首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
This is the first review of 3 Apollo experiments, which made the only direct measurements of dust on the lunar surface: (i) minimalist matchbox-sized 270 g Dust Detector Experiments (DDEs) of Apollo 11, 12, 14 and 15, produced 30 million Lunar Day measurements 21 July 1969–30 September, 1977; (ii) Thermal Degradation Samples (TDS) of Apollo 14, sprinkled with dust, photographed, taken back to Earth into quarantine and lost; and (iii) the 7.5 kg Lunar Ejecta and Meteoroids (LEAM) experiment of Apollo 17, whose original tapes and plots are lost. LEAM, designed to measure rare impacts of cosmic dust, registered scores of events each lunation most frequently around sunrise and sunset. LEAM data are accepted as caused by heavily-charged particles of lunar dust at speeds of <100 m/s, stimulating theoretical models of transporting lunar dust and adding significant motivation for returning to the Moon. New analyses here show some raw data are sporadic bursts of 1, 2, 3 or more events within time bubbles smaller than 0.6 s, not predicted by theoretical dust models but consistent with noise bits caused by electromagnetic interference (EMI) from switching of large currents in the Apollo 17 Lunar Surface Experiment Package (ALSEP), as occurred in pre-flight LEAM-acceptance tests. On the Moon switching is most common around sunrise and sunset in a dozen heavy-duty heaters essential for operational survival during 350 h of lunar night temperatures of minus 170 °C. Another four otherwise unexplained features of LEAM data are consistent with the “noise bits” hypothesis. Discoveries with DDE and TDS reported in 1970 and 1971, though overlooked, and extensive DDE discoveries in 2009 revealed strengths of adhesive and cohesive forces of lunar dust. Rocket exhaust gases during Lunar Module (LM) ascent caused dust and debris to (i) contaminate instruments 17 m distant (Apollo 11) as expected, and (ii) unexpectedly cleanse Apollo hardware 130 m (Apollo 12) and 180 m (Apollo 14) from LM. TDS photos uniquely document in situ cohesion of dust particles and their adhesion to 12 different test surfaces. This review finds the entire TDS experiment was contaminated, being inside the aura of outgassing from astronaut Alan Shepard's spacesuit, and applies an unprecedented caveat to all TDS discoveries. Published and further analyses of Apollo DDE, TDS and LEAM measurements can provide evidence-based guidance to theoretical analyses and to management and mitigation of major problems from sticky dust, and thus help optimise future lunar and asteroid missions, manned and robotic.  相似文献   

2.
Contour maps of the Mooon have been compiled by photogrammetric methods that use stereoscopic combinations of all available metric photographs from the Apollo 15, 16, and 17 missions. The maps utilize the same format as the existing NASA shaded-relief Lunar Planning Charts (LOC-1, -2, -3, and -4), which have a scale of 1:2 750 000. The map contour interval is 500m. A control net derived from Apollo photographs by Doyle and others was used for the compilation. Contour lines and elevations are referred to the new topographic datum of the Moon, which is defined in terms of spherical harmonics from the lunar gravity field. Compilation of all four LOC charts was completed on analytical plotters from 566 stereo models of Apollo metric photographs that cover approximately 20% of the Moon. This is the first step toward compiling a global topographic map of the Moon at a scale of 1:5 000 000.  相似文献   

3.
Lunar position differences between thirteen lunar craters in Mare Serenitatis were computed from VHF radar-imagery obtained by the Lunar Sounder instrument flown on the Apollo 17 Command Module. The radar-derived position differences agree with those obtained by conventional photogrammetric reductions of Apollo metric photography. This demonstrates the feasibility of using the Apollo Lunar Sounder data to determine the positions of lunar features along the Apollo 17 orbital tracks. This will be particularly useful for western limb and farside areas, where no Apollo metric camera pictures are available.This paper presents the results of one phase of research carried out at the Jet Propulsion Laboratory, California Institute of Technology, under Contract No. NAS 7-100, sponsored by the National Aeronautics and Space Administration.  相似文献   

