首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study is a part of a wider investigation to evaluate how much can be learnt by using low-cost methods such as systematic moderate-resolution remote sensing to map and quantify geological structures at the regional scale on very large volcanic provinces only partly studied in the field. Volcanic-centre and cinder-cone distribution, faults and structural lineaments are mapped combining Shuttle Radar Topography Mission (SRTM), Digital Elevation Models (DEMs) and Landsat satellite images. As an example of the method, we present the interpretation of structural data and morphological features of three contrasted areas from the Cameroon Volcanic Line (Tombel graben, Upper Benue valley, and Ngaoundéré area) for which local field studies are available for comparison. At a local scale, this remote-sensing method of mapping displays good to excellent correlations with previously published data and, by itself, it allows one to constrain the structural setting of each area. Numerical treatment of vent and cinder-cone localisation can be related to tension fractures (T direction), whereas numerical treatment of the lineaments constrains the associated fault system to a single transtensional (strike-slip + extension) Riedel type fracture network. The first results on the Cameroon Volcanic Line are promising and could be used at a larger scale on numerous volcanic provinces for which field data are not yet available.  相似文献   

2.
Abstract Multi- and single-channel seismic profiles are used to investigate the structural evolution of back-arc rifting in the intra-oceanic Izu-Bonin Arc. Hachijo and Aoga Shima Rifts, located west of the Izu-Bonin frontal arc, are bounded along-strike by structural and volcanic highs west of Kurose Hole, North Aoga Shima Caldera and Myojin Sho arc volcanoes. Zig-zag and curvilinear faults subdivide the rifts longitudinally into an arc margin (AM), inner rift, outer rift and proto-remnant arc margin (PRA). Hachijo Rift is 65 km long and 20–40 km wide. Aoga Shima Rift is 70 km long and up to 45 km wide. Large-offset border fault zones, with convex and concave dip slopes and uplifted rift flanks, occur along the east (AM) side of the Hachijo Rift and along the west (PRA) side of the Aoga Shima Rift. No cross-rift structures are observed at the transfer zone between these two regions; differential strain may be accommodated by interdigitating rift-parallel faults rather than by strike- or oblique-slip faults. In the Aoga Shima Rift, a 12 km long flank uplift, facing the flank uplift of the PRA, extends northeast from beneath the Myojin Knoll Caldera. Fore-arc sedimentary sequences onlap this uplift creating an unconformity that constrains rift onset to ~1-2Ma. Estimates of extension (~3km) and inferred age suggest that these rifts are in the early syn-rift stage of back-arc formation. A two-stage evolution of early back-arc structural evolution is proposed: initially, half-graben form with synthetically faulted, structural rollovers (ramping side of the half-graben) dipping towards zig-zagging large-offset border fault zones. The half-graben asymmetry alternates sides along-strike. The present ‘full-graben’ stage is dominated by rift-parallel hanging wall collapse and by antithetic faulting that concentrates subsidence in an inner rift. Structurally controlled back-arc magmatism occurs within the rift and PRA during both stages. Significant complications to this simple model occur in the Aoga Shima Rift where the east-dipping half-graben dips away from the flank uplift along the PRA. A linear zone of weakness caused by the greater temperatures and crustal thickness along the arc volcanic line controls the initial locus of rifting. Rifts are better developed between the arc edifices; intrusions may be accommodating extensional strain adjacent to the arc volcanoes. Pre-existing structures have little influence on rift evolution; the rifts cut across large structural and volcanic highs west of the North Aoga Shima Caldera and Aoga Shima. Large, rift-elongate volcanic ridges, usually extruded within the most extended inner rift between arc volcanoes, may be the precursors of sea floor spreading. As extension continues, the fissure ridges may become spreading cells and propagate toward the ends of the rifts (adjacent to the arc volcanoes), eventually coalescing with those in adjacent rift basins to form a continuous spreading centre. Analysis of the rift fault patterns suggests an extension direction of N80°E ± 10° that is orthogonal to the trend of the active volcanic arc (N10°W). The zig-zag pattern of border faults may indicate orthorhombic fault formation in response to this extension. Elongation of arc volcanic constructs may also be developed along one set of the possible orthorhombic orientations. Border fault formation may modify the regional stress field locally within the rift basin resulting in the formation of rift-parallel faults and emplacement of rift-parallel volcanic ridges. The border faults dip 45–55° near the surface and the majority of the basin subsidence is accommodated by only a few of these faults. Distinct border fault reflections decreases dips to only 30° at 2.5 km below the sea floor (possibly flattening to near horizontal at 2.8 km although the overlying rollover geometry shows a deeper detachment) suggesting that these rifting structures may be detached at extremely shallow crustal levels.  相似文献   

