首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Semicircular and crescent-shaped accumulations of salt crystals developed on salt crusts were measured on three Tunisian playas in September 1990. These features have been termed salt ramps. Their morphology and chemistry suggest that they are formed in the late stages of shallow ephemeral lake desiccation in playa basins. They form by salt precipitation from shallow brine lakes that are blown across salt-encrusted playa surfaces by the wind. Moreover, they appear to be short-lived features and their degradation is related to the flooding of playas with less saline water, and possibly rainfall and deflation.  相似文献   

2.
A large groundwater system in the Amadeus Basin, central Australia, discharges to a chain of playa lakes 500 km long. The playas contain highly concentrated brines; these are sodium-chloride rich waters with appreciable magnesium and sulphate and very low concentrations of calcium and bicarbonate. Gypsum, glauberite, and other evaporite minerals are precipitating in the playas. The groundwaters evolve to brine by concurrent processes of dissolution, evaporative concentration, mineral precipitation, and mineralogical change. Chemical evolution is considered with reference to a concentration factor based on chloride. Ion transfer calculations demonstrate losses of magnesium and bicarbonate throughout, as a result of precipitation. Sodium, potassium, calcium, and sulphate are gained initially as a result of dissolution but lost subsequently as a result of precipitation. Larger playas in the chain, exemplified by Lake Amadeus, have dual shallow and deep groundwater flow paths whereas the smaller playas, exemplified by Spring Lake, have only shallow flow paths. Brines in the larger playas are diluted by deep groundwaters and this is reflected in the degree of saturation attained with respect to particular minerals. Thus, saturation with respect to gypsum and glauberite is attained earlier in Spring Lake than in Lake Amadeus. Saturation with respect to halite is attained in Spring Lake but not in Lake Amadeus. Both playas are undersaturated with respect to hexahydrite and sylvite although these minerals occur in efflorescent crusts in Spring Lake.  相似文献   

3.
Dust emission from wet and dry playas in the Mojave Desert,USA   总被引:1,自引:0,他引:1  
The interactions between playa hydrology and playa‐surface sediments are important factors that control the type and amount of dust emitted from playas as a result of wind erosion. The production of evaporite minerals during evaporative loss of near‐surface ground water results in both the creation and maintenance of several centimeters or more of loose sediment on and near the surfaces of wet playas. Observations that characterize the texture, mineralogic composition and hardness of playa – surfaces at Franklin Lake, Soda Lake and West Cronese Lake playas in the Mojave Desert (California), along with imaging of dust emission using automated digital photography, indicate that these kinds of surface sediment are highly susceptible to dust emission. The surfaces of wet playas are dynamic surface texture and sediment availability to wind erosion change rapidly, primarily in response to fluctuations in water‐table depth, rainfall and rates of evaporation. In contrast, dry playas are characterized by ground water at depth. Consequently, dry playas commonly have hard surfaces that produce little or no dust if undisturbed except for transient silt and clay deposited on surfaces by wind and water. Although not the dominant type of global dust, salt‐rich dusts from wet playas may be important with respect to radiative properties of dust plumes, atmospheric chemistry, windborne nutrients and human health. Published in 2007 by John Wiley & Sons, Ltd.  相似文献   

4.
Sodium accumulating playas (also termed sodic or natric playas) are typically covered by polygonal crusts with different pattern characteristics, but little is known about the short‐term (hours) dynamics of these patterns or how pore water may respond to or drive changing salt crust patterning and surface roughness. It is important to understand these interactions because playa‐crust surface pore‐water and roughness both influence wind erosion and dust emission through controlling erodibility and erosivity. Here we present the first high resolution (10?3 m; hours) co‐located measurements of changing moisture and salt crust topography using terrestrial laser scanning (TLS) and infra‐red imagery for Sua Pan, Botswana. Maximum nocturnal moisture pattern change was found on the crests of ridged surfaces during periods of low temperature and high relative humidity. These peaks experienced non‐elastic expansion overnight, of up to 30 mm and up to an average of 1.5 mm/night during the 39 day measurement period. Continuous crusts however showed little nocturnal change in moisture or elevation. The dynamic nature of salt crusts and the complex feedback patterns identified emphasize how processes both above and below the surface may govern the response of playa surfaces to microclimate diurnal cycles. © 2015 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

