首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 52 毫秒
1.
Comparatively few Icelandic tephra horizons dated to the early part of the Holocene have so far been detected outside Iceland. Here, I present several tephra horizons that have been recorded in a Holocene peat sequence on the Faroe Islands. Geochemical analyses show that at least two dacitic and one rhyolitic tephra layers were erupted from the Katla volcanic system on southern Iceland between ca. 8000 and 5900 cal. yr BP. The upper two layers can be correlated with the SILK tephras described from southern Iceland, whereas the third, dated to ca. 8000 cal. yr BP, has a geochemistry virtually identical to the rhyolitic component of the Vedde Ash. The results suggest that the Late Weichselian and early Holocene eruption history of the Katla volcano was probably more complex than inferred from Iceland. A new, early Holocene rhyolitic tephra dated to ca. 10 500 cal. yr BP probably originates in the Snæfellsnes volcanic centre in western Iceland. These new findings may play an important role in developing a Holocene tephra framework for northwest Europe. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

2.
Using contiguous high resolution sampling methods, we report the detection of a Glacier Peak volcanic ash from North America in Lateglacial Interstadial lake sediments in western Scotland. It occurs in close proximity to the Icelandic Borrobol and Penifiler tephras, but is distinguishable by its rhyolitic major-element composition that is consistent with the earliest set G layer, one of a number of mid-Interstadial Glacier Peak eruptions dated between 13.71 and 13.41 cal ka bp. Another cryptotephra layer present in these same Interstadial sediments has a rhyolitic composition consistent with the Icelandic Katla source. However, it is in a stratigraphic position below the widespread mid-Lateglacial Stadial Vedde Ash from Katla, which is also present in these cores. The Katla layer is stratigraphically well defined, suggesting primary airfall, and is compositionally similar to a mid-Interstadial rhyolitic tephra reported from a North Atlantic marine sequence south of Iceland dated to ~13.6 ka. The detection of Glacier Peak G in the European tephrostratigraphy will permit direct high-precision correlation of mid-Interstadial palaeoenvironments between North American and European terrestrial sequences. Any correlation between the new Katla layer and similar marine layers remains provisional, though if verified would permit similar correlation between North Atlantic marine and European terrestrial records.  相似文献   

3.
Discontinuous tephra layers were discovered at Burney Spring Mountain, northern California. Stratigraphic relationships suggest that they are two distinct tephras. Binary plots and standard similarity coefficients of electron probe microanalysis data have been supplemented with principal component analysis to correlate the two tephra layers to known regional tephras. Using principal component analysis, we are furthermore able to bound our uncertainty in the correlation of the two tephra layers. After removal of outliers, within the 95% prediction interval, we can say that one tephra layer is likely the Rockland tephra, aged 565–610 ka, and the second layer is likely from Mt. Mazama, the Trego Hot Springs tephra, aged ~ 29 ka. In the case of the Rockland tephra, the new findings suggest that dispersal to the north was highly restricted. For Trego Hot Springs ash, the new findings extend the distribution to the southwest, with a rapid thinning in that direction. Coupled with considerations of regular tephra dispersal patterns, the results suggest that the primary dispersal direction for both tephras was to the south, and that occurrences in other directions are unlikely or otherwise anomalous.  相似文献   