3.
A ground magnetic study of Ustica Island was performed to provide new insights into subsurface tectonic and volcanic structures. The total-intensity anomaly field, obtained after a data-reduction procedure, shows the presence of a W–E-striking magnetic anomaly in the middle of the island and another two intense anomalies, which seem to continue offshore, in the southwestern and the northeastern sides, respectively. The detected anomalies were analyzed by a quadratic programming (QP) algorithm to obtain a 3D subsurface magnetization distribution. The volcano magnetization model reveals the presence of intensely magnetized volumes, interpreted as the feeding systems of the main eruptive centers of the island, which roughly follow the trend of the main regional structural lineaments. These findings highlight how regional tectonics has strongly affected the structural and magmatic evolution of the Ustica volcanic complex producing preferential ways for magma ascent.  相似文献   

4.
蒙古中南部地区地壳各向异性及其动力学意义   总被引:1,自引:1,他引:0       下载免费PDF全文
利用蒙古中南部地区布设的69套宽频带数字地震仪2011年8月—2013年7月记录的远震事件,使用时间域反褶积方法提取接收函数,并挑选高质量Pms震相,通过改进的剪切波分裂方法对研究区地壳各向异性参数进行了研究,最终获取了1473对各向异性参数.经过统计分析,有48个台站可以归纳出两个方向的各向异性,11台站得到单个方向的各向异性,而剩余10个台站各向异性方向比较发散.结果显示,各向异性在蒙古中南部地壳中呈不均匀分布,有54个台站得到了NE-SW向各向异性,快波偏振方向平均值为N58°E±16°,与最大水平主应力σHmax方向和区域内主要断层走向一致,说明这部分地壳各向异性的主要成因存在于上地壳,可能与流体填充的微裂隙有关.而NW-SE向各向异性在53个台站被观测到,各向异性方向变化范围平均N132°E±16°,与研究区大部分SKS分裂快波方向具有较好的一致性,说明下地壳成岩矿物晶体定向排列是各向异性的主要成因.研究区地壳各向异性的分层特征总体上支持岩石圈受到NE-SW向挤压的动力学模型.  相似文献   

5.
Aeromagnetic (AM) and Landsat Thematic Mapper (TM) data from the south-central Zimbabwe Craton have been processed for the purpose of regional structural mapping and thereby to develop strategic models for groundwater exploration in hard-rock areas. The lineament density is greater on TM than on AM images, partly due to the resolution of the different datasets, and also because not all TM lineaments have a magnetic signature. The derived maps reveal several previously undetected lineaments corresponding to dykes, faults, shear zones and/or tectonically-related joints, striking predominantly NNE, NNW and WNW. We suggest the possible hydrogeological significance of some of these patterns as follows: the aeromagnetic data can be used to map faults and fractures of considerable depth which are likely to be open groundwater conduits at depth (typically under tension), while TM lineaments, although not necessarily open (mostly under compression), represent recharge areas.The interpreted persistent lineation and well developed fracture patterns are correlated with existing boreholes and indicate a spatial relationship between regional structures and high borehole yields (> 3 m3/h). This relationship is combined with other lithological and hydrogeological information to identify potential regional groundwater sites for detailed ground investigations. These are defined as dyke margins, faults, fractures/joints or intersections of any combination of these structures. Priority should be given to coincident AM/TM lineaments (e.g., NNW and NNE fractures) and continuous structures with large catchment areas (e.g., NNE and WNW faults). The late Archaean (2.6 Ga) granites are considered the most favourable unit because of their associated long and deep brittle fractures between numerous bornhardts (inselbergs) and kopjes. Several small-scale TM lineaments also form important local sources of groundwater for hand-dug wells. Based on measured rock susceptibilities from the area, we present a model of the typical magnetic responses from the possible groundwater exploration targets. The developed magnetic model could be applicable to similar terrains in other Archaean Cratons.  相似文献   

