhole formation have shown that sinkholes are likely to develop in cutter (enlarged joint) zones as a result of subterranean erosion by flowing groundwater. Because of the irregular distribution of pinnacles and cutters on the bedrock surface, uncertainties arise when "hit-or-miss" borehole drilling is used to locate potential collapse sites. A high-resolution geophysical technique capable of depicting the details of the bedrock surface is essential for guiding the drilling program. Dipole-dipole electrical resistivity tomography (ERT) was used to map the bedrock surface at a site in southern Indiana where limestone is covered by about 9 m of clayey soils. Forty-nine transects were conducted over an area of approximately 42,037 m2. The electrode spacing was 3 m. The length of the transects varied from 81 to 249 m. The tomographs were interpreted with the aid of soil borings. The repeatability of ERT was evaluated by comparing the rock surface elevations interpreted from pairs of transects where they crossed each other. The average difference was 2.4 m, with a maximum of 10 m. The discrepancy between interpreted bedrock-surface elevations for a transect intersection may be caused by variations in the subsurface geology normal to the transect. Averaging the elevation data interpreted from different transects improved the ERT results. A bedrock surface map was generated using only the averaged elevation data at the transect junctions. The accuracy of the map was further evaluated using data from four exploratory boreholes. The average difference between interpreted and actual bedrock surface-elevations was less than 0.4 m. The map shows two large troughs in the limestone surface: one coinciding with an existing sinkhole basin, while the other is in alignment with a small topographic valley. Because sinkholes were observed at the same elevation interval in similar valleys in the vicinity, the delineated trough may have implications for future land use at the site. Received: 4 January 1999 · Accepted: 8 March 1999  相似文献   

12.
DRASTIC, the methodology for mapping the intrinsic vulnerability of aquifers, is modified to incorporate the structural characteristics of fractured bedrock aquifers. In these aquifers, groundwater flow is predominantly through fractures, with large-scale fracture zones and faults acting as primary conduits for flow at the regional scale. The methodology is applied to the southern Gulf Islands region of southwestern British Columbia, Canada. Bedrock geology maps, soil maps, structural measurements, mapped lineaments, water-well information and topographic data, assembled within a comprehensive GIS database, form the basis for assigning traditional DRASTIC indices, while adding the structural indices necessary for capturing the importance of regional structural elements in recharge and well capture zone determinations.  相似文献   

13.
First arrival times from P-wave refraction and reflection seismic surveys along Bear Creek Valley on the Oak Ridge Reservation, Tennessee, were inverted to produce refraction tomographic velocity images showing seismic velocity variations within thinly mantled karstic bedrock to a depth of approximately 20 m. Inverted velocities are consistent with two distinct bedrock groups: the Nolichucky Shale (2,730–5,150 m/s) and Maynardville Limestone (3,940–7,575 m/s). Low-velocity zones (2,700–4,000 m/s) in the tomographic images correspond to previously inferred cross-valley strike-slip faults; in places, these faults create permeability barriers that offset or block groundwater flowing along Bear Creek Valley. These faults may also force groundwater contaminants, such as dense non-aqueous phase liquids, to migrate laterally or downward, spreading contamination throughout the groundwater system. Other, previously unmapped cross-valley faults may also be visible in the tomographic images. Borehole logs suggest the low-velocity values are caused by low rigidity fractured and vuggy rock, water zones, cavities and collapse features. Surface streams, including Bear Creek, tend to lie directly above these low-velocity zones, suggesting fault and fracture control of surface drainage, in addition to the subsurface flow system. In some cases, fault zones are also associated with bedrock depressions and thicker accumulations of unconsolidated sediment.  相似文献   

14.
抗渗透破坏评价是近松散含水层煤层开采溃水溃砂防控的重要基础工作,但至今尚未形成规范性方法和标准。松散层和风化带抗渗透破坏评价的关键是确定水力坡度和临界水力坡度。首先综述了流土和内部侵蚀发生的临界水力坡度确定方法,指出近松散层煤层采掘诱发溃水溃砂临界水力坡度与传统的临界水力坡度的不同特点。针对集中通道获得考虑临空面出口尺寸和岩土层物理力学性质的松散砂层、黏土层和基岩风化带的抗渗透破坏临界水力坡度的计算公式,采用试验结果验证,溃水溃砂临界水力坡度公式的适用性。通过单因素和多因素参数对临界水力坡度的敏感性分析结果表明,裂隙宽度是影响临界水力坡度大小的最重要因素,也表明在实际工程中通过控制采掘诱发的覆岩破坏是减少溃水溃砂灾害的关键措施。煤系风化带的临界水力坡度与其中黏土成分的含量、施加荷载大小有密切的关系,当黏土在风化岩石中占比(质量分数)为5%~40%时,其变化范围为2.9~67.2,给出了用高斯函数的拟合估算关系式和考虑上覆荷载的估算公式。研究结果将为近松散层开采溃水溃砂评价临界水力坡度计算提供参考。  相似文献   