4.
A suite of deep‐sea cores were collected along transects up to 100 km across the fore‐arc and back‐arc regions of the predominantly submarine Kermadec arc near Raoul and Macauley islands, southwest Pacific. The cores reveal a macroscopic tephra record extending back >50 ka. This is a significant addition to the dated record of volcanism, previously restricted to fragmented late Holocene records exposed on the two islands. The 27 macroscopic tephra layers display a wide compositional diversity in glass (~50–78 wt% SiO2). Many tephra layers comprise silicic shards with a subordinate mafic shard population. This could arise from magma mingling and may reflect mafic triggering of the silicic eruptions. Broadly, the glass compositions can be distinguished on diverging high‐K and low‐K trends, most likely arising from different source volcanoes. This distinction is also reflected in the tephra records exposed on Raoul (low‐K) and Macauley (high‐K) islands, the likely source areas. Heterogeneous tephra comprising shards of both high‐ and low‐K affinity, silicic and mafic compositions, and more homogeneous tephra with subordinate outlier shard compositions, are best explained by post‐depositional mixing of separate eruption deposits or contemporaneous eruptions. Evidently, the slow sedimentation rates of the calcareous oozes (~101–102 mm ka?1) were insufficient to adequately separate and preserve closely spaced eruption deposits. This exemplifies the difficulty in assessing eruption frequencies and magmatic trends, and erecting a tephrostratigraphy, using geochemical fingerprinting in such environments. Despite these difficulties, the ca. 5.7 ka Sandy Bay Tephra erupted from Macauley Island can be correlated over a distance of >100 km, extending east and west of the island, showing that the mostly submerged volcanoes are capable of wide tephra dispersal. Hence there is potential for developing chronostratigraphies for the southwest Pacific beyond the region covered by the extensive rhyolite marker beds from the Taupo Volcanic Zone. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
Tephra, emplaced as a result of Pleistocene eruption of the Indonesian ‘supervolcano’ Toba, occurs at many localities in India. However, the ages of these deposits have hitherto been contentious; some workers have argued that these deposits mark the most recent eruption (eruption A, ca 75 ka), although at some sites they are stratigraphically associated with Acheulian (Lower Palaeolithic) artefacts. Careful examination of the geochemical composition of the tephras, which are composed predominantly of shards of rhyolitic glass, indicates that discrimination between the products of eruption A and eruption D (ca 790 ka) of Toba is difficult. Nonetheless, this comparison favours eruption D as the source of the tephra deposits at some sites in India, supporting the long-held view that the Lower Palaeolithic of India spans the late Early Pleistocene. In principle, these tephra deposits should be dateable using the K–Ar system; however, previous experience indicates contamination by a small proportion of ancient material, resulting in apparent ages that exceed the true ages of the tephras. We have established the optimum size-fraction in which the material from Toba is concentrated, 53–61 μm, and have considered possible origins for the observed contamination. We also demonstrate that Ar–Ar analysis of four out of five of our samples has yielded material with an apparent age similar to that expected for eruption D. These numerical ages, of 809 ± 51, 714 ± 62, 797 ± 45 and 827 ± 39 ka for the tephras at Morgaon, Bori, Gandhigram and Simbhora, provide a weighted mean age for this eruption of 799 ± 24 ka (plus-or-minus two standard deviations). However, these numerical ages are each derived from no more than 10–20% of the argon release in each sample, which is not ideal. Nonetheless, our results demonstrate that it is feasible, in principle, to date this difficult material using the Ar–Ar technique; future follow-up studies will therefore be able to refine our preparation and analysis procedures to better optimize the dating.  相似文献   

6.
The Tiscapa maar in the center of Managua city formed by a phreatomagmatic eruption <3 ka ago. The eruption excavated a crater deep into the basement exposing a coherent Pleistocene to Holocene volcaniclastic succession that we have divided into four formations. The lowermost, >60 ka old basaltic–andesitic formation F1 comprises mafic ignimbrites and phreatomagmatic tephras derived from the Las Sierras volcanic complex south of Managua. Formation F2 contains the ~60 ka basaltic–andesitic Fontana tephra erupted from the Las Nubes Caldera of the Las Sierras complex 15 km to the S, the 25 ka Upper Apoyo tephra from the Apoyo Caldera 35 km to the SE, and the Lower (~17 ka) and Upper (12.4 ka) Apoyeque tephras from the Chiltepe volcanic complex 15 km to the NW. These tephras are separated by weathering horizons and paleosols indicating dry climatic conditions. Fluvial deposits of a SSW-NNE running paleo-river system build formation F3. The fluvial sediments contain, from bottom to top, scoriae from the ~6 ka basaltic San Antonio tephra, pumice lapilli from the Apoyo and Apoyeque tephras and the 6.1 ka Xiloà tephra, and scoriae derived from the Fontana tephra. The fluvial sediment succession thus reflects progressively deeper carving erosion in the southern highlands (where a large-amplitude regional erosional unconformity exists at the appropriate stratigraphic level) that began after ~6 ka. This suggests that the mid-Holocene tropical high-precipitation climatic phase affected western Nicaragua about a thousand years later than other circum-Caribbean regions. The end of the wet climate phase ~3 ka ago is recorded by a deep weathering zone and paleosol atop formation F3 prior to the Tiscapa eruption. Formation F4 is the Tiscapa tuffring composed of pyroclastic surge and fallout deposits that cover a minimum area of 1.2 km2. The 4 × 109 kg of erupted basaltic magma is compositionally and genetically related to the low-Ti basalts of the N–S striking Nejapa-Miraflores volcanic–tectonic alignment 5 km to the West of Tiscapa. Ascent and eruption mode of the Tiscapa magma were controlled by the Tiscapa fault that has a very active seismic history as it achieved 12 m displacement in about 3000 years. Managua city is thus exposed to continued seismic and volcanic risks.  相似文献   

