首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Groundwater resources in the semi-arid regions of southern India are under immense pressure due to large-scale groundwater abstraction vis-à-vis meager rainfall recharge. Therefore, understanding and evaluating the spatial distribution of groundwater is essential for viable utilization of the resource. Here, we assess groundwater potential at the watershed scale, in a semi-arid environment with crystalline aquifer system without a perennial surface water source using remote sensing, geophysical, and GIS-based integrated multi-parameter approach. GIS-based weighed overlay analysis is performed with input parameters, viz., geology, geomorphology, lineament density, land use, soil, drainage density, slope, and aquifer thickness. The watershed is categorized into four zones, namely, “very good” (GWP4), “good” (GWP3), “moderate” (GWP2), and “low” (GWP1) in terms of groundwater potential. Overall, ~?70% of the study area falls under moderate to low groundwater potential, indicating a serious threat to the future availability of the resource. Therefore, serious measures are required for maintaining aquifer resilience in this over-exploited aquifer (e.g., restricting groundwater withdrawal from GWP1 and GWP2 zones). Further, as the aquifer is under tremendous anthropogenic pressure, rainwater harvesting and artificial recharge during monsoon are advocated for sustainable aquifer management. Due to the direct dependence of crop production vis-à-vis farmer economy on groundwater, this study is an important step towards sustainable groundwater management and can be applied in diverse hydrological terrains.  相似文献   

2.
大型灌区陆地水循环模式的参数化方案:LWCMPS_ID   总被引:2,自引:0,他引:2  
王旭升  杨金忠 《地学前缘》2005,12(Z1):139-145
地表水系统、地下水系统和土壤植物大气连续体的强烈耦合作用是大型灌区水文过程的基本特点,这导致对大型灌区的陆地水循环和水资源进行评价必须采取综合的方法,然而目前还缺少适用的模拟工具。农业灌区的水文特征与天然流域存在显著差别,常规流域水文模型和陆面过程参数化方案用于大型灌区陆地水循环的分析还存在较大的困难。LWCMPS_ID是本文提出的一个适用于大型灌区陆地水循环模式的参数化方案,采用分块集中参数模型简明地实现了地表水、地下水和土壤水的动力学耦合分析,并且包含了一个土壤水冻结融化的简化模型。对处在黄河流域的内蒙古河套灌区,用LWCMPS_ID进行20 年水文动态的模拟,取得了较好的效果。  相似文献   

3.
湿地是流域水循环和水量平衡的重要调节器,在维护流域水量平衡、减轻洪旱灾害和应对气候变化等方面发挥极其重要的作用。流域湿地水文调蓄功能是湿地生态水文学研究的重要内容,科学认识和理解流域湿地水文调蓄功能对流域湿地恢复保护、水资源综合管控与应对气候变化具有极其重要的意义。本文阐述了流域湿地水文调蓄功能的概念与内涵,剖析了流域湿地水文调蓄功能时空变异性、阈值性和多维性三大特征及其影响因素(包括湿地土壤特性、植被特征和初始水文条件等内在因素和流域特征、降雨特征、气候变化和人类活动等外在因素),探讨了流域湿地不变情景下和变化情景下水文调蓄功能评估方法,并介绍了流域湿地水文调蓄功能定量评估模型与应用情况。最后,从学科发展和实践需求的视角提出了流域湿地水文调蓄功能未来亟需加强研究的重点方向。  相似文献   

4.
Effective information regarding environmental responses to future land-use and climate change scenarios provides useful support for decision making in land use planning, management and policies. This study developed an approach for modeling and examining the impacts of future land-use and climate change scenarios on streamflow, surface runoff and groundwater discharge using an empirical land-use change model, a watershed hydrological model based on various land use policies and climate change scenarios in an urbanizing watershed in Taiwan. The results of the study indicated that various demand and conversion policies had different levels of impact on hydrological components in all land-use scenarios in the study watershed. Climate changes were projected to have a greater impact in increasing surface runoff and reducing groundwater discharge than are land use changes. Additionally, the spatial distributions of land-use changes also influenced hydrological processes in both downstream and upstream areas, particularly in the downstream watershed. The impacts on hydrological components when considering both land use and climate changes exceeded those when only considering land use changes or climate changes, particularly on surface runoff and groundwater discharge. However, the proposed approach provided a useful source of information for assessing the responses of land use and hydrological processes to future land use and climate changes.  相似文献   