15.
To investigate the control on small-scale variation of He in soil gas exercised by minor fracturing, shallow surveys have been carried out over a cave system formed along an approximately orthogonal set of fractures in Devonian limestone in southwest England. The possibilities that He variation could be related to deep-seated, major fractures or hidden mineralisation, and that other soil gases may also be affected by minor fracturing were assessed by contemporary surveys for CO2 and O2. Comparisons of soil gas values with variations in electrical apparent resistivity were also carried out. Location of fractures with direct connection to the cave system was determined by spiking the cave atmosphere with He and then resurveying after equilibration.The results for CO2 and O2 show anomalies of low magnitude (with respect to atmospheric concentrations), and although they display an antithetic relationship, this is generally poor. There is also no strong correlation with the results of the He surveys either before or after spiking, or with the apparent resistivity values. Moreover, anomalies in CO2 + O2 do not support the pattern of variation shown by the individual gases. These negative results suggest the absence of deep-seated fractures or hidden mineralisation, and show that CO2 and O2 values are independent of minor fracturing. The origin of the variation is attributed to bacteriological productivity.He soil gas concentrations were obtained as disequilibrium values relative to Field Atmospheric Air (ΔHe/ppb-FAA). Positive ΔHe values were generally found to correlate with areas of thin, dry soil cover, enhancement occurring along fracture lines. Negative ΔHe values were also found to correlate with fracture lines, but in these areas the fractures are overlain by a thick soil cover with a high moisture content. It is considered that distinctions can be drawn between water-conducting and dry fractures, and that negative ΔHe values are likely only to be encountered with shallow soil gas samples. Results of spiking with He show a clear distribution of enhanced values along the set of orthogonal fractures, irrespective of the sign of the natural He anomaly. It is considered, therefore, that major deep-seated fractures may result in positive He anomalies superimposed upon negative ΔHe values. This implies that He anomalies must always be related to a local datum value. It is concluded that resolution of interacting variables in the interpretation of soil gas data is facilitated by integrated soil gas surveys.  相似文献   

16.
Abstract. The Thorn prospect is an El Indio-style high-sulfidation epithermal prospect in a little-explored belt of Late Cretaceous subaerial volcanics and subvolcanic intrusions in northwestern British Columbia, Canada. More than 30 massive sulfide (pyrite-enargite-tennantite/tetrahedrite) veins, quartz-sulfide (quartz-pyrite-enargite-tennantite/tetrahedrite) veins and quartz-vuggy silica-alunite veins/breccias fill ENE fractures and faults over an area of 1,600 times 1,900 m. They are hosted within a Late Cretaceous feldspar-quartz-biotite granodioritic porphyry stock and flanked by alteration envelopes a few meters to tens of meters wide: an inner envelope of intense sericite-clay-pyrite and an outer one of weak clay-sericite-chlorite. Where several veins are close together, the sericite-clay-pyrite alteration envelopes coalesce into zones up to 150 m wide.
The most successful exploration techniques have been prospecting, silt and soil geochemistry, airborne magnetic and electromagnetic surveys and diamond drilling. Silt and soil geochemical anomalies for Au, Ag, As, Cu, Pb, Sb and Zn mark the known veins and indicate prospective areas where veins have not yet been discovered. Magnetics and resistivity outline the gross property-wide structure and lithologies. Most of the sericite-clay-pyrite alteration and known veins are outlined by the <264 ohm-m resistivity contour, which covers an area of 800 times 2,300 m. Weak EM conductors are thought to represent undiscovered massive sulfide and quartz-sulfide veins, and their flanking sericite-clay-pyrite alteration.  相似文献   