7.
The climactic Los Chocoyos (LCY) eruption from Atitlán caldera (Guatemala) is a key chronostratigraphic marker for the Quaternary period given the extensive distribution of its deposits that reached both the Pacific and Atlantic Oceans. Despite LCY tephra being an important marker horizon, a radioisotopic age for this eruption has remained elusive. Using zircon (U–Th)/He geochronology, we present the first radioisotopically determined eruption age for the LCY of 75 ± 2 ka. Additionally, the youngest zircon crystallization 238U–230Th rim ages in their respective samples constrain eruption age maxima for two other tephra units that erupted from Atitlán caldera, W-Fall (130 +16/−14 ka) and I-Fall eruptions (56 +8.2/−7.7 ka), which under- and overlie LCY tephra, respectively. Moreover, rim and interior zircon dating and glass chemistry suggest that before eruption silicic magma was stored for >80 kyr, with magma accumulation peaking within ca. 35 kyr before the LCY eruption during which the system may have developed into a vertically zoned magma chamber. Based on an updated distribution of LCY pyroclastic deposits, a new conservatively estimated volume of ~1220 ± 150 km3 is obtained (volcanic explosivity index VEI > 8), which confirms the LCY eruption as the first-ever recognized supereruption in Central America.  相似文献   

8.
Two cores were recovered in the southeastern part of Lake Shkodra (Montenegro and Albania) and sampled for identification of tephra layers. The first core (SK13, 7.8 m long) was recovered from a water depth of 7 m, while the second core (SK19, 5.8 m long) was recovered close to the present‐day shoreline (water depth of 2 m). Magnetic susceptibility investigations show generally low values with some peaks that in some cases are related to tephra layers. Naked‐eye inspection of the cores allowed the identification of four tephra layers in core SK13 and five tephra layers in core SK19. Major element analyses on glass shards and mineral phases allowed correlation of the tephra layers between the two cores, and their attribution to six different Holocene explosive eruptions of southern Italy volcanoes. Two tephra layers have under‐saturated composition of glass shards (foiditic and phonolitic) and were correlated to the AD 472 and the Avellino (ca. 3.9 cal. ka BP) eruptions of Somma‐Vesuvius. One tephra layer has benmoreitic composition and was correlated to the FL eruption of Mount Etna (ca. 3.4 cal. ka BP). The other three tephra layers have trachytic composition and were correlated to Astroni (ca. 4.2 cal. ka BP), Agnano Monte Spina (ca. 4.5 cal. ka BP) and Agnano Pomici Principali (ca. 12.3 cal. ka BP) eruptions of Campi Flegrei. The ages of tephra layers are in broad agreement with eight 14C accelerator mass spectrometric measurements carried out on plant remains and charcoal from the lake sediments at different depths along the two cores. The recognition of distal tephra layers from Italian volcanoes allowed the physical link of the Holocene archive of Lake Shkodra to other archives located in the central Mediterranean area and the Balkans (i.e. Lake Ohrid). Five of the recognised tephra layers were recognised for the first time in the Balkans area, and this has relevance for volcanic hazard assessment and for ash dispersal forecasting in case of renewed explosive activity from some of the southern Italy volcanoes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Tephra layers with Icelandic provenance have been identified across the North Atlantic region in terrestrial, lacustrine, marine and glacial environments. These tephra layers are used as marker horizons in tephrochronology including climate studies, archaeology and environmental change. The major element chemistries of 19 proximally deposited Holocene Icelandic silicic tephra layers confirm that individual volcanic systems have unique geochemical signatures and that eruptions from the same system can often be distinguished. In addition, glass trace element chemistry highlights subtle geochemical variations between tephra layers which appear to have identical major element chemistry and thus allows for the identification of some, if not all, tephra layers previously considered identical in composition. This paper catalogues the compositional variation between the widespread Holocene Icelandic silicic tephra deposits.  相似文献   

