首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A new coherence optimization algorithm is proposed for polarimetric synthetic aperture radar (SAR) interferometry applications by using the polarization state conformation algorithm based on the polarimetric basis transformation along with the polarization signatures. Through application of this algorithm, the resemblance between the scattering mechanisms of the same target in the repeat-pass polarimetric SAR (POLSAR) images is maximized. Then, coherence maps between the repeat-pass POLSAR images, before and after application of the algorithm, are generated. The coherences obtained by this method represent the best coherences or optimized coherences between the POLSAR images. The effects predicted by the theory are confirmed by the POLSAR data acquired by the Jet Propulsion Laboratory Spaceborne Imaging Radar mission.  相似文献   

2.
This letter attempts to address the problem on the emergence of negative eigenvalues in the coherency matrix after the compressing of multilook polarimetric synthetic aperture radar (SAR) data. A new nine-parameter expression for the eigenvalue decomposition of the coherency matrix is introduced, and a new compression algorithm is proposed for multilook polarimetric data with this expression. By comparing it with the NASA/Jet Propulsion Laboratory's Airborne SAR compression algorithm, the authors analyze the new algorithm's compression accuracy, signal-to-noise ratio, and the ability to preserve the data's polarimetric property. For polarimetric SAR data, it is important to preserve the polarimetric property of a target. The proposed algorithm has this ability which is illustrated by the comparison of the polarimetric signatures. Finally, the effectiveness of the proposed methods is demonstrated by using the experimental SAR data.   相似文献   

3.
This paper presents a novel method for supervised water-body extraction and water-body types identification from Radarsat-2 fully polarimetric (FP) synthetic aperture radar (SAR) data in complex urban areas. First, supervised water-body extraction using the Wishart classifier is performed, and the false alarms that are formed in built-up areas are removed using morphological processing methods and spatial contextual information. Then, the support vector machine (SVM), the classification and regression tree (CART), TreeBagger (TB), and random forest (RF) classifiers are introduced for water-body types (rivers, lakes, ponds) identification. In SAR images, certain other objects that are misclassified as water are also considered in water-body types identification. Several shape and polarimetric features of each candidate water-body are used for identification. Radarsat-2 PolSAR data that were acquired over Suzhou city and Dongguan city in China are used to validate the effectiveness of the proposed method, and the experimental results are evaluated at both the object and pixel levels. We compared the water-body types classification results using only shape features and the combination of shape and polarimetric features, the experimental results show that the polarimetric features can eliminate the misclassifications from certain other objects like roads to water areas, and the increasement of classification accuracy embodies at both the object and pixel levels. The experimental results show that the proposed methods can achieve satisfactory accuracies at the object level [89.4% (Suzhou), 95.53% (Dongguan)] and the pixel level [96.22% (Suzhou), 97.95% (Dongguan)] for water-body types classification, respectively.  相似文献   

4.
In this paper, a new snow wetness estimation model is proposed for full-polarimetric Synthetic Aperture Radar (SAR) data. Surface and volume are the dominant scattering components in wet-snow conditions. The generalized four component polarimetric decomposition with unitary transformation (G4U) based generalized surface and volume parameters are utilized to invert snow surface and volume dielectric constants using the Bragg coefficients and Fresnel transmission coefficients respectively. The snow surface and volume wetness are then estimated using an empirical relationship. The effective snow wetness is derived from the weighted averaged surface and volume snow wetness. The weights are derived from the normalized surface and volume scattering powers obtained from the generalized full-polarimetric SAR decomposition method. Six Radarsat-2 fine resolution full-polarimetric datasets acquired over Himachal Pradesh, India along with the near-real time in situ measurements were used to validate the proposed model. The snow wetness derived from the SAR data by the proposed model with in situ measurements indicated that the absolute error at 95% confidence interval is 1.3% by volume.  相似文献   

5.
本文在经典的极化分类Wishart距离基础上提出了一种对变化敏感的极化距离测度,发展了相应的多时相极化SAR变化检测方法。以北京地区的多时相全极化RADARSAT-2影像进行了实验,对比分析了提出的极化距离测度与各个极化通道后向散射系数对数比值对不同类型地物变化的区分能力,结果表明,提出的极化距离测度不仅对所有的变化类型均有良好的检测作用,而且对变化区域有更高的区分力。这说明本文提出的极化SAR变化检测方法具有广泛的应用价值。  相似文献   