5.
The arid Qaidam Basin is the largest (~3.88 × 104 km2) basin on the north‐eastern Tibetan Plateau. Wind erosion in the area has been regarded as an important trigger for intra‐basin tectonic balance upheaval, geomorphologic development and as a major supplier of dust to the Chinese Loess Plateau downwind. An initial estimate of the rate of wind erosion (Kapp et al., 2011) based on geological cross‐sections has suggested up to 3.2 × 104 km3 of sediments has been deflated over the past 2.8 Ma, lowering the landscape by an average of 0.29 mm/yr. In this paper we re‐evaluate this estimate by dating surface crusts present on three playas within the basin. Understanding the development of these playas is crucial to assessing the overall role of the wind in shaping the regional landscape because they are typically capped with a thick salt crust which effectively protects them from wind erosion. Optically stimulated luminescence (OSL) and U‐series dating from a pit section and from the top of a deep drill core, together with results from magnetostratigraphy and a climate proxy record correlated to the marine oxygen isotope record, are used here to determine the age of the playa plains and suggest that the salt crusts have an age of c. 0.1 Ma. This young age and the wide distribution of resistant thick salt crusts of the playa plains indicate a much lower degree of wind erosion than previously suggested. The crusts protect the surface from significant surface erosion (including sediment exhumation and unloading) and whilst some wind erosion does occur, it is unlikely to be sufficient to trigger tectonic uplift of the basin or to be a major dust source for the Loess Plateau as previously suggested. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
Outcrop exposures of sedimentary rocks at the Opportunity landing site (Meridiani Planum) form a set of genetically related strata defined here informally as the Burns formation. This formation can be subdivided into lower, middle, and upper units which, respectively, represent eolian dune, eolian sand sheet, and mixed eolian sand sheet and interdune facies associations. Collectively, these three units are at least 7 m thick and define a “wetting-upward” succession which records a progressive increase in the influence of groundwater and, ultimately, surface water in controlling primary depositional processes.The Burns lower unit is interpreted as a dry dune field (though grain composition indicates an evaporitic source), whose preserved record of large-scale cross-bedded sandstones indicates either superimposed bedforms of variable size or reactivation of lee-side slip faces by episodic (possibly seasonal) changes in wind direction. The boundary between the lower and middle units is a significant eolian deflation surface. This surface is interpreted to record eolian erosion down to the capillary fringe of the water table, where increased resistance to wind-induced erosion was promoted by increased sediment cohesiveness in the capillary fringe. The overlying Burns middle unit is characterized by fine-scale planar-laminated to low-angle-stratified sandstones. These sandstones accumulated during lateral migration of eolian impact ripples over the flat to gently undulating sand sheet surface. In terrestrial settings, sand sheets may form an intermediate environment between dune fields and interdune or playa surfaces. The contact between the middle and upper units of the Burns formation is interpreted as a diagenetic front, where recrystallization in the phreatic or capillary zones may have occurred. The upper unit of the Burns formation contains a mixture of sand sheet facies and interdune facies. Interdune facies include wavy bedding, irregular lamination with convolute bedding and possible small tepee or salt-ridge structures, and cm-scale festoon cross-lamination indicative of shallow subaqueous flows marked by current velocities of a few tens of cm/s. Most likely, these currents were gravity-driven, possibly unchannelized flows resulting from the flooding of interdune/playa surfaces. However, evidence for lacustrine sedimentation, including mudstones or in situ bottom-growth evaporites, has not been observed so far at Eagle and Endurance craters.Mineralogical and elemental data indicate that the eolian sandstones of the lower and middle units, as well as the subaqueous and eolian deposits of the Burns upper unit, were derived from an evaporitic source. This indirectly points to a temporally equivalent playa where lacustrine evaporites or ground-water-generated efflorescent crusts were deflated to provide a source of sand-sized particles that were entrained to form eolian dunes and sand sheets. This process is responsible for the development of sulfate eolianites at White Sands, New Mexico, and could have provided a prolific flux of sulfate sediment at Meridiani. Though evidence for surface water in the Burns formation is mostly limited to the upper unit, the associated sulfate eolianites provide strong evidence for the critical role of groundwater in controlling sediment production and stratigraphic architecture throughout the formation.  相似文献   

7.
In bolsons in the desert regions of southern California and adjacent parts of Nevada, the area underlain by alluvial fan gravels and playa sediments is generally ?1·2 times the area being eroded to produce those sediments. In certain larger basins in the vicinity of Death Valley, however, the depositional area is only about half the size of the erosional area. This reflects the more active tectonic environment in these bolsons. Of the areas underlain by recent sediments in these bolsons, playas make up 2–6 per cent. Smaller playas are found in the Mojave region, and seem to be associated with sedimentary terranes. Conversely, igneous terranes support larger playas. Larger deviations of playa area from these averages are attributable to incorrect identification of bolson boundaries. Fine sediment is either able to pass through the bolson to the next down stream, or is being collected from areas upstream that were not considered to be part of the system. For example, the playa in Death Valley is unusually large. This is in part because the Death Valley playa has been deformed tectonically so parts of it are now eroding, and in part because the outlet of Lake Tecopa was downcut in the geologically recent past, so sediment once trapped there now reaches Death Valley. The size of the playa in Death Valley is still adjusting to these changes.  相似文献   