4.
The volume FeO and TiO_2 abundances(FTAs) of lunar regolith can be more important for understanding the geological evolution of the Moon compared to the optical and gamma-ray results. In this paper, the volume FTAs are retrieved with microwave sounder(CELMS) data from the Chang'E-2 satellite using the back propagation neural network(BPNN) method. Firstly, a three-layered BPNN network with five-dimensional input is constructed by taking nonlinearity into account. Then, the brightness temperature(TB) and surface slope are set as the inputs and the volume FTAs are set as the outputs of the BPNN network.Thereafter, the BPNN network is trained with the corresponding parameters collected from Apollo, Luna,and Surveyor missions. Finally, the volume FTAs are retrieved with the trained BPNN network using the four-channel TBderived from the CELMS data and the surface slope estimated from Lunar Orbiter Laser Altimeter(LOLA) data. The rationality of the retrieved FTAs is verified by comparing with the Clementine UV-VIS results and Lunar Prospector(LP) GRS results. The retrieved volume FTAs enable us to re-evaluate the geological features of the lunar surface. Several important results are as follows. Firstly, very-low-Ti(<1.5 wt.%) basalts are the most spatially abundant, and the surfaces with TiO_2> 5 wt.% constitute less than 10% of the maria. Also, two linear relationships occur between the FeO abundance(FA) and the TiO_2 abundance before and after the threshold, 16 wt.% for FA. Secondly, a new perspective on mare volcanism is derived with the volume FTAs in several important mare basins, although this conclusion should be verified with more sources of data. Thirdly, FTAs in the lunar regolith change with depth to the uppermost surface,and the change is complex over the lunar surface. Finally, the distribution of volume FTAs hints that the highlands crust is probably homogeneous, at least in terms of the microwave thermophysical parameters.  相似文献   

5.
A summary of total sulfur abundances representative of the Apollo Missions is presented. Lunar crystalline rocks range from 0 to 3100μg S g−1. Lunar soils range from 310 to 1300μg S g−1. Rock mixing models evaluate the distribution of sulfur and define indigenous rock components and extralunar contributions of sulfur in lunar soils. Extralunar sulfur shows a positive correlation with a CC-1 like meteoritic component and solar wind derived total carbon content in the Apollo 16 and 17 lunar soils. Presented at the 25th International Geological Congress, Sydney, Australia, Section 15, Planetology. Contribution No. 105 from the Center for Meteorite Studies.  相似文献   

6.
Lunar meteorites provide important new samples of the Moon remote from regions visited by the Apollo and Luna sample return missions. Petrologic and geochemical analysis of these meteorites, combined with orbital remote sensing measurements, have enabled additional discoveries about the composition and age of the lunar surface on a global scale. However, the interpretation of these samples is limited by the fact that we do not know the source region of any individual lunar meteorite. Here, we investigate the link between meteorite and source region on the Moon using the Lunar Prospector gamma ray spectrometer remote sensing data set for the elements Fe, Ti, and Th. The approach has been validated using Apollo and Luna bulk regolith samples, and we have applied it to 48 meteorites excluding paired stones. Our approach is able broadly to differentiate the best compositional matches as potential regions of origin for the various classes of lunar meteorites. Basaltic and intermediate Fe regolith breccia meteorites are found to have the best constrained potential launch sites, with some impact breccias and pristine mare basalts also having reasonably well‐defined potential source regions. Launch areas for highland feldspathic meteorites are much less well constrained and the addition of another element, such as Mg, will probably be required to identify potential source regions for these.  相似文献   