10.
A detailed 90,000-year tephrostratigraphic framework of Aso Volcano, southwestern Japan, has been constructed to understand the post-caldera eruptive history of the volcano. Post-caldera central cones were initiated soon after the last caldera-forming pyroclastic-flow eruption (90 ka), and have produced voluminous tephra and lava flows. The tephrostratigraphic sequence preserved above the caldera-forming stage deposits reaches a total thickness of 100 m near the eastern caldera rim. The sequence is composed mainly of mafic scoria-fall and ash-fall deposits but 36 silicic pumice-fall deposits are very useful key beds for correlation of the stratigraphic sequence. Explosive, silicic pumice-fall deposits that fell far beyond the caldera have occurred at intervals of about 2500 years in the post-caldera activity. Three pumice-fall deposits could be correlated with lava flows or an edifice in the western part of the central cones, although the other silicic tephra beds were erupted at unknown vents, which are probably buried by the younger products from the present central cones. Most of silicic eruptions produced deposits smaller than 0.1 km3, but bulk volumes of two silicic eruptions producing the Nojiri pumice (84 ka) and Kusasenrigahama pumice (Kpfa; 30 ka) were on the order of 1 km3 (VEI 5). The largest pyroclastic eruption occurred at the Kusasenrigahama crater about 30 ka. This catastrophic eruption began with a dacitic lava flow and thereafter produced Kpfa (2.2 km3). Total tephra volume in the past 90,000 years is estimated at about 18.1 km3 (dense rock equivalent: DRE), whereas total volume for edifices of the post-caldera central cones is calculated at about 112 km3, which is six times greater than the former. Therefore, the average magma discharge rate during the post-caldera stage of Aso Volcano is estimated at about 1.5 km3/ky, which is similar to the rates of other Quaternary volcanoes in Japan.  相似文献   

11.
We detected late Pleistocene cummingtonite-bearing cryptotephras in loess deposits in NE Japan and correlated them with known tephras elsewhere by using major-element compositions of the cummingtonite. This is the first time cryptotephras have been identified by analysis of a crystal phase rather than glass shards. In central NE Japan, four cummingtonite-bearing tephras, the Ichihasama pumice, the Dokusawa tephra, the Naruko–Nisaka tephra, and the Adachi–Medeshima tephra, are present in late Pleistocene loess deposits. Because the cummingtonite chemistry of each tephra is different and characteristic, it is potentially a powerful tool for detecting and identifying cryptotephras. An unidentified cummingtonite-bearing cryptotephra previously reported to be present in the late Pleistocene loess deposits at Kesennuma (Pacific coast) did not correlate with any of the known cummingtonite-bearing tephras in central NE Japan, but instead with the Numazawa–Kanayama tephra (erupted from the Numazawa caldera, southern NE Japan), although Kesennuma is well beyond the previously reported area of the distribution of the Numazawa–Kanayama tephra. Three new cummingtonite-bearing cryptotephras in the mid and late Pleistocene loess deposits (estimated to be less than 82 ka, 100–200 ka, and ca. 250 ka) on the Isawa upland were also detected.  相似文献   

12.
Tephras provide one of the most reliable methods of time control and synchronisation within Quaternary sequences. We report on the identification of two widespread rhyolitic tephras – the Kawakawa and Rangitawa tephras – preserved in extensive peat deposits on Chatham Island ~900 km east of New Zealand. The tephras, both products of supereruptions from the Taupo Volcanic Zone, occur as pale, fine‐ash dominated layers typically 10–150 mm thick. Mineralogically they are dominated by rhyolitic glass, together with subordinate amounts of quartz, feldspar, hypersthene, hornblende, Fe–Ti oxides and zircon. Phlogopite/biotite was identified additionally in Rangitawa Tephra. Ages for each tephra were obtained via mineralogical and major element glass composition‐based correlation with well‐dated equivalent deposits on mainland New Zealand, and we also obtained a new zircon fission‐track age for Rangitawa Tephra (350 ± 50 ka) on Chatham Island. Both tephras were erupted at critical times for palaeoenvironmental reconstructions in the New Zealand region: the Kawakawa at ca. 27 cal. ka, near the beginning of the ‘extended’ LGM early in marine isotope stage (MIS) 2; and the Rangitawa at ca. 350 ka near the end of MIS 10. The time constraints provided by the tephras demonstrate that Chatham Island peats contain long‐distance pollen derived from mainland New Zealand, which provides a reliable proxy for identifying glacial–interglacial climate conditions, in this case during the MIS 11–10 and MIS 2–1 cycles. The two tephras thus provide important chronostratigraphic tie‐points that facilitate correlation and synchronisation not only across the Quaternary deposits of the Chatham Islands group but also with climatically significant terrestrial and marine records in the wider New Zealand region. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
The generation of reliable age models for palaeoenvironmental and archaeological records in the Eurasian Arctic is often problematic when using conventional dating techniques. Tephrochronology can potentially improve the chronologies of such records and synchronise disparate sedimentary archives. However, to date, systematic tephra studies are lacking for this region. This paper presents the first cryptotephra data from the White Sea region (northwestern Russia) based on a peat core spanning the past ~1800 years. We identify seven geochemical glass populations that derive from six Icelandic volcanoes and correlate four of them to north European tephra isochrons; these include Askja ad 1875, the basaltic component of the ad 877 Landnám tephra, and tephras BTD-15 (c. ad 1750–1650) and SL-2/SB-2 (ad 803–767) from unknown eruptions of Katla and Snæfellsjökull, respectively. The remaining three populations originate from Grímsvötn, Hekla and Katla; however, their attribution to individual eruptions remains ambiguous. These findings highlight the potential to extend the Late Holocene tephrochronological framework of northern Europe to the west Eurasian Arctic. The detection of at least three basaltic tephras in the core suggests that basaltic shards can be transported over larger distances than previously known and that peatlands are well suited to preserve such components.  相似文献   

