首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
This article presents a positional quality acceptance control method for 2D and 3D line strings based on a statistical hypothesis test. Two statistical models are applied together: a Binomial Model is applied over a Base Model. By means of the Base Model the method can be applied to any parametric or non‐parametric error model. The Base Model represents the hypothesis about the error behavior. The Binomial Model is fixed and consists of counting the number F of fail events in a sample of a determined size. The π parameter of the Binomial Model is derived from the Base Model by means of a desired tolerance. By comparing the probabilities associated to F and π a statistical acceptance/rejection decision is achieved. This method allows us to know and control the user's and producer's risk of acceptance/rejection. An example using a 2D line string data set from a commercial product is presented. The extension of the method to the 3D line string case is also presented. In order to facilitate the application of the method, some tables linking π with F and the control sample sizes are presented.  相似文献   

3.
Landslide databases and input parameters used for modeling landslide hazard often contain imprecisions and uncertainties inherent in the decision‐making process. Dealing with imprecision and uncertainty requires techniques that go beyond classical logic. In this paper, methods of fuzzy k‐means classification were used to assign digital terrain attributes to continuous landform classes whereas the Dempster‐Shafer theory of evidence was used to represent and manage imprecise information and to deal with uncertainties. The paper introduces the integration of the fuzzy k‐means classification method and the Dempster‐Shafer theory of evidence to model landslide hazard in roaded and roadless areas illustrated through a case study in the Clearwater National Forest in central Idaho, USA. Sample probabilistic maps of landslide hazard potential and uncertainties are presented. The probabilistic maps are intended to help decision‐making in effective forest management and planning.  相似文献   

4.
This article presents a spatiotemporal model for scheduling applications that is driven by the events and activities individuals plan and manage every day. The framework is presented using an ontological approach where ontologies at different levels of generalization, e.g. domain, application, and task ontologies, are linked together through participation and inheritance relationships. S_Events are entered into a schedule as a new S_Entry, or modifications can be made to existing entries including reschedule, postpone, change location, and delete as schedules vary over time. These schedule updates are formalized through changes to planned start and end times and the planned locations of S_Entries are expressed using SWRL, a semantic web rule language. SWRL is also used for reasoning about schedule changes and the space‐time conflicts that can occur. The sequence of entries in a schedule gives rise to S_trajectories representing the locations that individuals plan to visit in order to carry out their schedule, adding an additional spatial element to the framework. A prototype Geoscheduler application maps S_Entries against a timeline, offering a spatiotemporal visualization of scheduled activities showing the evolution of a schedule over space‐time and affecting spatiotemporal accessibility for individuals.  相似文献   

5.
This article presents two decision support plug‐ins in free GIS software: ArcGIS Explorer Desktop. The ubiquitous WebGIS Analysis Toolkit for Extensive Resources (uWATER) focuses on providing GIS analysis functions: spatial and attribute queries in the public services tool for users with limited access to commercial GIS software. The interface of uWATER is general enough to support decision‐making in numerous management issues in natural resources, economics and agriculture. The uWATER‐Pumping Assessment (uWATER‐PA) toolkit, on the other hand, is an extended package targeting the specific environmental issue of groundwater pumping impacts. The uWATER‐PA package is an excellent alternative to evaluating complex groundwater pumping assessment issues before investing significant time, labor, and funds in monitoring and detailed scientific study. It incorporates simulation of the physics of groundwater flow and user interaction into GIS software. A graphical user interface makes both data entry and interpretation of results intuitive to non‐technical individuals. Results are presented as colored drawdown maps and can be saved in GIS format for future dissemination. The impact of drawdown on existing wells can be characterized and mapped, through the use of uWATER's spatial query capabilities and the drawdown maps generated by uWATER‐PA.  相似文献   

6.
Finding optimal paths through raster databases is limited by the very nature of the raster data itself. This limitation restricts the possible directions of movement through the database from the infinite possibilities found in the real world to a finite number of possibilities defined by the cell‐to‐cell movement that characterizes raster databases. A Triangulated Irregular Network (TIN)‐based alternative optimization model that allows unlimited possible directions of movement is presented. While not without its own limitations, this new approach offers a viable alternative to raster‐based optimal routefinding.  相似文献   

7.
8.
9.
Digital processing of Landsat images has been considered the most appropriate interpretation method for vegetation mapping. However, digital processing presents several difficulties: (i) it demands significant inversions, with respect both the images and the equipment; (ii) it presents problems to discriminate heterogeneous categories, and (iii) it requires much more training effort.

