首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Source, type, and quantity of various components of groundwater, as well as their spatial and temporal variations were determined by different hydrochemical methods in the alluvial aquifer of the upper Rhone River valley, Bois de Finges, Wallis Canton, Switzerland. The methods used are hydrochemical modeling, stable-isotope analysis, and chemical analysis of surface water and groundwater. Sampling during high- and low-water periods determined the spatial distribution of the water chemistry, whereas monthly sampling over three years provided a basis for understanding seasonal variability. The physico-chemical parameters of the groundwater have spatial and seasonal variations. The groundwater chemical composition of the Rhone alluvial aquifer indicates a mixing of weakly mineralized Rhone River water and SO4-rich water entering from the south side of the valley. Temporal changes in groundwater chemistry and in groundwater levels reflect the seasonal variations of the different contributors to groundwater recharge. The Rhone River recharges the alluvial aquifer only during the summer high-water period. Electronic Publication  相似文献   

2.
地下水对气候变化的敏感性研究进展   总被引:4,自引:0,他引:4  
地下水是人类生活、生产、生态用水的重要水源。地下水含水层的补给及其开发利用是水资源可持续开发利用与管理的重要组成部分。浅层地下水的补给主要受制于气候变异与变化。气候变化影响研究从地表水扩展至地下水不仅有利于正确地评估可利用的淡水资源,而且对于改进气候模型,更完整的描写水文循环有重要的科学意义。自21世纪以来,欧美等国开始研究不同时空尺度的地下水补给的定量估算方法,并在气候变化对水资源影响的研究中,考虑了气候变化与人类活动对地下水补给的影响。目前在我国,无论对地下水观测资料的诊断分析,或对地下水补给模型的研制都尚属空白或起步阶段。本文对当前国际上研究地下水补给以及地下水对气候变化敏感性的研究现状予以综述,目的是为了推动我国关于气候变化对水资源影响的深入研究。  相似文献   

3.
Regional climate models project significant changes in temperature and rainfall over the Greater Mekong Subregion over the twenty-first century. The potential impacts of climate change on areas affected by waterlogging and shallow saline groundwater in Northeast Thailand was investigated using the variable density groundwater model SEAWAT supported with recharge estimates derived from the hydrologic model HELP3. The focal area is the 154 km2 Huai Kamrian subwatershed. Changes in groundwater salinity and waterlogging areas at the middle and end of this century were predicted using the calibrated model. These predictions used the dynamically downscaled PRECIS regional climate change scenarios generated by ECHAM4 GCM A2 and B2 scenarios. Recharge rates are predicted to increase as a result of the higher intensity of rainfall. Shallow watertable areas are projected to increase by approximately 23 % from existing conditions during the middle of the century and up to 25 % by the end of this century. Although the precise rate and timing of climate change impacts are uncertain, all of the scenarios clearly point towards an extension in the area of waterlogging and area affected by shallow saline groundwater areas. Given that areas affected by shallow saline watertables are predicted to expand for both climate change scenarios as well as for the base case, it is concluded that climate change will have a significant impact on the area affected by salinity and waterlogging areas for both climate change scenarios. Evaluation of management options that explore the adaptation to saline environments and to means to reduce salt affected areas are required.  相似文献   