5.
2001-2018年石羊河流域植被变化及其对流域管理的启示   总被引:1,自引:0,他引:1  
植被是流域生态系统的重要指标,植被景观管理也是流域综合管理的重要内容。综合利用长时间序列MODIS反射率和归一化差值植被指数(NDVI)产品及Landsat卫星遥感影像,基于谷歌地球引擎(GEE)平台,利用计算机自动分类的方法,监测了2001-2018年间石羊河流域的植被(包括灌溉土地)的逐年变化,结合降水、径流量和地下水位地面监测数据,分析了全流域植被指数、植被面积、灌溉土地范围的变化特征及其与水循环之间的互馈关系。研究发现,2001-2018年间,石羊河流域的植被面积以每年约135 km2的速率增加,其中,自然植被和灌溉土地分别以每年60.5 km2和74.6 km2的速率增加。除了金昌区的植被增加以灌溉土地为主外,其他区域都以自然植被的增加为主。特别是民勤地区,由于十多年的持续调水和有效退耕,地下水位近年来开始抬升,自然植被开始恢复。但与此同时,中游凉州区和永昌县的生态风险加大。未来可从灌溉规模控制、地表与地下水统一调度、景观分级和配置技术发展、优化产业结构、强化与流域外的连通性等方面加强流域综合管理,提高流域社会系统弹性,增强可持续发展能力。  相似文献   

6.
Groundwater drought is a specific type of hydrological drought that concerns groundwater bodies. It may have a significant adverse effect on the socio-economic, agricultural, and environmental conditions. Investigating the effect of different climatic and anthropogenic factors on groundwater drought provides essential information for sustainable planning and management of (ground) water resources. The aim of this study is to identify the influencing factors on groundwater drought in north-western Bangladesh, to understand the forcing mechanisms. A multi-step methodology is proposed to achieve this objective. The standardised precipitation index (SPI) and reconnaissance drought index (RDI) have been used to quantify the aggregated deficit between precipitation and the evaporative demand of the atmosphere, i.e. meteorological drought. The influence of land-cover patterns on the groundwater drought has been identified by calculating spatially distributed groundwater recharge as a function of land cover. Groundwater drought is defined by a threshold method. The results show that the evapotranspiration and rainfall deficits are determining meteorological drought, which shows a direct relation with groundwater recharge deficits. Land-cover change has a small effect on groundwater recharge but does not seem to be the main cause of groundwater-level decline (depletion) in the study area. The groundwater depth and groundwater-level deficit (drought) is continuously increasing with little correlation to meteorological drought or recharge anomalies. Overexploitation of groundwater for irrigation seems to be the main cause of groundwater-level decline in the study area. Efficient irrigation management is essential to reduce the growing pressure on groundwater resources and ensure sustainable water management.  相似文献   