8.
Recent quarring of the surficial gypsum crusts adjacent to Djebel Sidi Bou Hellas has revealed sections typically showing a discontinuous surface gravel cover underlain by more than 7 m of microcrystalline gypsum. The location, elongate shape, form in cross-section and chemistry of this deposit suggests an aeolian origin, whereby aeolian sands have been trapped against a glacis d'erosion terrace, and subsequently consolidated by meteoric waters. One gypsum quarry revealed a midden and the remains of a Roman dwelling now buried within the crust. A radiocarbon date of organic matter in the midden and a Roman coin found within it suggest an age of AD324–345 for the deposit. This is the first firm date for a surficial gypsum crust in southern Tunisia and the age is surprisingly young. Previous studies have speculated on phases of crust development between the Villefranchian and early Holocene but none since. Remote sensing and field evidence show that gypsiferous sands are currently deflated from the dry parts of the mudflats of Chott Fedjaj. They are subsequently transported in a southwesterly trajectory and trapped against glacis on the southern margins of Chott Fedjaj, forming contemporary analogues of the Roman deposit. Sands that are not trapped form dune fields and sandflats where gypsum crusts appear to be forming today. If the source area of gypsum sands has remained constant since Roman times, then the predominant wind direction has moved 45° to the southwest since then. The other possible source of aeolian gypsum for the Roman deposit, the vast mudflats of Chott Djerid, involves an even greater change in predominant wind direction. © 1997 John Wiley & Sons, Ltd.  相似文献   

9.
Severe dust storms in the Southern Aral Sea Basin have become common with the desiccation of the sea. The high incidence of dust in the area has had severe ecological consequences. Within the framework of efforts to reduce this phenomenon, deflatability as well as deflatability‐related characteristics of some prominent soils/sediment surfaces in the Southern Aral Sea Basin were examined. The materials included a salt crust from a developed Solonchak, a Takyr crust and a Takyr‐like soil, and salt crusts from undeveloped Solonchaks formed on the exposed bottom of the Aral Sea. Characteristics determined were particle size distribution, dry aggregate size distribution and salt, carbonate and organic carbon contents. Deflatability was examined using a suction type wind tunnel with a SENSIT‐type sensor to detect airborne unconsolidated material, on materials treated to different moisture levels and with a chemical stabilizer, and on restored crusts created from the unconsolidated materials. Fine sand dominates in the materials, and in the Takyr crust and Takyr‐like soils is accompanied by significant amounts of silt and clay. All materials contain moderate amounts of carbonate and are low in organic matter. All soils/sediments contain salts, but in the salt crusts of the Solonchaks the salt fraction dominates. They all have more than 50 per cent PM850 (particles with diameter <850 µm), indicating a relatively high deflatability potential. The materials from the Takyr crusts and Takyr‐like soil with a high proportion of fine aggregates had the lowest threshold friction velocities, while the salt crusts of the Solonchaks with a high proportion of coarse aggregates had the highest. This suggests that Takyrs and Takyr‐like soils are the most deflatable and Solonchak soils the least deflatable. These differences are attributed to the presence of salts that create stable, large aggregates in the Solonchak crusts. Wetting of the materials to three moisture levels considerably increased threshold friction velocity. The increase was most prominent in the salt‐rich materials, and was attributed to the rapid formation of surface films by drying in the course of the wind tunnel determinations. Applications of chemical stabilizers at two levels also considerably increased threshold friction velocity. On the restored crusts, threshold friction velocity dramatically increased, occasionally to non‐recordable values. This increase was monitored with both the salt crusts characteristic for the Solonchak soils and the fine‐grained crusts characteristic for the Takyr soils. The stability was attributed to the tightly packed salt particles in the salt crusts, and to the cohesive properties of the fine‐grained materials in the Takyr crusts. Once the crusts were ruptured, however, strong deflation commenced. These results suggest that by maintaining moisture in the soils/sediments (for example, by maintaining a high water table in the Amu‐Darya river flood plain) deflation can be reduced. By the same means, deflation can be reduced by creating new crusts or by preserving existing crusts. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
Gypsum and halite are the most common salts in reg soils developed on alluvial parent material under extremely arid conditions in the Negev Desert, Israel. The aim of this paper is to document the changes in the micromorphology of these salts at different stages of Reg soil development on two alluvial fan chronosequences. The micromorphological analyses included thin section observations and scanning electron microscope and electron microprobe analyses. In this arid soil environment, gypsum and halite possess a variety of crystal forms which may change with depth in a single profile and/or between profiles of different ages. The variety of crystal forms results from changes in the microenvironmental conditions that occur in desert reg soils over time. Poikilitic lenticular gypsum is found in all Reg soils and is distributed throughout the profiles. The conditions needed for such crystals to form are high ionic impurities and deposition in a void system where space is not limiting. Microcrystalline alabastrine gypsum is only found in mature Reg soils and is crystallized when the profile has high amounts of fine material and a well-developed desert pavement. In a well-developed Reg soil, profile indicators, such as a well-developed desert pavement and high amounts of fine earth, limit the leaching depth and cause gypsum deposition from supersaturated soil solutions under high evaporation rates close to the surface. Prismatic and fibrous gypsum are less common. Low amounts of prismatic gypsum are found in young and mature soils while fibrous gypsum is found only in mature soils in re-cemented shattered gravel. The halite crystal form is mainly cubic with low amounts of host material incorporated into the crystal. It occurs predominantly in mature Reg soil profiles through the crystallization from supersaturated soil solutions at the depth of maximum water penetration. Although the alabastrine, prismatic and fibrous gypsum and cubic halite are deposited in a displacive manner, no correlation was found between their occurrence and the distribution of shattered gravel in the soil profile.  相似文献   