4.
The coastal semi-arid region of south Texas is known for its erratic climate that fluctuates between long periods of drought and extremely wet hurricane-induced storms. The standard precipitation index (SPI) and the standard precipitation evaporation index (SPEI) were used in this study in conjunction with precipitation and temperature projections from two general circulation models (GCMs), namely, the National Center for Atmospheric Research (NCAR) Parallel Climate Model (PCM) and the UK Meteorological Office Hadley Centre model (HCM) for two emission scenarios—A1B (~720 ppm CO2 stabilization) and B1 (~550 ppm CO2 stabilization) at six major urban centers of south Texas spanning five climatic zones. Both the models predict a progressively increasing aridity of the region throughout the twenty-first century. The SPI exhibits greater variability in the available moisture during the first half of the twenty-first century while the SPEI depicts a downward trend caused by increasing temperature. However, droughts during the latter half of the twenty-first century are due to both increasing temperature and decreasing precipitation. These results suggest that droughts during the first half of the twenty-first century are likely caused by meteorological demands (temperature or potential evapotranspiration (PET) controlled), while those during the latter half are likely to be more critical as they curtail moisture supply to the region over large periods of time (precipitation and PET controlled). The drought effects are more pronounced for the A1B scenario than the B1 scenario and while spatial patterns are not always consistent, the effects are generally felt more strongly in the hinterlands than in coastal areas. The projected increased warming of the region, along with potential decreases in precipitation, points toward increased reliance on groundwater resources which are noted to be a buffer against droughts. However, there is a need for human adaptation to climate change, a greater commitment to groundwater conservation and development of large-scale regional aquifer storage and recovery (ASR) facilities that are capable of long-term storage in order to sustain groundwater availability. Groundwater resource managers and planners must confront the possibility of an increased potential for prolonged (multi-year) droughts and develop innovative strategies that effectively integrate water augmentation technologies and conservation-oriented policies to ensure the sustainability of aquifer resources well into the next century.  相似文献   

5.
Predicted changes in climate will lead to seawater intrusion in the Querença-Silves (QS) coastal aquifer (south Portugal) during the coming century if the current water-resource-management strategy is maintained. As for much of the Mediterranean, average rainfall is predicted to decrease along with increasing seasonal and inter-annual variability and there is a need to understand how these changes will affect the sustainable use of groundwater resources. A density-coupled flow and transport model of the QS was used to simulate an ensemble of climate, water-use and adaptation scenarios from 2010 to 2099 taking into account intra- and inter-annual variability in recharge and groundwater use. By considering several climate models, bias correction and recharge calculation methods, a degree of uncertainty was included. Changes in rainfall regimes will have an immediate effect on groundwater discharge; however, the effect on saltwater intrusion is attenuated by the freshwater–saltwater interfaces’ comparatively slow rate of movement. Comparing the effects of adaptation measures demonstrates that the extent of intrusion in the QS is controlled by the long-term water budget, as the effectiveness of both demand and supply oriented measures is proportional to the change in water budget, and that to maintain the current position, average groundwater discharge should be in the order of 50 × 106 m3 yr?1.  相似文献   

6.
The water demand in arid regions is commonly covered by groundwater resources that date back to more humid periods of the Pleistocene and Holocene. Within the investigated arid part of SE Saudi-Arabia information about climate, groundwater levels, and pumping rates are only available for regions where groundwater extractions occur at present-day. For the prediction of the impact of long-term climate changes on groundwater resources an understanding of the hydrogeological and hydrological past and the development of the aquifers is necessary. Therefore, all available information about hydrology and hydrogeology for the past 10,000 years BP were collected and compiled to a conceptual model of the aquifer development on the Arabian Peninsula since the last Ice-Age. The climatic history was displayed by changes in precipitation, temperature and recharge during the mid-S and late Holocene. The hydrogeological development is described by groundwater ages, sea level fluctuations, movement of the coastline, and the development of sabkhas. The most sensitive parameter to describe the development of aquifer system is recharge. Present-day recharge was calculated with the hydrological model system HEC-HMS accounting for current precipitation, temperature, wind, soil types, and geomorphology. With respect to changes in precipitation and temperature over the past 10,000 years the temporal and spatial variability of groundwater recharge was calculated using empirical equations valid for semi-arid and arid settings. Further inflow into the groundwater system results from surface water infiltration in wadi beds, while natural outflow from the groundwater system occurs by discharge to the Gulf, evaporation from sabkhas, and spring discharge. Backward predictions can be verified by sedimentological observations of palaeo-river systems and lakes indicating that groundwater levels reached temporarily the surface under wetter climate conditions and 14C groundwater ages displaying groundwater residence times.  相似文献   