7.
Continental Flood Basalts (CFB) occupy one fourth of the world’s land area. Hence, it is important to discern the hydrological processes in this complex hydrogeological setup for the sustainable water resources development. A model assisted isotope, geochemical, geospatial and geophysical study was conducted to understand the monsoonal characteristics, recharge processes, renewability and geochemical evolution in one of the largest continental flood basalt provinces of India. HYSPLIT modelling and stable isotopes were used to assess the monsoonal characteristics. Rayleigh distillation model were used to understand the climatic conditions at the time of groundwater recharge. Lumped parameter models (LPM) were employed to quantify the mean transit time (MTT) of groundwater. Statistical and geochemical models were adopted to understand the geochemical evolution along the groundwater flow path. A geophysical model was used to understand the geometry of the aquifer. The back trajectory analysis confirms the isotopic finding that precipitation in this region is caused by orographic uplifting of air masses originating from the Arabian Sea. Stable isotopic data of groundwater showed its meteoric origin and two recharge processes were discerned; (i) quick and direct recharge by precipitation through fractured and weathered basalt, (ii) low infiltration through the clayey black cotton soil and subjected to evaporation prior to the recharge. Tritium data showed that the groundwater is a renewable source and have shorter transit times (from present day to <30 years). The hydrogeochemical study indicated multiple sources/processes such as: the minerals dissolution, silicate weathering, ion exchange, anthropogenic influences etc. control the chemistry of the groundwater. Based on the geo-electrical resistivity survey, the potential zones (weathered and fractured) were delineated for the groundwater development. Thus, the study highlights the usefulness of model assisted isotopic hydrogeochemical techniques for understanding the recharge and geochemical processes in a basaltic aquifer system.  相似文献   

8.
通过对大石桥市主城区6眼地下水观测井水位动态变化资料统计分析,总结了地下水水位变化规律,结合该地区降水因素对地下水水位变化影响,预测未来的地下水位变化趋势,为当地政府合理开发利用地下水资源,实现水资源和社会经济的可持续发展提供科学依据。  相似文献   

9.
Assessment of change in major ion chemistry of groundwater, manifested by hydrochemical facies, is a necessity for sustainable use of the groundwater resources. In this perspective, this article estimates spatial and temporal hydrochemical facies variation in the study area using an integrated approach. The geochemical, isotopic and sedimentary data from the North West Delhi has been used to achieve the objective of the study. It is seen that the spatial groundwater facies variation in the study area correlates with the change in geomorphologic units. Distinct hydrochemical facies for younger and older alluvial plains has been observed. It is seen that geomorphic features such as palaeochannels also influence the groundwater quality of the study area. Further, the temporal hydrochemical facies variations indicate that with time, anthropogenic factors have also impacted the evolution of facies in the study area .  相似文献   

10.
年雁云  李新  周剑 《冰川冻土》2013,35(2):420-429
水文数据建模和数据共享是流域科学研究的重点工作, 也是"数字流域"研究的基础.目前集成观测数据和环境信息的流域信息基础设施已经成为"数字地球"技术在流域科学方面的重要应用.以水文数据模型和"协同促进水文科学发展大学联盟"水文信息系统(CUAHSI-HIS)为原型, 设计一个适合于黑河流域的集流域地理数据库、 观测系统数据库和数据共享发布系统于一体的流域水文信息系统.系统实现集成各种观测数据类型、 数据来源及观测数据的流域观测数据库, 通过统一地表和地下水的通用数据模型实现流域地表水和地下水信息的一体化存储管理, 同时存储、 组织和在线共享发布流域相关的观测数据和空间数据, 为流域科学研究提供在线生态环境数据的网络服务以及相应的流域观测数据服务, 有效的推动流域科学计划的研究.  相似文献   

11.
湿地水文学研究进展   总被引:36,自引:4,他引:36       下载免费PDF全文
水文过程在湿地形成、发育、演替直至消亡全过程中起重要作用.降水截流、径流和蒸散作用是湿地 大气界面水文过程研究的热点和重点,开发的模型较多但尚需进一步检验和完善.片流和明渠流是湿地主要地表径流,其中片流受地形坡度等因素影响而难以精确计算.湿地的地下水文系统对季节性积水湿地尤为重要,但是关于泥炭沼泽的垂向水力联系尚需进一步研究.可持续的湿地水文管理必须将人类活动和气候变化这两个因素纳入湿地综合水文模型,然而目前除少数几个综合模型外,大多数的湿地水文模型并非如此.加强湿地水文观测、多手段多技术相结合和开发综合湿地水文模型应是今后湿地水文学研究的主流.  相似文献   