6.
Polarimetric Dual-Baseline InSAR Building Height Estimation at L-Band   总被引:1,自引:0,他引:1  
This letter generalizes a multibaseline interferometric synthetic aperture radar (InSAR) signal model to the polarimetric scenario. Based on this formulation, two high-performance spectral analysis techniques are adapted to process multibaseline Pol-InSAR observations. These new methods enhance the height estimation of scatterers by calculating optimal polarization combinations and allow the determination of their physical characteristics. Applying the proposed algorithms to urban environments, the building layover problem is analyzed by means of polarimetric dual-baseline InSAR measurements: the ground and building height are estimated. The techniques are validated using dual-baseline Pol-InSAR data acquired by DLR's Experimental SAR (E-SAR) system over Dresden city.   相似文献   

7.
With recent advances in polarimetry, Synthetic Aperture Radar (SAR) with Hybrid–polarity architecture, a demonstration of compact polarimetry enabled larger swath coverage, reduced PRF and SAR system complexity as compared to fully polarimetric systems. The first Hybrid Polarimetric Space-borne SAR in Earth Observation orbit, India’s Radar Imaging Satellite (RISAT-1) is a new-fangled gateway to remote sensing user community for land and oceanic applications. In response to a right-circular polarized transmitted signal, based on the derived stokes vectors, Stokes parameters are estimated to produce several useful quantitative measures for generating polarimetric decomposed image. m-delta, m-chi and m-alpha polarimetric decomposition methods along with suitable weighting functions in terms of three principal components are implemented which maps Stokes parameters to RGB image space for representing odd bounce, even bounce and volume scattering targets. Various RISAT-1 Hybrid Fine Resolution Stripmap Single-Look Complex SAR datasets acquired over deployed corner reflectors at calibration site, Shadnagar have been considered over which different hybrid polarimetric decomposition techniques are implemented using in-house developed software. Further analysis produced encouraging results with standard point targets like dihedral and trihedral corner reflectors against distributed targets in the same scene to demonstrate the scattering mechanisms as per their characteristics when interacted with a polarized signal were presented in this paper.  相似文献   

8.
9.
利用SVM的全极化、双极化与单极化SAR图像分类性能的比较   总被引:1,自引:0,他引:1  
支持向量机(SVM)以其在小训练样本时良好的分类性能,目前已广泛应用于多个领域.本文在极化SAR图像特征提取基础上,将SVM应用于极化SAR图像分类,定性和定量地比较了全极化、双极化和单极化SAR图像的分类性能,分析了不同的极化组合对分类结果的影响,并根据地物极化散射特性分析了分类精度差异的成因.实测极化SAR数据的实验结果表明,全极化数据能获得最好的分类性能,双极化次之,单极化最低,且在某些情况下,双极化与全极化分类性能接近.  相似文献   

10.
在分析四分量极化散射理论基础上,提出了一种新的极化SAR数据相干斑滤波算法。该算法首先应用四分量散射模型对原始极化SAR数据进行分解,以获得像素的散射类型和总功率值;然后采用极化特征和空间特征的相似性度量,在滤波窗口内选取中心像素的同质区;最后根据同质区的局部统计特性,应用线性最小均方滤波器进行滤波处理。AIRSAR系统L波段极化SAR数据的实验结果表明,该算法不仅可有效抑制相干斑,而且对极化和边缘等细节信息也有较好的保持。  相似文献   

11.
全极化合成孔径雷达影像(PolSAR)相对单极化SAR影像有更加丰富的地表信息。为了提高SAR影像偏移量跟踪技术估算偏移量的精度,提出一种基于最小二乘平差法的全极化SAR数据偏移量估计方法。首先利用全极化SAR不同极化通道数据估算偏移量得到多个观测值,然后通过最小二乘平差法对多余观测值循环剔除粗差得到最优偏移量。文中选取美国科罗拉多州湖城(Lake city)区域的两景JPL无人机UAVSAR全极化SAR影像进行实验,结果表明,文中新方法具有良好的粗差探测和去除功能,相对于已有研究结果,在方位向和距离向的偏移量估算精度都有明显提高,达到15%~25%。新方法提高了偏移量跟踪估算偏移量的精度,这对利用偏移量跟踪技术监测滑坡、地震及冰川等有重要的意义。  相似文献   