14.
Five cores from the southern Tyrrhenian and Ionian seas were studied for their tephra and cryptotephra content in the 4.4–2.0 ka time interval. The chronological framework for each core was obtained by accelerator mass spectrometry 14C dating, the occurrence of distinct marker tephra and stratigraphic correlation with adjacent records. Tephrochronology allowed us to correlate the analyzed deposits with tephra markers associated with Somma-Vesuvius (79 ad ), Ischia Island (Cretaio), Mt Etna (FG, FL and FS) and Campi Flegrei (Astroni-Agnano Monte Spina) events. For the first time in the marine setting, a large single glass data set is provided for the Late Holocene Etnean marker beds including the FS tephra (ca. 4.3 ka). Moreover, unknown deposits from Lipari (ca. 2.2–2.0 ka) and Vulcano (3.6–3.3 ka) are also recognized at more distal sites than previously reported. These results contribute to improve the high-resolution tephrostratigraphic framework of the central Mediterranean Sea. They also provide new insights into the chemical composition and dispersal pattern of tephras that can be used as inter-archive tools for regional and ‘local’ stratigraphic correlations and for addressing paleoclimate research.  相似文献   

15.
This paper presents the first detailed study of a late Pleistocene marine tephra sequence from the NW Pacific, downwind from the Kamchatka volcanic arc. Sediment core SO201-2-40, located on the Meiji Rise ~400 km offshore the peninsula, includes 25 tephras deposited within the last 215 ka. Volcanic glass from the tephras was characterized using single-shard electron microprobe analysis and laser ablation inductively coupled mass spectrometry. The age of tephras was derived from a new age model based on paleomagnetic and paleoclimate studies. Geochemical correlation of distal tephras to Kamchatkan pyroclastic deposits allowed the identification of tephras from the Karymsky, Gorely, Opala and Shiveluch eruptive centers. Three of these tephras were also correlated to other marine and terrestrial sites and hence are identified as the best markers for the north-west Pacific region. These are an early Holocene tephra from the Karymsky caldera (~8.7 ka) and two tephras falling into the Marine Isotope Stage (MIS) 6 glacial time: an MIS 6.4 tephra from Shiveluch (~141 ka) and the MIS 6.5 Rauchua tephra (~175 ka) from Karymsky. The data presented in this study can be used in paleovolcanological and paleoceanographic reconstructions.  相似文献   

16.
Cryptotephrochronology, the use of hidden, diminutive volcanic ash layers to date sediments, has rarely been applied outside western Europe but has the potential to improve the tephrochronology of other regions of the world. Here we present the first comprehensive cryptotephra study in Alaska. Cores were extracted from five peatland sites, with cryptotephras located by ashing and microscopy and their glass geochemistry examined using electron probe microanalysis. Glass geochemical data from nine tephras were compared between sites and with data from previous Alaskan tephra studies. One tephra present in all the cores is believed to represent a previously unidentified eruption of Mt. Churchill and is named here as the ‘Lena tephra’. A mid-Holocene tephra in one site is very similar to Aniakchak tephra and most likely represents a previously unidentified Aniakchak eruption, ca. 5300-5030 cal yr BP. Other tephras are from the late Holocene White River eruption, a mid-Holocene Mt. Churchill eruption, and possibly eruptions of Redoubt and Augustine volcanoes. These results show the potential of cryptotephras to expand the geographic limits of tephrochronology and demonstrate that Mt. Churchill has been more active in the Holocene than previously appreciated. This finding may necessitate reassessment of volcanic hazards in the region.  相似文献   