6.
鄂尔多斯块体北缘与西缘地区地壳各向异性特征   总被引:1,自引:0,他引:1       下载免费PDF全文
本研究使用内蒙古自治区数字测震台网2010年1月至2017年10月区域小地震的波形记录资料,采用SAM方法,进行了地壳剪切波分裂的分析,得到鄂尔多斯块体北缘与西缘地区地壳介质地震各向异性的初步研究结果.根据15个台站161个有效地震记录的分析,鄂尔多斯块体北缘与西缘地区的快剪切波平均偏振方向为NE44.4°±38.4°,慢剪切波平均时间延迟为1.7±1.6ms·km~(-1).研究区域的快剪切波偏振显示出两个优势方向,一个是NE方向,另一个是近NS方向.区内的逆冲凸起与走滑正倾断层构造对剪切波分裂产生了直接的影响,造成了剪切波分裂参数的复杂分布,反映了剪切波分裂参数受到区域应力和构造共同作用的影响.鄂尔多斯块体北缘的快波偏振特征有NE和近NS两个优势偏振方向,其东区与西区的快剪切波偏振表现出明显不同的特征.东区的第一快剪切波优势偏振方向为NE,第二快剪切波优势偏振方向为近NS;西区的第一快剪切波优势偏振方向为近EW,第二快剪切波优势偏振方向为近NS.鄂尔多斯块体北缘的区域背景主压应力方向可能总体上为近NS方向,但空间分布有差异,东区NE方向的优势偏振与西区近EW方向的优势偏振更可能反映了断裂与构造的影响.鄂尔多斯块体西缘的快剪切波偏振特征显示出非常清楚的NE向的优势偏振方向,近NS向的优势偏振方向则不太明显,反映出该地区复杂构造对各向异性分布的影响.慢波时间延迟呈现出西低东高的特点,时间延迟的高值出现在鄂尔多斯块体北缘的东部,时间延迟的这种西低东高的各向异性强度变化,可能反映了区域构造活动西强东弱的特性.  相似文献   

7.
内蒙古阿巴嘎地区壳幔经历强烈变形,岩石圈变形机制尚不明确.利用布设在研究区的32个流动地震台站所记录到的远震剪切波数据,测量得到120对各向异性参数和113个无效分裂结果.结果表明,研究区快慢波延迟时间变化范围为0.4~1.4s,平均0.77±0.21s;各向异性快波方向变化范围为N101°E-N45°W.其中一组快波偏振方向为N82.0°E±12.3°,与区域内断裂走向平行,反映地幔矿物晶格定向排列;另一组快波方向集中位于华北克拉通内部,平均为N146.8°E±9.5°,平行于早白垩纪岩石圈伸展变形方向,推测由残留在岩石圈中的化石各向异性所引起.在研究区北部部分台站,只观测到无效分裂而没有观测到有效分裂结果,可能存在局部热地幔物质上涌.  相似文献   

8.
An analysis of the structural lineaments, as observed on the middle and upper slopes of Etna volcano, was made with the aim of checking stress distribution within the volcanic structure. The observed features suggest that the deformation pattern of the volcanic edifice is compatible with a deviating stress field dominated by an E-W sinistral shear, with the maximum stress axes being oriented NE (σ1) and NW (σ3) respectively. Such a framework appears to be consistent with the active regional stress field, as deduced from structural data and focal mechanism analyses. The role of the active stress field in the penetration, uprising and eruption of magma in the Etnean area is therefore discussed and some more general suggestions about the geodynamic evolution of eastern Sicily are made.  相似文献   

9.
On aerial photographs fractures till 3 km long are shown to abound on the slopes and in the country surrounding the Lamongan volcano in the eastern spur of Java, Indonesia. Linear arrangements of maars and boccas in the same region possess orientations similar to those of the photographic lineaments. The Lamongan fracture system is compatible with a regional compression directed N15°–195°E.  相似文献   