11.
Runoff‐induced sediments were collected in the Hallamish dune field for four years (1990–1994). Runoff and consequently water‐transported sediments were generated on the dunes owing to the presence of a thin microbiotic crust. These sediments were analysed for their particle‐size distribution and carbonate content. In addition, the organic matter content was calculated by measuring the chlorophyll content within the runoff. The results were compared to the slope parent material, i.e. the crust and the underlying sand, as well as to playa sediments, which are scattered within the Hallamish interdunal areas, and which were previously hypothesized to originate from runoff‐induced sediments. Higher amounts of fines (silt and clay) and carbonate characterize the footslopes in comparison to the midslopes. Intermediate contents of fines (17 per cent) and carbonate (8 per cent) characterized the sediments in comparison to the fines (27 per cent) and carbonate (15 per cent) of the crust and to the fines (4 per cent) and carbonate (4 per cent) of the underlying sand. The runoff‐induced fines and carbonate contents were significantly different from those of the playas, suggesting that the playa flats do not originate from runoff‐induced sediments. The sediments were enriched with organic matter. Organic matter which originates from the crust amounted to 0·3–0·4 per cent as compared to ≤0·1 per cent in the bare sand. Nevertheless, the crust was found to be relatively resilient to water flow. Only 0·1–0·5 per cent of the crust was annually eroded off the slope by water, with south‐facing crusts showing higher resilience than north‐facing crusts. The data may thus assist in the evaluation of the crust's residence time. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

12.
Playa systems are driven by evaporation processes, yet the mechanisms by which evaporation occurs through playa salt crusts are still poorly understood. In this study we examine playa evaporation as it relates to land surface energy fluxes, salt crust characteristics, groundwater and climate at the Salar de Atacama, a 3000 km2 playa in northern Chile containing a uniquely broad range of salt crust types. Land surface energy budget measurements were taken at eight representative sites on this playa during winter (August 2001) and summer (January 2002) seasons. Measured values of net all-wave radiation were highest at vegetated and rough halite crust sites and lowest over smooth, highly reflective salt crusts. Over most of the Salar de Atacama, net radiation was dissipated by means of soil and sensible heat fluxes. Dry salt crusts tended to heat and cool very quickly, whereas soil heating and cooling occurred more gradually at wetter vegetated sites. Sensible heating was strongly linked to wind patterns, with highest sensible heat fluxes occurring on summer days with strong afternoon winds. Very little energy available at the land surface was used to evaporate water. Eddy covariance measurements could only constrain evaporation rates to within 0.1 mm d−1, and some measured evaporation rates were less than this margin of uncertainty. Evaporation rates ranged from 0.1 to 1.1 mm d−1 in smooth salt crusts around the margin of the salar and from 0.4 to 2.8 mm d−1 in vegetated areas. No evaporation was detected from the rugged halite salt crust that covers the interior of the salar, though the depth to groundwater is less than 1 m in this area. These crusts therefore represent a previously unrecorded end member condition in which the salt crusts form a practically impermeable barrier to evaporation.  相似文献   