7.
Farouk El-Baz 《Icarus》1975,25(4):495-537
The Apollo missions have gradually increased our knowledge of the Moon's chemistry, age, and mode of formation of its surface features and materials Apollo 11 and 12 landings proved that mare materials are volcanic rocks that were derived from deep-seated basaltic melts about 3.7 and 3.2 billion years ago, respectively. Later missions provided additional information on lunar mare basalts as well as the older, anorthositic, highland rocks. Data on the chemical make-up of returned samples were extended to larger areas of the Moon by orbiting geochemical experiments. These have also mapped inhomogeneities in lunar surface chemistry, including radioactive anomalies on both the near and far sides.Lunar samples and photographs indicate that the moon is a well-preserved museum of ancient impact scars. The crust of the Moon, which was formed about 4.6 billion years ago, was subjected to intensive metamorphism by large impacts. Although bombardment continues to the present day, the rate and size of impacting bodies were much greater in the first 0.7 billion years of the Moon's history. The last of the large, circular, multiringed basins occurred about 3.9 billion years ago. These basins, many of which show positive gravity anomalies (mascons), were flooded by volcanic basalts during a period of at least 600 million years. In addition to filling the circular basins, more so on the near side than on the far side, the basalts also covered lowlands and circum-basin troughs.Profiles of the outer lunar skin were constructed from the mapping camera system, including the laser altimeter, and the radar sounder data. Materials of the crust, according to the lunar seismic data, extend to the depth of about 65 km on the near side, probably more on the far side. The mantle which underlies the crust probably extends to about 1100 km depth. It is also probable that a molten or partially molten zone or core underlies the mantle, where interactions between both may cause the deep-seated moonquakes.The three basic theories of lunar origin—capture, fission, and binary accretion—are still competing for first place. The last seems to be the most popular of the three at this time; it requires the least number of assumptions in placing the Moon in Earth orbit, and simply accounts for the chemical differences between the two bodies. Although the question of origin has not yet been resolved, we are beginning to see the value of interdisciplinary synthesis of Apollo scientific returns. During the next few years we should begin to reap the fruits of attempts at this synthesis. Then, we may be fortunate enough to take another look at the Moon from the proposed Lunar Polar Orbit (LPO) mission in about 1979.  相似文献   

8.
We suggest a technique to determine the chemical and mineral composition of the lunar surface using artificial neural networks (ANNs). We demonstrate this powerful non-linear approach for prognosis of TiO2 abundance using Clementine UV-VIS mosaics and Lunar Soil Characterization Consortium data. The ANN technique allows one to study correlations between spectral characteristics of lunar soils and composition parameters without any restrictions on the character of these correlations. The advantage of this method in comparison with the traditional linear regression method and the Lucey et al. approaches is shown. The results obtained could be useful for the strategy of analyzing lunar data that will be acquired in incoming lunar missions especially in case of the Chandrayaan-1 and Lunar Reconnaissance Orbiter missions.  相似文献   

9.
Apollo 12 Lunar Module exhaust plume impingement on Lunar Surveyor III   总被引:1,自引:0,他引:1  
Understanding plume impingement by retrorockets on the surface of the Moon is paramount for safe lunar outpost design in NASA’s planned return to the Moon for the Constellation Program. Visual inspection, Scanning Electron Microscopy, and surface scanned topology have been used to investigate the damage to the Lunar Surveyor III spacecraft that was caused by the Apollo 12 Lunar Module’s close proximity landing. Two parts of the Surveyor III craft returned by the Apollo 12 astronauts, Coupons 2050 and 2051, which faced the Apollo 12 landing site, show that a fine layer of lunar regolith coated the materials and was subsequently removed by the Apollo 12 Lunar Module landing rocket. The coupons were also pitted by the impact of larger soil particles with an average of 103 pits/cm2. The average entry size of the pits was 83.7 μm (major diameter) × 74.5 μm (minor diameter) and the average estimated penetration depth was 88.4 μm. Pitting in the surface of the coupons correlates to removal of lunar fines and is likely a signature of lunar material imparting localized momentum/energy sufficient to cause cracking of the paint. Comparison with the lunar soil particle size distribution and the optical density of blowing soil during lunar landings indicates that the Surveyor III spacecraft was not exposed to the direct spray of the landing Lunar Module, but instead experienced only the fringes of the spray of soil. Had Surveyor III been exposed to the direct spray, the damage would have been orders of magnitude higher.  相似文献   