7.
主要从水文地球化学的角度,以鄂尔多斯盆地白于山以南地区白垩系地下水的水化学水平分带和地表水基流水化学特征为主要依据,结合地质构造格局及岩相古地理条件,分析研究了该区白垩系地下水的补、径、排条件。认为该区白垩系地下水水化学场存在一个由东、北、西南向中部的水平分带,愈向盆地中部水质愈复杂、TDS愈高。马莲河基流水质的沿途变化规律反映出其接受东西两侧地下水的补给。说明鄂尔多斯盆地南区的东部地区和西南部地区为地下水补给区,而中心地带为地下水排泄区,最终经马莲河排出区外。天环向斜轴部和马莲河谷是南区汇集东西两侧地下水的排泄通道。  相似文献   

8.
李潇  漆继红  许模 《中国岩溶》2020,39(3):375-383
西南地区典型紧窄褶皱控制下的浅层岩溶水,具有循环交替快、水量丰富等特点。精细刻画小尺度浅层岩溶水系统模式类型及其特征,对于探讨岩溶水资源量以及中—浅埋隧道涌水条件具有重要意义。本文以西南典型紧窄褶皱——重庆铜锣山背斜和遵义铜锣井背斜为研究对象,细致地梳理岩溶水系统特征的控制性因素,提出地层空间结构的细微差异导致含水介质及地下水补给、径流、排泄特征等不尽相同。据此,将研究区浅层岩溶水系统细分为四类小尺度模式,并基于各模式差异分析中—浅埋隧道涌水条件。研究认为:穿越不同小尺度岩溶水系统的隧址段,其涌水条件具有一定差异;间互式地层空间结构导致小尺度浅层岩溶水系统之间因地表水体的转换而存在联系,计算涌水量时需考虑相邻可溶岩地层外源补给,而包裹式结构则造成各系统相对独立,计算时需考虑相邻非可溶岩地层外源补给;深切河谷排泄边界,不可忽略降雨对隙流散排型模式的补给,计算涌水量时,降雨量参数应小于年均降雨量,但若边界为浅切河谷,降雨量参数可直接选用年均降雨量。   相似文献   

9.
 A lumped-parameter model of groundwater balance is proposed that permits an estimate of discharge variability in comparison with the variability of recharge, by taking into account the influence of aquifer parameters. Recharge–discharge relationships are analysed with the model for cases of deterministic and stochastic recharge time-series variations. The model is applied to study the temporal variability of groundwater discharge in a river valley in the territory of Tajikistan, an independent republic in Central Asia. Received, April 1996 Revised, August 1997 Accepted, March 1998  相似文献   

10.
Groundwater under stress: the importance of management   总被引:2,自引:2,他引:0  
The most significant water problem facing the United States and the world is the scarcity of water. Scarcity is expected to intensify during the twenty-first century due to global population growth, economic growth and the need to protect environmental assets. In many regions, climate change may cause scarcity to become more acute. Groundwater has the capacity to buffer extreme hydrologic events because recharge is not directly tied to precipitation and run-off events. Groundwater storage offers many opportunities to increase storage and enhance the general water supply. The value of groundwater will increase as scarcity intensifies and effective groundwater management will be required if groundwater values are to be reaped. Effective groundwater management will require attention to certain well-established economic principles. Persistent overdraft is always self terminating. Individualistically competitive modes of extraction are inefficient. It is virtually always cheaper to prevent pollution in the first place than to remediate it. Groundwater management schemes appear to be most effective when they are locally developed and managed. Such schemes can regulate extractions and/or recharge either directly or indirectly. Evidence from the United States suggests that direct regulations can be made to work if they focus on recharge and developing supplementary sources of water. Evidence from South Asia suggests that regulation of extractions and provision of recharge water is most effective when indirect measures are used in which groundwater and ancillary variables such as electricity are co-managed. This evidence suggests that as supplementary sources of supply become scarce, innovative and indirect groundwater management schemes are likely to become more common.  相似文献   

11.