Visual analysis, on the other hand, is less demanding both in economic investments and training. Therefore, it is a fruitful alternative to digital mapping, especially when it is applied to small and medium scale inventories. A consistent methodology for visual interpretation of vegetation categories is presented in this paper. Benefits and disadvantages of this procedure are analyzed, as well as keys‐for visual identification of land cover categories. A TM Quarter of scene on Central Spain is presented as an example of this method. Two false‐color images from different seasons were interpreted at 1: 250,000 scale. Fourteen land cover categories were identified, yielding 83.03% of final accuracy.  相似文献   

10.
The present work aims at introducing a basic theory, implementing methodology and algorithms for 3‐D modeling, and visualizing a geologic model using the Open Source Free GIS GRASS environment. A 3‐D geologic model is constructed from the boundary surfaces of geologic units and the logical model of geologic structure. The algorithms for construction and visualization of the proposed model are based on the geologic function g . The geologic function g assigns a unique geologic unit to every point in the objective 3‐D space. The boundary surface that divides the objective space into two subspaces is estimated using data from field survey. The logical model showing the hierarchical relationship between these boundary surfaces and geologic units can be automatically generated based on the stratigraphic sequence and knowledge of geologic structures. Based on these algorithms, a 3‐D geologic model can be constructed virtually in the GRASS GIS. Applying this model, various geologic surfaces and section models can be visualized in the GRASS GIS environment. “Nviz” was used for dynamic visualization of geologic cross‐sections and generation of animated image sequences. Further, the described algorithms and methods are applied and an online 3‐D geologic modeling system is developed.  相似文献   

11.
A robust method for spatial prediction of landslide hazard in roaded and roadless areas of forest is described. The method is based on assigning digital terrain attributes into continuous landform classes. The continuous landform classification is achieved by applying a fuzzy k-means approach to a watershed scale area before the classification is extrapolated to a broader region. The extrapolated fuzzy landform classes and datasets of road-related and non road-related landslides are then combined in a geographic information system (GIS) for the exploration of predictive correlations and model development. In particular, a Bayesian probabilistic modeling approach is illustrated using a case study of the Clearwater National Forest (CNF) in central Idaho, which experienced significant and widespread landslide events in recent years. The computed landslide hazard potential is presented on probabilistic maps for roaded and roadless areas. The maps can be used as a decision support tool in forest planning involving the maintenance, obliteration or development of new forest roads in steep mountainous terrain.  相似文献   

12.
A comparison of different mass elements for use in gravity gradiometry   总被引:6,自引:3,他引:3  
Topographic and isostatic mass anomalies affect the external gravity field of the Earth. Therefore, these effects also exist in the gravity gradients observed, e.g., by the satellite gravity gradiometry mission GOCE (Gravity and Steady-State Ocean Circulation Experiment). The downward continuation of the gravitational signals is rather difficult because of the high-frequency behaviour of the combined topographic and isostatic effects. Thus, it is preferable to smooth the gravity field by some topographic-isostatic reduction. In this paper the focus is on the modelling of masses in the space domain, which can be subdivided into different mass elements and evaluated with analytical, semi-analytical and numerical methods. Five alternative mass elements are reviewed and discussed: the tesseroid, the point mass, the prism, the mass layer and the mass line. The formulae for the potential, the attraction components and the Marussi tensor of second-order potential derivatives are provided. The formulae for different mass elements and computation methods are checked by assuming a synthetic topography of constant height over a spherical cap and the position of the computation point on the polar axis. For this special situation an exact analytical solution for the tesseroid exists and a comparison between the analytical solution of a spherical cap and the modelling of different mass elements is possible. A comparison of the computation times shows that modelling by tesseroids with different methods produces the most accurate results in an acceptable computation time. As a numerical example, the Marussi tensor of the topographic effect is computed globally using tesseroids calculated by Gauss–Legendre cubature (3D) on the basis of a digital height model. The order of magnitude in the radial-radial component is about  ± 8 E.U. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
14.
Advances in computer technologies have improved the quality of maps, making map comparison and analysis easier, but uncertainty and error still exist in GIS when overlaying geographic data with multiple or unknown confidence levels. The goals of this research are to review current geospatial uncertainty literature, present the Error‐Band Geometry Model (EBGM) for classifying the size and shape of spatial confidence intervals for vector GIS data, and to analyze the interpretability of the model by looking at how people use metadata to classify the uncertainty of geographic objects. The results from this research are positive and provide important insight into how people interpret maps and geographic data. They suggest that uncertainty is more easily interpreted for well defined point data and GPS data. When data is poorly defined, people are unable to determine an approach to model uncertainty and generate error‐bands. There is potential for using the EBGM to aid in the development of a GIS tool that can help individuals parameterize and model spatial confidence intervals, but more research is needed to refine the process by which people use the decision tree. A series of guiding questions or an “uncertainty wizard” tool that helps one select an uncertainty modeling approach might improve the way people apply this model to real‐world applications.  相似文献   