10.
Moonquakes and lunar tectonism   总被引:1,自引:0,他引:1  
With the succesful installation of a geophysical station at Hadley Rille, on July 31, 1971, on the Apollo 15 mission, and the continued operation of stations 12 and 14 approximately 1100 km SW, the Apollo program for the first time achieved a network of seismic stations on the lunar surface. A network of at least three stations is essential for the location of natural events on the Moon. Thus, the establishment of this network was one of the most important milestones in the geophysical exploration of the Moon. The major discoveries that have resulted to date from the analysis of seismic data from this network can be summarized as follows:
  1. Lunar seismic signals differ greatly from typical terrestrial seismic signals. It now appears that this can be explained almost entirely by the presence of a thin dry, heterogeneous layer which blankets the Moon to a probable depth of few km with a maximum possible depth of about 20 km. Seismic waves are highly scattered in this zone. Seismic wave propagation within the lunar interior, below the scattering zone, is highly efficient. As a result, it is probable that meteoroid impact signals are being received from the entire lunar surface.
  2. The Moon possesses a crust and a mantle, at least in the region of the Apollo 12 and 14 stations. The thickness of the crust is between 55 and 70 km and may consist of two layers. The contrast in elastic properties of the rocks which comprise these major structural units is at least as great as that which exists between the crust and mantle of the earth. (See Toks?zet al., p. 490, for further discussion of seismic evidence of a lunar crust.)
  3. Natural lunar events detected by the Apollo seismic network are moonquakes and meteoroid impacts. The average rate of release of seismic energy from moonquakes is far below that of the Earth. Although present data do not permit a completely unambiguous interpretation, the best solution obtainable places the most active moonquake focus at a depth of 800 km; slightly deeper than any known earthquake. These moonquakes occur in monthly cycles; triggered by lunar tides. There are at least 10 zones within which the repeating moonquakes originate.
  4. In addition to the repeating moonquakes, moonquake ‘swarms’ have been discovered. During periods of swarm activity, events may occur as frequently as one event every two hours over intervals lasting several days. The source of these swarms is unknown at present. The occurrence of moonquake swarms also appears to be related to lunar tides; although, it is too soon to be certain of this point.
These findings have been discussed in eight previous papers (Lathamet al., 1969, 1970, 1971) The instrument has been described by Lathamet al. (1969) and Sutton and Latham (1964). The locations of the seismic stations are shown in Figure 1.  相似文献   

11.
Differential very-long-baseline interferometric observations of signals from Apollo Lunar Surface Experiment Package telemetry transmitters will yield the relative projected positions of the transmitters with uncertainty of only 1-3 m, set mainly by uncertainty of the lunar ephemeris. Noise and systematic instrumental errors which in the past affected similar observations have been reduced to the equivalent of a few centimeters on the lunar surface by the development of a new type of differential receiver. Continued observations should yield a determination of the motion of the Moon about its center of mass with uncertainty less than 1 s of selenocentric arc. Improvements (by other means) in our knowledge of the Moon's orbital motion would allow a further order-of-magnitude refinement in the libration and relative position results obtainable by differential VLBI.Communication presented at the conference on Lunar Dynamics and Observational Coordinate Systems held January 15–17, 1973 at the Lunar Science Institute, Houston, Tex. U.S.A.  相似文献   

12.
Apollo video photogrammetry estimation of plume impingement effects   总被引:1,自引:0,他引:1  
Future missions to the Moon may require numerous landings at the same site. Since the top few centimeters are loosely packed regolith, plume impingement from the Lander ejects the granular material at high velocities. Much work is needed to understand the physics of plume impingement during landing to protect hardware surrounding the landing sites. While mostly qualitative in nature, the Apollo Lunar Module landing videos can provide a wealth of quantitative information using modern photogrammetry techniques. The authors have used the digitized videos to quantify plume impingement effects of the landing exhaust on the lunar surface. The dust ejection angle from the plume is estimated at 1°-3°. The lofted particle density is estimated at 108-1013 particles/m3. Additionally, evidence for ejection of large 10-15 cm sized objects and a dependence of ejection angle on thrust are presented. Further work is ongoing to continue quantitative analysis of the landing videos.  相似文献   