Three-dimensional transient groundwater flow and saltwater transport models were constructed to assess the impacts of groundwater abstraction and climate change on the coastal aquifer of Tra Vinh province (Vietnam). The groundwater flow model was calibrated with groundwater levels (2007–2016) measured in 13 observation wells. The saltwater transport model was compared with the spatial distribution of total dissolved solids. Model performance was evaluated by comparing observed and simulated groundwater levels. The projected rainfalls from two climate models (MIROC5 and CRISO Mk3.6) were subsequently used to simulate possible effects of climate changes. The simulation revealed that groundwater is currently depleted due to overabstraction. Towards the future, groundwater storage will continue to be depleted with the current abstraction regime, further worsening in the north due to saltwater intrusion from inland trapped saltwater and on the coast due to seawater intrusion. Notwithstanding, the impact from climate change may be limited, with the computed groundwater recharge from the two climate models revealing no significant change from 2017 to 2066. Three feasible mitigation scenarios were analyzed: (1) reduced groundwater abstraction by 25, 35 and 50%, (2) increased groundwater recharge by 1.5 and 2 times in the sand dunes through managed aquifer recharge (reduced abstraction will stop groundwater-level decline, while increased recharge will restore depleted storage), and (3) combining 50% abstraction reduction and 1.5 times recharge increase in sand dune areas. The results show that combined interventions of reducing abstraction and increasing recharge are necessary for sustainable groundwater resources development in Tra Vinh province.

  相似文献   

12.
Groundwater pumping and changes in climate-induced recharge lead to lower groundwater levels and significant changes in the water balance of a catchment. Water previously discharged as evapotranspiration can become a source of pumpage. Neglecting this effect leads to overestimated streamflow depletion. A small river basin (Sudogda River Basin, Russia) with a boreal climate and with long-term records of groundwater head and streamflow rate (showing that the measured stream depletion is less than the pumping rate) was investigated. The role of evapotranspiration in the water balance was analyzed by a hydrogeological model using MODFLOW-2005 with the STR package; the annual variation in recharge was obtained with the codes Surfbal and HYDRUS. The Sudogda River Basin was classified according to landscape and unsaturated-zone texture classes, and for each classified zone, the unsaturated-zone flow simulation was used to calculate the annual recharge dynamics for the observation period. Calibration of the regional flow model was conducted using flow and head observations jointly for two steady-state flow conditions—natural (before pumping started) and stressed (pumping). The simulations showed that pumped water originates from three sources: intercepted baseflow (75% of the annual total pumping rate), the capture of groundwater evapotranspiration discharge plus increased groundwater recharge (17%), and induced stream infiltration (8%). Additionally, multi-year precipitation records were analyzed to detect any long-term recharge and pumping water-budget changes. The results showed that increasing groundwater recharge by natural precipitation leads to (1) decreased intercepted baseflow and induced streamflow infiltration and (2) increased intercepted evapotranspiration discharge, thereby reducing stream depletion.  相似文献   

13.
Intense rainstorms in 2008 resulted in wide-spread flooding across the Midwestern United States. In Wisconsin, floodwater inundated a 17.7-km2 area on an outwash terrace, 7.5 m above the mapped floodplain of the Wisconsin River. Surface-water runoff initiated the flooding, but results of field investigation and modeling indicate that rapid water-table rise and groundwater inundation caused the long-lasting flood far from the riparian floodplain. Local geologic and geomorphic features of the landscape lead to spatial variability in runoff and recharge to the unconfined sand and gravel aquifer, and regional hydrogeologic conditions increased groundwater discharge from the deep bedrock aquifer to the river valley. Although reports of extreme cases of groundwater flooding are uncommon, this occurrence had significant economic and social costs. Local, state and federal officials required hydrologic analysis to support emergency management and long-term flood mitigation strategies. Rapid, sustained water-table rise and the resultant flooding of this high-permeability aquifer illustrate a significant aspect of groundwater system response to an extreme precipitation event. Comprehensive land-use planning should encompass the potential for water-table rise and groundwater flooding in a variety of hydrogeologic settings, as future changes in climate may impact recharge and the water-table elevation.  相似文献   

14.
泉域地下水数值模拟及泉流量动态变化预测   总被引:2,自引:2,他引:2  
本文对位于岩溶地区的小南海泉泉域地下水进行了数值模拟和水平衡分析,全面分析了降雨、河、渠、库地表水系入渗对地下水动态变化的影响,模拟了泉流量动态变化与区域地下水关系。在此基础上,分析了不同气候条件和开采方案对泉流量的影响。模型计算结果表明,小南海泉流量多年平均相对变化率与降雨量多年平均变化率基本一致,减少泉域地下水开采量,特别是矿坑排水可有效地增加枯期泉流量。  相似文献   