12.
Accurate and timely information on the distribution of crop types is vital to agricultural management, ecosystem services valuation and food security assessment. Synthetic Aperture Radar (SAR) systems have become increasingly popular in the field of crop monitoring and classification. However, the potential of time-series polarimetric SAR data has not been explored extensively, with several open scientific questions (e.g. the optimal combination of image dates for crop classification) that need to be answered. In this research, the usefulness of full year (both 2011 and 2014) L-band fully-polarimetric Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) data in crop classification was fully investigated over an agricultural region with a heterogeneous distribution of crop categories. In total, 11 crop classes including tree crops (almond and walnut), forage crops (grass, alfalfa, hay, and clover), a spring crop (winter wheat), and summer crops (corn, sunflower, tomato, and pepper), were discriminated using the Random Forest (RF) algorithm. The SAR input variables included raw linear polarization channels as well as polarimetric parameters derived from Cloude-Pottier (CP) and Freeman-Durden (FD) decompositions. Results showed clearly that the polarimetric parameters yielded much higher classification accuracies than linear polarizations. The combined use of all variables (linear polarizations and polarimetric parameters) produced the maximum overall accuracy of 90.50 % and 84.93 % for 2011 and 2014, respectively, with a significant increase of approximately 8 percentage points compared with linear polarizations alone. The variable importance provided by the RF illustrated that the polarimetric parameters had a far greater influence than linear polarizations, with the CP parameters being much more important than the FD parameters. The most important acquisitions were the images dated during the peak biomass stage (July and August) when the differences in structural characteristics between most crops were the largest. At the same time, the images in spring (April and May) and autumn (October) also contributed to the crop classification since they respectively provided unique information for discriminating fruit crops (almond and walnut) as well as summer crops (corn, sunflower, and tomato). As a result, the combined use of only four acquisitions (dated May, July, August, and October for 2011 and April, June, August, and October for 2014) was adequate to achieve a nearly-optimal overall accuracy. In light of the promising classification accuracies demonstrated in this research, it becomes increasingly viable to provide accurate and up-to-date crops inventories over large areas based solely on multitemporal polarimetric SAR.  相似文献   

13.
From repeat pass SIR-C L band polarimetric SAR interferometric data and fully maximum likelihood inversion decomposition model of PolInSAR, a method for sub-canopy soil moisture estimation using repeat pass SIR-C PolInSAR data is proposed. At the same time, the potential and validity of fully maximum likelihood inversion decomposition model of PolInSAR for sub-canopy soil moisture inversion is investigated. Firstly, from the random oriented volume over ground two layer coherent scattering model and the statistical characteristics of Pol-InSAR coherency matrix, the fully maximum likelihood inversion decomposition model is used to reconstruct or recover the surface polarimetric coherency matrix with volume scattering components significantly removed; then, from recovered surface polarimetric coherency matrix, co-HH, VV and cross-HV polarization backscattering coefficient are obtained, and the sub-canopy soil moisture are inverted from Oh and Dihedral scattering model. At last, Compared the inversion result with the field measurement and the climate data of hetan region from 1951 to 2006, the preliminary result indicates that the proposed method based on fully maximum likelihood inversion decomposition model has enough high inversion accuracy, if the new spaceborne or airborne polarimetric SAR interferometric data with synchronously spaceborne or airborne-ground measurement will be acquired, the validity and accuracy of proposed inversion method will be further investigated and validated.  相似文献   

14.
基于MODIS影像的森林火灾火线检测方法   总被引:1,自引:0,他引:1  
结合归一化火灾差异指数NDBR(normalized difference burn ratio)和MODIS多波段影像梯度边缘分析手段检测火线, 应用B样条函数拟合火线并确定火势蔓延方向。为对比验证, 基于火线的Kriging插值实现火灾外推预测, 与30min后的火灾参考数据目视对比与统计:火线的预测变化与参考影像基本保持一致, 火灾外推影像的均值和熵约为参考影像的86%和81%, 火迹地检测的Kappa系数达80.2%。试验表明, 提出的森林火线特征自动检测方法在动态火灾监测中是可行、有效的。  相似文献   

15.
Polarimetric data is an additional source of information in PSI technique to improve its performance in land subsidence estimation. The combination of polarimetric data and radar interferometry can lead to an increase in coherence and the number of PS pixels. In this paper, we evaluated and compared the dual polarized Sentinel-1A (S1A) and TerraSAR-X (TSX) data to improve the PSInSAR algorithm. The improvement of this research is based on minimizing Amplitude Dispersion Index (ADI) by finding the optimum scattering mechanism to increase the number of PSC and PS pixels. The proposed method was tested using a dataset of 40 dual-pol SAR data (VV/VH) acquired by S1A and 20 dual-pol SAR data (HH/VV) acquired by TSX. The results revealed that using the TSX data, the number of PS pixels increased about 3 times in ESPO method than using the conventional channels, e.g., HH, and VV. This increase in S1A data was about 1.7 times in ESPO method. In addition, we investigated the efficiency of the three polarimetric optimization methods i.e. ESPO, BGSM, and Best for the dual polarized S1A and TSX data. Results showed that the PS density increased about 1.9 times in BGSM and about 1.5 times in Best method in TSX data. However, in S1A data, PS density increased about 1.1 times in BGSM. The Best method was not successful in increasing the PS density using the S1A data. Also, the effectiveness of the method was evaluated in urban and non-urban regions. The experimental results showed that the method was successful in significantly increasing the number of final PS pixels in both regions.  相似文献   