13.
The electrical conductivities of several samples from returned Apollo 11 and 12 lunar rocks and from chondritic meteorites were measured from 300 to 1100K. Collectively the lunar samples represent all three of the major NASA classifications of lunar surface rocks. Of general interest is the observation that the conductivities of the lunar samples are much larger than the values which have previously been used in theoretical discussions of lunar phenomena. It is also found that the conductivity at 300K, (300), is extremely sensitive to the thermal history of the sample for both lunar and meteoritic material. Magnetic measurements are presented to help characterize the changes which occur upon heating.Principal Investigator - Apollo Lunar Science Program, Geophysics Research Laboratory, University of Tokyo, Japan.  相似文献   

14.
Lunar soil grain size distribution   总被引:1,自引:0,他引:1  
A comprehensive review has been made of the currently available data for lunar grain size distributions. It has been concluded that there is little or no statistical difference among the large majority of the soil samples from the Apollo 11, 12, 14, and 15 missions. The grain size distribution for these soils has reached a steady state in which the comminution processes are balanced by the aggregation processes. The median particle size for the steady-state soil is 40 to 130 µm. The predictions of lunar grain size distributions based on the Surveyor television photographs have been found to be quantitatively in error and qualitatively misleading.  相似文献   

15.
The principal chemical element composition and inferred mineralogy of the powdered lunar surface material at seven mare and one terra sites on the Moon are compared. The mare compositions are all similar to one another and comparable to those of terrestrial ocean ridge basalts except in having higher titanium and much lower sodium contents than the latter. These analyses suggest that most, if not all, lunar maria have this chemical composition and are derived from rocks with an average density of 3.19 g cm–3. Mare Tranquillitatis differs from the other maria in having twice the titanium content of the others.The chemical composition of the single highland site studied (Surveyor 7) is distinctly different from that of any of the maria in having much lower amounts of titanium and iron and larger amounts of aluminium and calcium. Confirmation of these general characteristics of lunar highland material has come from recent observations by the Apollo 15 Orbiter. The inferred mineralogy is 45 mole percent high anorthite plagioclase and the parent rocks have an estimated density of 2.94 g cm–3. The Surveyor 7 chemical composition is the principal contributor to present estimates of the overall chemical composition of the lunar surface.Presented at the NATO Advanced Study Institute on Lunar Studies, Patras, Greece, September 14–25, 1971. This paper is an expanded and updated version of a paper presented at the Apollo 12 Lunar Science Conference, Houston, Texas, January 11–14, 1971, and published in the Proceedings of this Conference (Turkevich, 1971).  相似文献   

16.
This paper presents a review of research findings on the various forms of water on the Moon. First, this is the water of the Moon’s interior, which has been detected by sensitive mass spectrometric analysis of basaltic glasses delivered by the Apollo 15 and Apollo 17 missions. The previous concepts that lunar magmas are completely dehydrated have been disproved. Second, this is H2O and/or OH in a thin layer (a few upper millimeters) of the lunar regolith, which is likely a result of bombardment of the oxygen contained in the lunar regolith with solar wind protons. This form of water is highly unstable and quite easily escapes from the surface, possibly being one of the sources of the water ice reservoirs at the Moon’s poles. Third, this is water ice associated with other frozen gases in cold traps at the lunar poles. Its possible sources are impacts of comets and meteorites, the release of gas from the Moon’s interior, and solar wind protons. The ice trapped at the lunar polars could be of practical interest for further exploration of the Moon.  相似文献   

17.
Laser altimetry data from the Apollo 15, 16, and 17 missions show that the ringed maria surfaces lie on one particular reference surface and that the center of gravity is definitely displaced from the optical center. If these extensive surfaces are assumed to be near hydrostratic surfaces, then there must have existed a time in lunar history when lunar tides and/or internal processes were much different than they are today.This paper presents one phase of research carried out at the Jet Propulsion Laboratory, California Institute of Technology, under Contract NAS 7-100, sponsored by the National Aeronautics and Space Administration.  相似文献   