10.
Most of the extension fractures located in the Ethiopian rift are related to rift dynamics, and they have consistently similar orientations for hundreds of kilometers. The orientation of extension fracture gives the local extension direction which is perpendicular to its horns (end segments of an extension fracture). We have established clear geometrical relationships between tectonics and volcanism in the Main Ethiopian Rift by interpreting high-resolution images obtained from Landsat-TM and SPOT satellites and by quantitatively analyzing the geometry of extension fractures, elongated vents and linear volcanic clusters. Applying the relationships obtained, we show that extension fractures in the rift served as channels for magma rising to the surface, and that extension fractures underlie most of the elongated volcanic vents and linear volcanic clusters. The geometry of extension fractures beneath volcanic edifices can be deduced from the shape of elongated vents and pattern of linear volcanic clusters rooted on them. Utilizing the orientations of extension fractures directly observed and those inferred from elongated volcanic vents and linear clusters, we found that the extension direction of the Main Ethiopian Rift is northwest–southeast and that the direction has been rotated clockwise for about 20° in the time interval 2.83 to 0.023 Ma. The Recent axis of rift opening is oriented N40° and located closer to the southeastern escarpment giving an asymmetric geometry to the Main Ethiopian Rift (MER).  相似文献   

11.
本文利用布设在云南腾冲地区的15个固定和流动地震台站记录的近震波形数据,采用剪切波分裂分析方法得到了593对高质量的各向异性分裂参数.结果显示,腾冲火山区地震台站下方的近震各向异性的慢波延迟时间为0.02?0.37 s,平均延迟时间0.2 s.结合已有接收函数地壳各向异性研究结果,推测研究区地壳各向异性的主要贡献源自中...  相似文献   

12.
Introduction In seismology, medium isotropy and anisotropy is defined by the direction of seismic wave propagation. If the seismic wave velocity does not vary with the direction, the medium is isotropy, whereas it is anisotropy. Recently, the study of anisotropy in crack medium becomes a focus forseismologists. Crampin (1978) made a deeply research on crustal anisotropy and put forward a theory of extensive dilatancy anisotropy (EDA) that there are a lot of cracks parallel to the hori- zonta…  相似文献   

13.
—Volcanic ocean islands are prone to structural failure of the edifice that result in landslides that can generate destructive tsunamis. These island landslides range enormously in size, varying from small rock falls to giant sector failures involving tens of cubic kilometers of debris. A survey of literature has allowed us to identify twenty-three processes that contribute to edifice collapse. These have been divided into endogenetic and exogenetic sources of edifice failure. Endogenetic sources of instability and failure include unstable foundations, volcanic intrusions, thermal alteration, edifice pore pressures, unbuttressed structures, and buried faults. Exogenetic sources of instability and failure include collapse of subaerial or submarine deposits, endo-upwelling, karst megaporosity, fractures, oversteepening, overloading, sea-level change, marine erosion, weathering including hurricanes, glacial response, volcanic activity, regional uplift or subsidence, tectonic seismicity and anthropogenic agents. While the endogenetic sources dominate during periods of active volcanism and cone building, the exogenetic sources may cause failure at any time. Tsunamis, both small and large, are associated with these edifice failures.  相似文献   

14.
On April 29, 1960, 19h. 32m. 13s. G.M.T. an earthquake took place originating SE of the Una-Una volcano, Celebes. In July 1960 an expedition visited the island to record the continuous aftershocks, its volcanology, and petrology. Due to the lack of a vertical component in the seismograph the exact direction of the epicenter could not be determined with certainty, but correlation between the seismograms in Djakarta and those recorded in the island, reveals two values for the epicenter, viz. 00° 21′ S - 121° 38′ E and 00° 15′ S -121° 40′ E with SE-NW direction. The absence of pP waves on the seismograms of Djakarta, Lembang and Medan stations suggests that these are shallow earthquakes. The survey for a new topographic map of the island of Una-Una reveals nine solfatara fields, one fumarole and six secondary, probably phreatic, eruption holes. The recent temperatures of the solfatara fields are somewhat higher than those before the earthquake. The collected samples are biotite andesite vitrophyres, biotite hypersthene andesites, and microdiorites. The difference between the Una-Una rocks, the andesites from other orogenic areas and trachytes from the hinterland volcanoes in Indonesia is clearly demonstrated on a Niggli-Becke projection diagram. The Una-Una rocks show transition between trachytes and andesites. Thep value of the rocks according to Rittmann’s method places them in the medium alkaline series. The petrology and chemistry of the volcanics, geological data from Una-Una and Togean islands, and the bathymetric map of the region suggest that this volcano lies outside the orogenic belt and that it occupies the intersection of two basement fissures of NE-SW and SE-NW directions. Summit observations of the volcano show similar directions for the volcanic fissures. The close relationship between tectonic earthquakes and volcanism was also demonstrated during the activity in 1898 in which the eruption was preceded by tectonic earthquakes. This, plus the presence of several epicenters SE of Una-Una indicate that both volcanic and seismic features may be associated with weak zones c. q. faults. The extinct volcanism in the Togean ridge can be explained by thickening of the earth crust caused by strong and continuous tectonic stress which is active since Tertiary time. The same tectonic condition was also responsible for the en échelon arrangement of the islands and the convexity of the Togean arc toward the hinterland.  相似文献   