17.
Three distal tephra layers or cryptotephras have been detected within a sedimentary sequence from the Netherlands that spans the last glacial-interglacial transition. Geochemical analyses identify one as the Vedde Ash, which represents the southernmost discovery of this mid-Younger Dryas tephra so far. This tephra was found as a distinct horizon in three different cores sampled within the basin. The remaining two tephras have not been geochemically 'fingerprinted', partly due to low concentrations and uneven distributions of shards within the sequences sampled. Nevertheless, there is the potential for tracing these tephra layers throughout the Netherlands and into other parts of continental Europe. Accordingly, the possibilities for precise correlation of Dutch palaeoenvironmental records with other continental, marine and ice-core records from the North Atlantic region are highlighted.  相似文献   

18.
A composite stratigraphical sequence, the Fnjóskadalur Sequence, reveals ten cycles of glacier advances and formation of ice-dammed lakes in Fnjóskadalur in central North Iceland. Chemical analyses of the Skógar Tephra, with its type locality in this valley, have enabled a correlation with Ash zone I in deep sea sediments of the North Atlantic and with the Vedde Ash Bed on land in western Norway, where it is dated to 10,600 BP. The Skógar Tephra is composed of two layers, a basaltic tephra (STP-1) and a rhyolitic tephra (STP-2) erupted almost simultaneously from two different Icelandic volcanoes. The STP-1 tephra originates from the Katla volcano in South Iceland, and the öræfajökull volcano in Southeast Iceland is considered a plausible source of the STP-2 tephra. This new dating of the Skógar Tephra puts the three youngest glacier advances of the Fnjóskadalur Sequence within a 1000 year period between 10,600 and 9650 BP. The redated Late Weichselian glacial history now extracted from the Fnjóskadalur Sequence shows that glaciers in North Iceland were more extended in Younger Dryas and Preboreal times than previously assumed. This fits with the revised deglaciation pattern which has evolved in recent years.  相似文献   

19.
Clearly defined distal tephras are rare in rockshelter sediment records. Crvena Stijena, a Palaeolithic site in Montenegro, contains one of the longest (> 20 m) rockshelter sediment records in Europe with deposits ranging in age from Middle Pleistocene to mid-Holocene. A distinctive tephra is clearly exposed within the well stratified record approximately 6.5 m below the present land surface. We present geochemical data to confirm that this tephra is a distal equivalent of the Campanian Ignimbrite deposits and a product of the largest Late Pleistocene eruption in Europe. Originating in the Campanian volcanic province of southwest Italy, this tephra has been independently dated to 39.3 ka. It is a highly significant chronostratigraphic marker for southern Europe. Macrostratigraphic and microstratigraphic observations, allied with detailed particle size data, show that the tephra layer is in a primary depositional context and was transported into the rockshelter by aeolian processes. This site is unique because the tephra forms an abrupt boundary between the Middle and Upper Palaeolithic records. Before they can be used as chronostratigraphic markers in rockshelter and cave-mouth environments, it is essential to establish the stratigraphic integrity of distal tephras and the mechanisms and pathways involved in their transport and deposition.  相似文献   

20.
Late Pleistocene tephras derived by large explosive volcanic eruptions are widespread in the Mediterranean and surrounding areas. They are important isochronous markers in stratigraphic sections and therefore it is important to constrain their sources. We report here tephrochronology results using multiple criteria to characterize the volcanic products of the Late Pleistocene Ciomadul volcano in eastern–central Europe. This dacitic volcano had an explosive eruption stage between 57 and 30 ka. The specific petrological character (ash texture, occurrence of plagioclase and amphibole phenocrysts and their compositions), the high-K calc-alkaline major element composition and particularly the distinct trace element characteristics provide a strong fingerprint of the Ciomadul volcano. This can be used for correlating tephra and cryptotephra occurrences within this timeframe. Remarkably, during this period several volcanic eruptions produced tephras with similar glass major element composition. However, they differ from Ciomadul tephras by glass trace element abundances, ratios of strongly incompatible trace elements and their mineral cargo that serve as discrimination tools. We used (U-Th)/He zircon dates combined with U-Th in situ rim dates along with luminescence and radiocarbon dating to constrain the age of the explosive eruptions of Ciomadul that yielded distal tephra layers but lack of identified proximal deposits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号