12.
This study presents a basin-scale integrative hydrological, ecological, and economic (HEE) modeling system, aimed at evaluating the impact of resources management, especially agricultural water resources management, on the sustainability of regional water resources. The hydrological model in the modeling system was adapted from SWAT, the Soil and Water Assessment Tool, to simulate the water balance in terms of soil moisture, evapotranspiration, and streamflow. An ecological model was integrated into the hydrological model to compute the ecosystem production of biomass production and yield for different land use types. The economic model estimated the monetary values of crop production and water productivity over irrigated areas. The modeling system was primarily integrated and run on a Windows platform and was able to produce simulation results at daily time steps with a spatial resolution of hydrological response unit (HRU). The modeling system was then calibrated over the period from 1983 to 1991 for the upper and middle parts of the Yellow River basin, China. Calibration results showed that the efficiencies of the modeling system in simulating monthly streamflow over 5 hydrological stations were from 0.54 to 0.68 with an average of 0.64, indicating an acceptable calibration. Preliminary simulation results from 1986 to 1995 revealed that water use in the study region has largely reduced the streamflow in many parts of the area except for that in the riverhead. Spatial distribution of biomass production, and crop yield showed a strong impact of irrigation on agricultural production. Water productivity over irrigated cropland ranged from 1 to 1640 USD/(ha·mm−1), indicating a wide variation of the production conditions within the study region and a great potential in promoting water use efficiency in low water productivity areas. Generally, simulation results from this study indicated that the modeling system was capable of tracking the temporal and spatial variability of pertinent water balance variables, ecosystem dynamics, and regional economy, and provided a useful simulation tool in evaluating long-term water resources management strategies in a basin scale.  相似文献   

13.
Appropriate quantification and identification of the groundwater distribution in a hydrological basin may provide necessary information for effective management, planning and development of groundwater resources. Groundwater potential assessment and delineation in a highly heterogeneous environment with limited Spatiotemporal data derived from Gelana watershed of Abaya Chamo lake basin is performed, using integrated multi-criteria decision analysis (MCDA), water and energy transfer between soil and plant and atmosphere under quasi-steady state (WetSpass) models. The outputs of the WetSpass model reveal a favorable structure of water balance in the basin studied, mainly using surface runoff. The simulated total flow and groundwater recharge are validated using river measurements and estimated baseflow at two gauging stations located in the study area, which yields a good agreement. The WetSpass model effectively integrates a water balance assessment in a geographical information system (GIS) environment. The WetSpass model is shown to be computationally reputable for such a remote complex setting as the African rift, with a correlation coefficient of 0.99 and 0.99 for total flow and baseflow at a significant level of p-value<0.05, respectively. The simulated annual water budget reveals that 77.22% of annual precipitation loses through evapotranspiration, of which 16.54% is lost via surface runoff while 6.24% is recharged to the groundwater. The calibrated groundwater recharge from the WetSpass model is then considered when determining the controlling factors of groundwater occurrence and formation, together with other multi-thematic layers such as lithology, geomorphology, lineament density and drainage density. The selected five thematic layers through MCDA are incorporated by employing the analytical hierarchy process (AHP) method to identify the relative dominance in groundwater potential zoning. The weighted factors in the AHP are procedurally aggregated, based on weighted linear combinations to provide the groundwater potential index. Based on the potential indexes, the area then is demarcated into low, moderate, and high groundwater potential zones (GWPZ). The identified GWPZs are finally examined using the existing groundwater inventory data (static water level and springs) in the region. About 70.7% of groundwater inventory points are coinciding with the delineated GWPZs. The weighting comparison shows that lithology, geomorphology, and groundwater recharge appear to be the dominant factors influence on the resources potential. The assessment of groundwater potential index values identify 45.88% as high, 39.38% moderate, and 14.73% as low groundwater potential zones. WetSpass model analysis is more preferable in the area like Gelana watershed when the topography is rugged, inaccessible and having limited gauging stations.  相似文献   