15.
Tangible User Interfaces (TUIs): A Novel Paradigm for GIS   总被引:2,自引:0,他引:2  
In recent years, an increasing amount of effort has gone into the design of GIS user interfaces. On the one hand, Graphical User Interfaces (GUIs) with a high degree of sophistication have replaced line‐driven commands of first‐generation GIS. On the other hand, a number of alternative approaches have been suggested, most notably those based on Virtual Environments (VEs). In this paper we discuss a novel interface for GIS, which springs from recent work carried out in the field of Tangible User Interfaces (TUIs). The philosophy behind TUIs is to allow people to interact with computers via familiar tangible objects, therefore taking advantage of the richness of the tactile world combined with the power of numerical simulations. Two experimental systems, named Illuminating Clay and SandScape, are described here and their applications to GIS are examined. Conclusions suggest that these interfaces might streamline the landscape design process and result in a more effective use of GIS, especially when distributed decision‐making and discussion with non‐experts are involved.  相似文献   

16.
Species distribution modeling (SDM) at fine spatial resolutions requires species occurrence data of high positional accuracy to achieve good model performance. However, wildlife occurrences recorded by patrols in ranger‐based monitoring programs suffer from positional errors, because recorded locations represent the positions of the ranger and differ from the actual occurrence locations of wildlife (hereinafter referred to as positional errors in patrol data). This study presented an evaluation of the impact of such positional errors in patrol data on SDM and developed a heuristic‐based approach to mitigating the positional errors. The approach derives probable wildlife occurrence locations from ranger positions, utilizing heuristics based on species preferred habitat and the observer's field of view. The evaluations were conducted through a case study of SDM using patrol records of the black‐and‐white snub‐nosed monkey (Rhinopithecus bieti) in Yunnan, China. The performance of the approach was also compared against alternative sampling methods. The results showed that the positional errors in R. bieti patrol data had an adverse effect on SDM performance, and that the proposed approach can effectively mitigate the impact of the positional errors to greatly improve SDM performance.  相似文献   

17.
Spatial autocorrelation analysis was used to identify spatial patterns of 1991 Gulf War (GW) troop locations in relationship to subsequent postwar diagnosis of chronic multisymptom illness (CMI). Criteria for the diagnosis of CMI include reporting from at least two of three symptom clusters: fatigue, musculoskeletal pain, and mood and cognition. A GIS‐based methodology was used to examine associations between potential hazardous exposures or deployment situations and postwar health outcomes using troop location data as a surrogate. GW veterans from the Devens Cohort Study were queried about specific symptoms approximately four years after the 1991 deployment to the Persian Gulf. Global and local statistics were calculated using the Moran's I and G statistics for six selected date periods chosen a priori to mark important GW‐service events or exposure scenarios among 173 members of the cohort. Global Moran's I statistics did not detect global spatial patterns at any of the six specified data periods, thus, indicating there is no significant spatial autocorrelation of locations over the entire Gulf region for veterans meeting criteria for severe postwar CMI. However, when applying local G* and local Moran's I statistics, significant spatial clusters (primarily in the coastal Dammam/Dharhan and the central inland areas of Saudi Arabia) were identified for several of the selected time periods. Further study using GIS techniques, coupled with epidemiological methods, to examine spatial and temporal patterns with larger sample sizes of GW veterans is warranted to ascertain if the observed spatial patterns can be confirmed.  相似文献   