15.
《China Geology》2021,4(3):509-526
The fresh groundwater in the Loess Plateau serves as a major source of water required for the production and livelihood of local residents and is greatly significant for regional economic and social development and ecological protection. This paper analyzes the hydrogeological conditions and groundwater characteristics in the Loess Plateau, expatiates on the types and distribution characteristics of the fresh groundwater in the plateau, and analyzes the influencing factors and mechanisms in the formation of the fresh groundwater in the plateau as a priority. Based on this, it summarizes the impacts of human activities and climatic change on the regional fresh groundwater. The groundwater in Loess Plateau features uneven temporal-spatial distribution, with the distribution space of the fresh groundwater closely relating to precipitation. The groundwater shows a distinct zoning pattern of hydrochemical types. It is fresh water in shallow parts and is salt water in deep parts overall, while the fresh water of exploration value is distributed only in a small range. The storage space and migration pathways of fresh groundwater in the loess area feature dual voids, vertical multilayers, variable structure, poor renewability, complex recharge processes, and distinct spatial differences. In general, the total dissolved solids (TDS) of the same type of groundwater tends to gradually increase from recharge areas to discharge areas. Conditions favorable for the formation of fresh groundwater in loess tablelands include the low content of soluble salts in strata, weak evaporation, and special hydrodynamic conditions. Owing to climate change and human activities, the resource quantity of regional fresh water tends to decrease overall, and the groundwater dynamic field and the recharge-discharge relationships between groundwater and surface water have changed in local areas. Human activities have a small impact on the water quality but slightly affect the water quantity of the groundwater in loess.© 2021 China Geology Editorial Office.  相似文献   

16.
Seven large catchments, cleared progressively from 1912 to 1985, were studied to determine the groundwater conditions for salinization of both the pristine and disturbed environments. Detailed drilling was conducted to provide information on the nature and didtribution of the physical and chemical properties of these groundwater systems. First-order estimates of recharge and discharge rates were derived from the groundwater balance, chloride mass balance, and specific yield techniques. Recharge rates under pristine conditions estimated from the groundwater balance method were of the order of 0.02–0.14 mm/yr and 0.05–3.0 mm/yr using the chloride method. Recharge was greatest in the deep sandplain and arkosic-outcrop soil associations and least in the heavy textured midslope and valley soils. Higher rates were obtained from the specific yield technique, where recharge under current agricultural conditions was considered to be between 6 and 10 mm/yr. Recharge rates of up to 30 mm/yr were noted when flooding of the sandy-textured, valley floor soils occured. Clearing of the native vegatation for agriculture is estimated to have increased groundwater recharge by between one and three orders of magnitude. Equilibrium groundwater balance estimates suggest that discharge rates have only increased ten-fold. As a result of the changes to the water balance, 5–30% of particular catchments may need to become discharge areas to balance increased recharge of 6–10 mm/yr. Native woodlands and halophyte communities are considered to have played an important role in providing a complex discharge mechanism before clearing. The management of catchments to contain soil salinity should include improved recharge control systems using specialized crop rotations. To date, however, little evidence of the success of this method exists. Therefore, discharge enhancemnet should also become a part of catchment management systems. Discharge can be manipulated by planting phreatophytic vegetation and by pumping groundwater from basement aquifers to improve agricultural water supplies. The results presented in this paper suggest that discharge enhancement has an important role to play and, as a part of integrated catchment water management, has the potential to control and eventually reduce dryland salinity  相似文献   

17.
The investigation involves a temporal and spatial analysis to characterize recharge in the Aguascalientes valley in central Mexico. The results are based on a two-part methodological strategy using a geospatial and numerical analysis. Results from the geospatial analysis are based on the analytical hierarchical process (AHP) method, which involves developing a zoning map that qualifies the conditions for groundwater recharge in the valley. In addition, one-dimensional numerical modeling based on the van Genuchten equation was applied for various soil column configurations to estimate the transit time of recharge through the vadose zone. The analysis was performed over a 20-year period from 1995 to 2015. The results of the geospatial analysis indicate that the optimal area for groundwater recharge is the lower zone of the valley, particularly the portion influenced by surface discontinuities. The shortest estimated period of recharge for water to pass through the vadose zone is approximately 4.25 years.  相似文献   