14.
黑河流域生态—水文观测试验与水—生态集成管理研究   总被引:2,自引:1,他引:2  
对黑河流域水—生态—经济系统研究的主要内容“流域生态—水文观测试验与流域水—生态集成管理”做了概要论述。认为流域水循环、生态水、集成水管理三大科学问题的解决必需加强该领域的研究;结合黑河流域的前期基础、研究现状和能力建设,提出了近期研究的4个领域:流域水循环、水平衡与可利用水资源;流域生态—水文过程与生态环境用水;人类活动驱动的流域水—生态系统演变;流域生态—水文野外平台与流域集成环境。对此进行了进一步的阐述,对该方面研究的方法论和技术难点亦做了简述。  相似文献   

15.
Along with the increase of population and extraordinary economic and social development, human appropriation of freshwater supply increases rapidly. Anthropogenic activities have become an important driving factor of the large-scale terrestrial water cycle. The hydrological effects of human water use have attracted growing attention. In this paper, we briefly reviewed the recent studies addressing the anthropogenic disturbance of the large-scale terrestrial water cycle. The review focused on the direct alteration of the water cycle for human needs, with special coverage for the primary aspects of human water use such as irrigation, domestic and industrial water use, reservoir regulation and groundwater mining. The state-of-the-art parameterization schemes of human water use for macroscale land surface hydrological modeling were introduced and the limitations of the schemes were discussed. Considering the impacts of human water use on the terrestrial water cycle is currently a challenge for macroscale land surface hydrological modeling, which hinders the use of the models in assessing water resources under changing environment. Further studies are needed to understand the interactions between human and water systems, to develop integrated assessment model of coupled human-water systems, and to assess regional and global water security.  相似文献   

16.
The effects of climate change and overexploitation are being strongly perceived in the studied area and the springs discharge is obviously affected. In this paper, Ras El Ain spring discharge and precipitation were analyzed by normalized methods on an yearly timescale. The deficit of Ras El Ain spring discharge due to overexploitation factors and drought effects was estimated. Cumulative drought analyses were carried out using SPI10 and SQI10. Finally, the decreasing trends of the spring discharge due to the deficiency in rainfall were analyzed. The main results reveal that the annual mean deficit of Ras El Ain spring discharge due to overpumping was between 32 and 45%, whereas, annual mean deficit related to drought was between 22 and 35% on average, during the last 30 years (post-1984). The moving averages of SPI and SQI delineate very well the drought periods during last three decades. The cumulative droughts using SPI10 and SQI10 reveal that wet period (pre-1984) with positive values was characterized by high precipitation and spring discharge. Overexploitation period (1984–1989) is distinguished by decreasing SQI10 values whereas, SPI10 is almost stable. The response of the karst system to the precipitation signal has been changed, during the drought period (1990–2000), and the spring behaviour has been modified due to the first overexploitation period. Finally, overexploitation period (2001–2008) is related to the second phase of groundwater intensive pumping for irrigation purposes. Consequently, this period is completely catastrophic causing the drying up of the spring. The decreasing trends analyzed using DPI and DQI showed annual decreasing rates relative to the mean values of ?0.268% and ?0.105%, respectively. Thus, the results of theoretical model reveal that precipitation will decrease by about \(\hbox {DPI} = -20.7\)% and the discharge will decline by about ?9.2% by 2050. Consequently, the declining discharge due to climatic variation under natural conditions as pre-1984 was about 10%. Whereas, the catastrophic drying up of the spring was probably the consequence of the anthropogenic effects. Accordingly, it requires the development of sustainable water resources management program to reduce long-term drought risks, restore the groundwater reservoir and minimize the overexploitation effects on spring discharge.  相似文献   