17.
通过地质环境调查,分析湖南郴州地区岩溶塌陷分布规律及其影响因素,结果表明:(1)1980-1983年为岩溶塌陷盛发期,平均8.5个年-1;2012-2020年塌陷发生频率增加,平均5.88个/年;岩溶塌陷主要发生在3-7月份雨季;(2)低丘冲沟中发生塌陷54个,占塌陷总数的55.67%;岩溶平原中发生塌陷40个,占41.24%。97个岩溶塌陷主要发生在石炭系壶天群及泥盆系中统棋梓桥组下段地层;塌陷区域多为断裂构造带及褶皱轴部;(3)冲洪积成因土层共发生岩溶塌陷58个,占塌陷总数的59.79%,而残坡积成因土层发生塌陷39个,占40.21%。粉质黏土层发生塌陷数量多于黏土层,而粉质黏土与卵石土,粉质黏土、淤泥质黏土和砂土等组合土层分布面积较小,发生数量偏少。单层结构土体发生岩溶塌陷63个,占总数的64.94%;双层结构与多层结构土体发生塌陷数量占比35.06%。土层厚度小于10 m的区域发生岩溶塌陷48个,占总数的49.48%;土层厚度为10~15 m的区域发生塌陷49个,占总数的50.52%;(4)本地区浅部岩溶强发育,覆盖层薄且力学性能较弱,满足发生岩溶塌陷的基本条件;城市供水和采矿开采地下水是岩溶塌陷的主要触发因素。   相似文献   

18.
To delineate spatial extent of seawater intrusion in a small experimental watershed in the coastal area of Byunsan, Korea, electrical resistivity surveys with some evaluation core drillings and chemical analysis of groundwaters were conducted. The vertical electrical sounding (VES) method was applied, which is useful to identify variations in electrical characteristics of layered aquifers. The drilling logs identified a three-layered subsurface including reclamation soil, weathered layer and relatively fresh sedimentary bedrock. The upper two layers are the main water-bearing units in this area. A total of 30 electrical sounding curves corresponded mostly to the H type and they were further divided into three classes: highly conductive, intermediate, and low conductive, according to the observed resistivity values of the most conductive weathered layer. In addition, groundwater samples from 15 shallow monitoring wells were analyzed and thus grouped into two types based on HCO3/Cl and Ca/Na molar ratios with TDS levels, which differentiated groundwaters affected by seawater intrusion from those not or less affected. According to relationships between the three classes of the sounding curves and groundwater chemistry, locations of the monitoring wells with low HCO3/Cl and Ca/Na ionic ratios coincided with the area showing the highly conductive type curve, while those with the high ratios corresponded to the area showing low conductive curve type. Both the low electrical resistivity and the low ionic ratios indicated effects of seawater intrusion. From this study, it was demonstrated that the VES would be useful to delineate seawater intrusion in coastal areas.  相似文献   

19.
Shallow geothermal prospecting ( < 700 m) has been performed in four zones in Morocco for which few deep data are available: northwestern basin, northeastern basin, Tadla Basin and Agadir Basin. These areas are different geologically and hydrogeologically. The temperature data from 250 wells at depths between 15 and 500 m have been analysed in order to estimate the natural geothermal gradient in these areas, to determine the principal thermal anomalies, to identify the main thermal indices and to characterise the recharge, discharge and potential mixing limits of the aquifers.The hydrostratigraphical study of each basin revealed several potential reservoir layers in which the Turonian carbonate aquifer (Tadal and Agadir Basins) and Liassic acquifer (Moroccan northwestern and northeastern basins) are the most important hot water reservoirs in Morocco. The recharge zones of each aquifer are characterised by high topography, high water potential, shallow cold water, low geothermal gradient and negative anomalies. The discharge zones are characterized by low topography, low piezometric level, high geothermal gradient, high temperature with hot springs and positive anomalies. The main thermal indices and the principal thermal anomalies that coincide with the artesian zones of the Turonian and Liassic aquifers have been identified.  相似文献   

20.
This paper describes seismic velocity tomography applied to the investigation and assessment of karst collapse hazards to facilitate accurate characterization of geological conditions of karst sinkhole formation. In the survey areas of Xiamao, Guangzhou, China, and Huangchi, Foshan, China, seismic velocity tomography was used to explore the structures of rock and soil associated with karst collapse. The results show that sand intercalated with clay or clay intercalated with soft soil dominates the cover of these two areas. The overburden is 20–33 m thick and underlain by Carboniferous limestone. In the limestone, there are well-developed karst caves and cracks as well as highly fluctuating bedrock surfaces. The seismic velocities are less than 2500 m/s in the cover, 2500–4500 m/s in the karst fracture zones and caves of Xiamao, and 1500–2000 m/s in the Huangchi collapse area. The karst fracture zones, relief of bedrock surfaces, and variations of soil thicknesses revealed by seismic velocity tomography are well constrained and in agreement with those in the drilling borehole profiles. This paper demonstrates that seismic velocity tomography can delineate anomalies of rock and soil with the advantages of speed, intuitive images, and high resolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号