15.
The goal of this study was to determine the main factors that controlled the kinematic evolution and the structural architecture developed during the Late Triassic to Early Jurassic rifting that led to the opening of the Neuquén basin in the southwestern sector of Gondwana. We carried out a series of analog models to simulate an extensional system with a bent geometry similar to the northeastern border of the basin. In different experiments, we varied the extension direction between NNE (N10°E) and NE (N45°E) orientations, inducing rift systems with different degrees of obliquity in each sector of the extended area. We compared the kinematic evolution and the final structural architecture observed in the experiments with data from two selected representative areas of the basin: (1) the Atuel depocenter, situated in the northern Andean sector, and (2) the Entre Lomas area, situated in the northeastern Neuquén Embayment. In both cases, the good match between the field and subsurface data and the results of the analog models supports a NNE orientation of the regional extension (N30°E–N20°E) during the synrift stage. Our experimental results suggest that lithospheric weakness zones of NNW to NW trend could have controlled and localized the extension in the Neuquén basin. These previous anisotropies were linked to the sutures and rheological contrasts generated during the collision of terranes against the southwestern margin of Gondwana during the Paleozoic, as well as further modifications of the thermo-mechanical state of the lithosphere during the Late Paleozoic to Early Mesozoic evolution.  相似文献   

16.
We calculated the Coulomb failure stress change generated by the 1976 Tangshan earthquake that is projected onto the fault planes and slip directions of large subsequent aftershocks.Results of previous studies on the seismic fail-ure distribution,crustal velocity and viscosity structures of the Tangshan earthquake are used as model constraints.Effects of the local pore fluid pressure and impact of soft medium near the fault are also considered.Our result shows that the subsequent Luanxian and Ninghe earthquakes occurred in the regions with a positive Coulomb fail-ure stress produced by the Tangshan earthquake.To study the triggering effect of the Tangshan,Luanxian,and Ninghe earthquakes on the follow-up small earthquakes,we first evaluate the possible focal mechanisms of small earthquakes according to the regional stress field and co-seismic slip distributions derived from previous studies,assuming the amplitude of regional tectonic stress as 10 MPa.By projecting the stress changes generated by the above three earthquakes onto the possible fault planes and slip directions of small earthquakes,we find that the "butterfly" distribution pattern of increased Coulomb failure stress is consistent with the spatial distribution of follow-up earthquakes,and 95% of the aftershocks occurred in regions where Coulomb failure stresses increase,indicating that the former large earthquakes modulated occurrences of follow-up earthquakes in the Tangshan earthquake sequence.This result has some significance in rapid assessment of aftershock hazard after a large earthquake.If detailed failure distribution,seismogenic fault in the focal area and their slip features can be rapidly determined after a large earthquake,our algorithm can be used to predict the locations of large aftershocks.  相似文献   