17.
Groundwater is an important component of the global freshwater supply and is affected by climate. There is a strong need to understand and evaluate the impacts of climate change over the long term, in order to better plan and manage precious groundwater resources. Turkey, located in Mediterranean basin, is threatened by climate change. The purpose of this study was, through a quantitative overview, to determine the impacts of climate change on the groundwater recharge rates in Küçük Menderes River Basin in western Turkey. According to the data of Ödemi? and Selçuk meteorological stations located in the basin, there is a significantly decreasing trend in precipitation combined with increasing trends in temperature and evaporation observed in 1964–2011. The calculations of groundwater recharge with hydrologic budget method for the observation period showed an approximately 15% decline in groundwater recharge in the basin. Thus, the combined impacts of climate change and excessive groundwater pumping, due to increasing water demand, have caused a significant decline in groundwater levels. Consequently, the proper management of the groundwater resources threatened by climate change requires effective governance to both mitigate the adverse impacts of climate change and facilitate the adaptation of sustainable integrated water management policies.  相似文献   

18.
Relative recharge areas are evaluated using geochemical and isotopic tools, and inverse modeling. Geochemistry and water quality in springs discharging from a volcanic aquifer system in Guatemala are related to relative recharge area elevations and land use. Plagioclase feldspar and olivine react with volcanically derived CO2 to produce Ca-montmorillonite, chalcedony and goethite in the groundwater. Alkalinity, Mg, Ca, Na, and SiO2(aq) are produced, along with minor increases in Cl and SO4 concentrations. Variations in groundwater δD and δ18O values are attributed to recharge elevation and used in concert with geochemical evolution to distinguish local, intermediate, and regional flow systems. Springs with geochemically inferred short flow paths provided useful proxies to estimate an isotopic gradient for precipitation (??.67 δ18O/100?m). No correlation between spring discharge and relative flow-path length or interpreted recharge elevation was observed. The conceptual model was consistent with evidence of anthropogenic impacts (sewage and manure) in springs recharged in the lower watershed where livestock and humans reside. Spring sampling is a low-budget approach that can be used to develop a useful conceptual model of the relative scale of groundwater flow (and appropriate watershed protection areas), particularly in volcanic terrain where wells and boreholes are scarce.  相似文献   

19.
敦煌西土沟沙漠洪水资源开发利用模式及成效分析   总被引:1,自引:0,他引:1  
收集研究区域内雨量站历年降水量资料,水文站历年径流系列资料以及历年最大洪峰流量、洪水总量成果资料及西土沟敦煌沙漠水文实验研究站实测水文资料,调查该区域内洪水沟道的历史最大洪水。用水文学原理和方法对洪峰流量和洪水总量变化规律进行统计分析,结合敦煌西土沟流域灾害综合治理工程实施情况估算区域水资源可利用量,提出沙漠洪水资源开发利用新模式。结果表明:西土沟流域洪水灾害综合治理工程的实施探索出导流+分洪+工程防护的洪水资源开发利用模式、拦蓄洪水产生地下径流利用模式和沙漠冷水虹鳟鱼养殖到葡萄种植的区域水资源重复利用模式;有效遏制了研究区内沙漠的进一步推进并可显著增加流域内可利用水资源量,实现了区域生态治理与经济发展的良性循环。  相似文献   

20.
Groundwater management is of fundamental importance to meet the rapidly expanding urban, industrial and agricultural water requirements in semi-arid areas. To assess the current rate of groundwater withdrawal and possibility of recharge of potential aquifer in the semi-arid regions is essential for water management. The present study aimed to identify potential area for groundwater recharge structure in the Gwalior area based on land use, rainfall variation, hydrological component and statistical analysis. In this work, a stream survival approach was used for the assessment of water channel by using triangulated network and regression analysis to find out the correlation of individual component with reference to water management. Land use/land cover (LULC) map prepared from multispectral satellite images of the study area and used to validate the hydrological component and the results observed through the regression model shows good correlation. Therefore, immediate and effective water management schemes are required for sustainable water resource development and management in the area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号