18.
It is essential that accurate modal (i.e., volume) percentages of the various mineral and glass phases in lunar soils be used for addressing and resolving the effects of space weathering upon reflectance spectra, as well as for their calibration such data are also required for evaluating the resource potential of lunar minerals for use at a lunar base. However, these data are largely lacking. Particle-counting information for lunar soils, originally obtained to study formational processes, does not provide these necessary data, including the percentages of minerals locked in multi-phase lithic fragments and fused-soil particles, such as agglutinates. We have developed a technique for modal analyses, sensu stricto, of lunar soils, using digital imaging of X-ray maps obtained with an energy-dispersive spectrometer mounted on an electron microprobe. A suite of nine soils (90 to 150 micrometers size fraction) from the Apollo 11, 12, 15, and 17 mare sites was used for this study. This is the first collection of such modal data on soils from all Apollo mare sites. The abundances of free-mineral fragments in the mare soils are greater for immature and submature soils than for mature soils, largely because of the formation of agglutinitic glass as maturity progresses. In considerations of resource utilization at a lunar base, the best lunar soils to use for mineral beneficiation (i.e., most free-mineral fragments) have maturities near the immature/submature boundary (Is/FeO approximately or = 30), not the mature soils with their complications due to extensive agglutination. The particle data obtained from the nine mare soils confirm the generalizations for lunar soils predicted by L.A. Taylor and D.S. McKay (1992, Lunar Planet Sci. Conf. 23rd, pp. 1411-1412 [Abstract]).  相似文献   

19.
Lunar dust: The Hazard and Astronaut Exposure Risks   总被引:1,自引:0,他引:1  
This paper reviews the characterisation of lunar dust or regolith, the toxicity of the dust and associated health effects, the techniques for assessing the health risks from dust exposure and describes the measures used or being developed to mitigate exposure. Lunar dust is formed from micrometeorite impacts onto the Moon’s surface. The hypervelocity impacts result in communition and the formation of sharp and clingy agglutinates. The dust particles vary in size with the smallest being less than 10 μm. If the chemical reactive particles are deposited in the lungs, they may cause respiratory disease. During lunar exploration, the astronaut’s spacesuits will become contaminated with lunar dust. The dust will be released into the atmosphere when the suits are removed. The exposure risks to health will need to be assessed by relating to a permissible exposure limit. During the Apollo missions, the astronauts were exposed to lunar dust. Acute health effects from dust inhalation exposure included sore throat, sneezing and coughing. Long-term exposure to the dust may cause a more serious respiratory disease similar to silicosis. On future missions the methods used to mitigate exposure will include providing high air recirculation rates in the airlock, the use of a “Double Shell Spacesuit” so that contaminated spacesuits are removed before entering the airlock, the use of dust shields to prevent dust accumulating on surfaces, the use of high gradient magnetic separation to remove surface dust and the use of solar flux to sinter and melt the regolith around the spacecraft.  相似文献   

20.
MAGIA is a mission approved by the Italian Space Agency (ASI) for Phase A study. Using a single large-diameter laser retroreflector, a large laser retroreflector array and an atomic clock onboard MAGIA we propose to perform several fundamental physics and absolute positioning metrology experiments: VESPUCCI, an improved test of the gravitational redshift in the Earth?CMoon system predicted by General Relativity; MoonLIGHT-P, a precursor test of a second generation Lunar Laser Ranging (LLR) payload for precision gravity and lunar science measurements under development for NASA, ASI and robotic missions of the proposed International Lunar Network (ILN); Selenocenter (the center of mass of the Moon), the determination of the position of the Moon center of mass with respect to the International Terrestrial Reference Frame/System (ITRF/ITRS); this will be compared to the one from Apollo and Lunokhod retroreflectors on the surface; MapRef, the absolute referencing of MAGIA??s lunar altimetry, gravity and geochemical maps with respect to the ITRF/ITRS. The absolute positioning of MAGIA will be achieved thanks to: (1) the laboratory characterization of the retroreflector performance at INFN-LNF; (2) the precision tracking by the International Laser Ranging Service (ILRS), which gives two fundamental contributions to the ITRF/ITRS, i.e. the metrological definition of the geocenter (the Earth center of mass) and of the scale of length; (3) the radio science and accelerometer payloads; (4) support by the ASI Space Geodesy Center in Matera, Italy. Future ILN geodetic nodes equipped with MoonLIGHT and the Apollo/Lunokhod retroreflectors will become the first realization of the International Moon Reference Frame (IMRF), the lunar analog of the ITRF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号