17.
The volcano Hekla in south Iceland had its latest eruption in January–March 1991. The eruption was accompanied and followed by considerable seismic activity. This study examines the seismicity in the Hekla region (63°42′–64°18′N, 18°30′–20°12′W) during a period when the high activity related to the eruption had ceased, from July 1991 to October 1995. The aim is to define the level of the normal background seismicity of the area that can be compared to the eruption-related activity. The Hekla Volcano proper was generally aseismic during the study period. The most prominent earthquake cluster is in the neighbouring Torfajökull Volcano. The epicentres are concentrated in the western part of the caldera and west of it. The hypocentres are located at all depths from the surface down to 14?km, with highest activity at 5–12?km. Inside this cluster, in the northwest part of the caldera, is a spherical volume void of earthquakes, approximately 4?km in diameter and centred at 8?km depth. This is interpreted as a cooling magma body. Small, low-frequency events of volcanic origin were occasionally recorded at Torfajökull. This activity has mainly occurred in swarms and was most abundant during the first year of the study period, presumably reflecting some kind of connection to the 1991 Hekla eruption. Our study area also includes the easternmost section of the South Iceland seismic zone, a transform zone characterized by bookshelf faulting on transverse faults. Two lineaments of epicentres were identified, roughly corresponding to mapped faults of the South Iceland seismic zone. The hypocentres are relatively deep, mainly at 6–12?km, matching the general trend of hypocentral depth increasing toward the east. The seismicity is highest in the area of the mapped faults. However, the epicentres extend beyond them and indicate greater width of the South Iceland seismic zone, or 20–30?km rather than approximately 10?km as indicated by the length of the surface faults. The seismicity in the volcanic systems of Hekla and Vatnafjöll shows some characteristics of the South Iceland seismic zone. Epicentres are concentrated into two N–S lineaments, one of which coincides with the location of the 1987 Vatnafjöll earthquake (Mw=5.9), a strike-slip event on a N- to S-trending fault. The hypocentres of the Hekla–Vatnafjöll events are mainly at 8–13?km depth, which indicates a continuation of the depth trend of the earthquakes of the South Iceland seismic zone. The events located at Hekla proper and immediately north of it are all of low-frequency character, which can be held as an indication of volcanic origin. On the other hand, they show clear S arrivals at observing stations like normal high-frequency tectonic earthquakes.  相似文献   

18.
Paleomagnetic directions have been determined for 21 flows of Quaternary age from the Medicine Lake Highlands in northern California. The mean direction for the area is I = 49.3° and D = 3.8° with an α95 of 5.4°. The corresponding mean VGP is located at 78.0°N and 42.4°E, a point which is offset 12° to the far, right-handed side of the rotation axis from the sampling site. The results here indicate only order of magnitude agreement with proposed models for offset poles. Together with other data from western United States there is an indication that large-scale regional field variations produce the observed inclination anomalies.  相似文献   

19.
In this study the probable seismic behavior of skewed bridges with continuous decks under earthquake excitations from different directions is investigated.A 45° skewed bridge is studied.A suite of 20 records is used to perform an Incremental Dynamic Analysis(IDA) for fragility curves.Four different earthquake directions have been considered:-45°, 0°, 22.5°, 45°.A sensitivity analysis on different spectral intensity measures is presented; efficiency and practicality of different intensity measures have been studied.The fragility curves obtained indicate that the critical direction for skewed bridges is the skew direction as well as the longitudinal direction.The study shows the importance of finding the most critical earthquake in understanding and predicting the behavior of skewed bridges.  相似文献   

20.
The parameters of split S waves from local weak earthquakes along eastern Hokkaido Island are studied over the period of 2003, including the strong Tokachi-oki September 26, 2003 earthquake (M = 8.0). Earthquake records of five stations belonging to the ISV seismological network were used. The studies of the split S wave parameters showed that they vary in space and time along Hokkaido Island. The zones of the Hidaka Mountains (ERM, MYR), Tokachi Plain (IWN, URH), and Kushiro Plain (AKK) are distinguished along Hokkaido. The anisotropy coefficients beneath the ERM, MYR, IWN, URH, and AKK stations attain 10.5, 10, 5, 3.5, and 6.5%, respectively. Beneath ERM, azimuths of the fast S wave (?) are predominantly in the N-S direction until July and in the E-W direction from July (parallel and normal to the Japan trench strike). By the time of the Tokachi-oki earthquake, the ? directions were oriented SE in agreement with the direction of the Pacific plate motion. The ? directions on the northern side of the Hidaka Range (MYR) are predominantly orthogonal to those beneath ERM, which can be evidence for differences in the direction of deformations on opposite sides of the range. Higher seismicity, the variation of S wave parameters, and a high anisotropy of the medium point to an intense development of deformation (dilatancy) processes in the area of the Hidaka Mountains. The fast wave azimuths beneath AKK are predominantly 50°–70°, and this orientation is consistent with the direction of migration of the Kurile arc front along the trench. Beneath IWN, the azimuths ? are oriented along the N-NE directions, and beneath URH, along the direction of the Pacific plate motion (100°–150°). Strengthening of mechanical properties of the medium and development and accumulation of shear deformations in a subhorizontal plane are supposed to take place in the Tokachi Plain area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号