18.
In recent years, the increase in the number of hurricanes and other costal hazards in the US pose a tremendous threat to the residents of coastal states. According to the National Hurricane Center, Florida is the most vulnerable coastal state to hurricanes. Mitigation policies have been formulated to reduce mortality and provide emergency services by evacuating people from the hazard zone. Many of these evacuees, particularly the elderly or lower income populations, rely on evacuation shelters for temporary housing. Because of the cost and limited use, evacuation shelters are almost exclusively dual use shelters where the primary purpose of the facility is for some other public function (e.g. school, hospital, etc.). In 2000, the estimated shortage of public shelter spaces in Florida was about 1.5 million. The purpose of this study was to rank the existing and candidate shelters (schools, colleges, churches and community centers) available in the state based on their site suitability. The research questions examined in this study include: (1) How many candidate shelters are located in physically suitable areas (e.g. not in a flood prone area, not near hazardous facilities, etc.)?; (2) How many existing shelters are located in physically un suitable areas, but in socially suitable areas (situated in areas with demand)?; (3) How many alternative existing and/or candidate shelters with high/very high physical suitability are located near physically un suitable existing shelters and thus, may be better choices for a shelter?; and (4) How many existing shelters located in physically un suitable areas are not near alternative existing and/or candidate shelters? A Geographic Information System‐based suitability model integrating Weighted Linear Combination (WLC) with a Pass/Fail screening technique was implemented for the 17 counties of Southern Florida. It was found that 48% of the existing shelters are located in physically unsuitable areas. Out of all the candidate shelters, 57% are located in physically unsuitable areas. For 15 of the existing shelters in unsuitable locations, no alternative candidate or existing shelter with medium to high physical suitability exists within 10 miles (16.1 km).  相似文献   

19.
Sustainable solar energy is of the interest for the city of San Francisco to meet their renewable energy initiative. Buildings in the downtown area are expected to have great photovoltaic (PV) potential for future solar panel installation. This study presents a comprehensive method for estimating geographical PV potential using remote sensed LiDAR data for buildings in downtown San Francisco. LiDAR derived DSMs and DTMs were able to generate high quality building footprints using the object‐oriented classification method. The GRASS built‐in solar irradiation model (r.sun) was used to simulate and compute PV yields. Monthly and yearly maps, as well as an exquisite 3D city building model, were created to visualize the variability of solar irradiation across the study area. Results showed that monthly sum of solar irradiation followed a one‐year cycle with the peak in July and troughs in January and December. The mean yearly sum of solar irradiation for the buildings in the study area was estimated to be 1675 kWh/m2. A multiple regression model was used to test the significance of building height, roof area and roof complexity against PV potential. Roof complexity was found to be the dominant determinant. Uncertainties of the research are mainly from the inherent r.sun limitations, boundary problems, and the LiDAR data accuracy in terms of both building footprint extraction and 3D modeling. Future work can focus on a more automated process and segment rooftops of buildings to achieve more accurate estimation of PV potential. The outcome of this research can assist decision makers in San Francisco to visualize building PV potential, and further select ideal places to install PV systems. The methodology presented and tested in this research can also be generalized to other cities in order to meet contemporary society's need for renewable energy.  相似文献   

20.
Estimates of solar radiation distribution in urban areas are often limited by the complexity of urban environments. These limitations arise from spatial structures such as buildings and trees that affect spatial and temporal distributions of solar fluxes over urban surfaces. The traditional solar radiation models implemented in GIS can address this problem only partially. They can be adequately used only for 2‐D surfaces such as terrain and rooftops. However, vertical surfaces, such as facades, require a 3‐D approach. This study presents a new 3‐D solar radiation model for urban areas represented by 3‐D city models. The v.sun module implemented in GRASS GIS is based on the existing solar radiation methodology used in the topographic r.sun model with a new capability to process 3‐D vector data representing complex urban environments. The calculation procedure is based on the combined vector‐voxel approach segmenting the 3‐D vector objects to smaller polygon elements according to a voxel data structure of the volume region. The shadowing effects of surrounding objects are considered using a unique shadowing algorithm. The proposed model has been applied to the sample urban area with results showing strong spatial and temporal variations of solar radiation flows over complex urban surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号