16.
Single, interferometric dual, and quad-polarization mode data were evaluated for the characterization and classification of seven land use classes in an area with shifting cultivation practices located in the Eastern Amazon (Brazil). The Advanced Land-Observing Satellite (ALOS) Phased Array L-band Synthetic Aperture Radar (PALSAR) data were acquired during a six month interval. A clear-sky Landsat-5/TM image acquired at the same period was used as additional ground reference and as ancillary input data in the classification scheme. We evaluated backscattering intensity, polarimetric features, interferometric coherence and texture parameters for classification purposes using support vector machines (SVM) and feature selection. Results showed that the forest classes were characterized by low temporal backscattering intensity variability, low coherence and high entropy. Quad polarization mode performed better than dual and single polarizations but overall accuracies remain low and were affected by precipitation events on the date and prior SAR date acquisition. Misclassifications were reduced by integrating Landsat data and an overall accuracy of 85% was attained. The integration of Landsat to both quad and dual polarization modes showed similarity at the 5% significance level. SVM was not affected by SAR dimensionality and feature selection technique reveals that co-polarized channels as well as SAR derived parameters such as Alpha-Entropy decomposition were important ranked features after Landsat’ near-infrared and green bands. We show that in absence of Landsat data, polarimetric features extracted from quad-polarization L-band increase classification accuracies when compared to single and dual polarization alone. We argue that the joint analysis of SAR and their derived parameters with optical data performs even better and thus encourage the further development of joint techniques under the Reducing Emissions from Deforestation and Degradation (REDD) mechanism.  相似文献   

17.
This letter proposes a building characterization technique for L-band polarimetric interferometric synthetic aperture radar (SAR) data. This characterization consists of building identification and height estimation. Initially, a polarimetric interferometric segmentation is performed to isolate buildings from their surroundings. This classification identifies three basic categories: single bounce, double bounce, and volume diffusion. In order to compensate for the misclassifications among the volume and the double-bounce classes, interferometric phases given by the high-resolution Estimation of Signal Parameters via Rotational Invariance Techniques (ESPRIT) method are analyzed. Once buildings are localized, a phase-to-height procedure is applied to retrieve building height information. The method is validated using E-SAR, German Aerospace Center (DLR) fully polarimetric SAR data, at L-band, repeat-pass mode, over the Oberpfaffenhofen, Germany, test site, with a spatial resolution of 1.5 m in range and azimuth. More than 80% of buildings are retrieved with acceptably accurate height estimates.  相似文献   

18.
基于乘积模型的极化SAR滤波   总被引:1,自引:0,他引:1  
提出了一种基于乘积模型的极化SAR滤波方法。首先基于乘积模型分离纹理信息和极化信息,然后分别独立地进行滤波,最后再合成协方差矩阵。实验表明,本方法有效可行,有较好的极化保持性能。  相似文献   

19.
20.
为了充分利用不同极化特征信息,并将其有效地结合,提出一种结合粒度计算的全极化合成孔径雷达(synthetic aperture radar,SAR)影像分类方法。在不同极化目标分解特征组合的基础上引入影像纹理信息,利用光滑支持向量机(smooth support vector machine,SSVM)对不同特征组合进行类别划分获得粗粒度空间,采用商空间对粗粒度进行合并;根据全极化SAR影像分布特性,以相干矩阵作为新的特征矢量,利用Wishart测度代替传统欧氏距离对差异粒度进行推理,通过合并推理结果与合成论域,获得精细分类结果。采用L波段San Francisco地区和荷兰Flevoland地区的全极化SAR影像进行分类试验,结果表明:利用SSVM算法对全极化SAR影像进行粗粒度划分,并采用Wishart距离对差异粒度推理综合,总体分类效果优于结合纹理信息的Cloude及Yamaguchi4分类结果,且优于基于线性特征融合进行监督分类方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号