18.
为了推动我国关于气候变化对地下水影响的深入研究,列举了关于气候变化对地下水影响的研究方法,包括包气带和含水层环境示踪技术,研究地下水及其沉积物的物理化学指标,地表水-地下水耦合数值模拟技术等;综述了我国华北地区(北京市、滹沱河流域、海河流域、滦河下游地区、黄淮海平原、临汾盆地、鄂尔多斯盆地、黄河下游地区、大同盆地、北方岩溶泉域)、西北地区(塔里木下游地区、三工河流域、阿克苏河绿洲、黑河流域、石羊河流域、河西走廊、巴丹吉林沙漠)和东北地区(吉林中部平原地区、三江平原)等典型区域气候变化(气温、降水、蒸发)对地下水水位、补给量与排泄量(泉流量、开采量)、水化学成分、水温、同位素组成的影响;提出了气候变化条件下合理利用和管理地下水资源的若干对策,包括减缓温室效应引起的全球气候变暖对未来地下水资源产生不利影响,定量化研究气候变化和地下水之间的相互关系,应用高新技术开展地下水资源脆弱性的研究,充分利用灌区地下含水层的调蓄作用,通过地表水与地下水的联合利用控制水盐平衡、涵养地下水源,节约农业、工业和生活用水等。  相似文献   

19.
Groundwater of the Tafilalet oasis system (TOS) is an important water resource in the lower Ziz and Rheris valleys of arid southeastern Morocco. The unconfined aquifer is exploited for domestic consumption and irrigation. A groundwater flow model was developed to assess the impact of climatic variations and development, including the construction of hydraulic structures, on the hydrodynamic behavior of the aquifer. Numerical simulations were performed by implementing a spatial database within a geographic information system and using the Arc Hydro Groundwater tool with the code MODFLOW-2000. The results of steady-state and transient simulations between 1960 and 2011 show that the water table is at equilibrium between recharge, which is mainly by surface-water infiltration, and discharge by evapotranspiration. After the commissioning of the Hassan Addakhil dam in 1971, hydraulic heads became more sensitive to annual variations than to seasonal variations. Heads are also influenced by recurrent droughts and the highest water-level changes are recorded in irrigated areas. The model provides a way of managing groundwater resources in the TOS. It can be used as a tool to predict the impact of different management plans for the protection of groundwater against overexploitation and deterioration of water quality.  相似文献   

20.
A sound understanding of groundwater recharged from various sources occurring at different time scales is crucial for water management in arid and semi-arid river basins. Groundwater recharge sources and their geochemical evolution are investigated for the Heihe River Basin(HRB) in northwest China on the basis of a comprehensive compilation of geochemical and isotopic data. Geochemical massbalance modeling indicates that mountain-block recharge accounts for a small fraction(generally less than 5%) of the shallow and deep groundwater sustaining the oasis, whereas infiltration of rivers and irrigation water contribute most of the groundwater recharge. Dedolomitization is the primary process responsible for the changes in groundwater chemical and carbon isotope compositions from the piedmont to the groundwater discharge zone, where the dedolomitization is very likely enhanced by modern agricultural activities affecting the shallow groundwater quality. Analysis of radioactive isotopes suggests that these primary recharge sources occur at two different time scales. Radiocarbon-derived groundwater age profiles indicate a recharge rate of approximately 12 mm/year, which probably occurred during 2000–7000 years B.P., corresponding to the mid-Holocene humid period. The recharge of young groundwater on the tritium-dated time scale is much higher, about 360 mm/year in the oasis region. Infiltration from irrigation canals and irrigation return flow are the primary contributors to the increased young groundwater recharge. This study suggests that groundwater chemistry in the HRB has been influenced by the complex interaction between natural and human-induced geochemical processes and that anthropogenic effects have played a more significant role in terms of both groundwater quantity and quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号