13.
“Non-rainfall” water is important to the soil water balance and ecology of arid ecosystems. A component of this “non-rainfall” water in the Namib Desert, fog, exhibits spatial variation implying variability in composition and significance of each vector (dew, fog, vapour adsorption) to ecology at different locations. The composition of “non -rainfall” water input directly into soil was investigated at two sites in the Central Namib Desert, Kleinberg and Gobabeb. Results showed spatial variation in composition between the sites, although vapour adsorption dominated input at both sites. Fog contributed more to total “non rainfall” atmospheric water closer to the coast (Kleinberg) compared to further inland (Gobabeb) but was lower than expected at both sites. Absolute values of fog input at both sites showed the opposite trend, Kleinberg 0.38?mm per night compared to Gobabeb 8.7?mm per night. This difference was attributed to the development of a mechanical crust on the soil surface at Kleinberg, which resulted in a significant reduction of vapour adsorption compared to Gobabeb. The crust also led to a significant reduction in evaporation from the sample at Kleinberg compared to the one at Gobabeb. Ecological differences between the two sites can be attributed to the development of the soil crust on the sample at Kleinberg and not on the sample at Gobabeb.  相似文献   

14.
A synthesis of the geochemistry of silcretes and their host sediments in the Kalahari Desert and Cape coastal zone, using isocon comparisons, shows that silcretes in the two regions are very different. Kalahari Desert silcretes outcrop along drainage-lines and within pans, and formed by groundwater silicification of near-surface Kalahari Group sands. Silicification was approximately isovolumetric. Few elements were lost; silicon (Si) and potassium (K) were gained as microquartz precipitated in the sediment porosity and glauconite formed in the sub-oxic groundwater conditions. The low titanium (Ti) content reflects the composition of the host sands. Additional elements in the Kalahari Desert silcretes were supplied in river water and derived from weathering of silicates in basement rocks. Evaporation under an arid climate produced high-pH groundwater that mobilized and precipitated Si; this process is still occurring. In the Cape coastal zone, pedogenic silcretes cap hills and plateaus, overlying deeply weathered argillaceous bedrock. Silicification resulted from intensive weathering that destroyed the bedrock silicates, almost completely removing most elements and causing a substantial volume decrease. Some of the silica released formed a microcrystalline quartz matrix, and most Ti precipitated as anatase, so the Cape silcretes contain relatively high Ti levels. The intense weathering that formed the Cape silcretes could have occurred in the Eocene, during and after the Palaeocene-Eocene Thermal Maximum, when more acidic rainfall and high temperatures resulted in intensified silicate weathering worldwide. This could have been responsible for widespread formation of pedogenic silcretes elsewhere in Africa and around the globe. Trace element sourcing of silcrete artefacts to particular outcrops has most potential in the Cape, where differences between separate bedrock areas are reflected in the silcrete composition. In the Kalahari Desert, gains of some elements can override compositional differences of the parent material, and sourcing should be based on elements that show the least change during silicification. © 2020 John Wiley & Sons, Ltd.  相似文献   

15.
As part of the multinational Lake Owens Dust Experiment (LODE), we have studied the generation of dust storms on the south sand sheet of Owens (dry) Lake, California, an anthropogenically desiccated playa reported to be the single greatest source of particulate matter in North America. During March 1993, we performed an intensive field study including eight significant dust storms, building on our prior work (1978–1984) and preliminary studies (1991–1992). We studied sources and magnitude of coarse saltating particles, the meteorological conditions that allow them to become mobile across the flat playa of Owens (dry) Lake, and how the motion of saltating particles across different types of playa surfaces results in the generation of PM10 dusts (aerosol particles smaller than 10 μm aerodynamic diameter). Saltating grains of lacustrine sand and broken crust abrade and disaggregate the playa surface into fine aerosols, and the resulting PM10 concentrations recorded during major dust storms are among the highest ever recorded in North America. On 23 March 1993, we measured a 2 h concentration on the playa of 40 620 μg m−3, as far as we can determine the highest ambient PM10 value ever recorded in the U.S.A. Abrasion of salt-silt-clay crusts by saltation is shown to be responsible for all but a small part of one dust storm. The quantity ‘sand run’, saltating particle transport multiplied by wind run, is shown to be very closely correlated with dust aerosol concentration. Finally, we have established that on-lake bed studies are essential for quantitative prediction of dust events on the Owens (dry) Lake bed, despite the difficult conditions encountered.  相似文献   

16.
The importance of monitoring changes in the levels of lakes within endorheic basins using remotely sensed data as a means of assessing changes in regional aridity is noted. Large salt playas are highlighted as ephemeral lakes that can display extreme sensitivity to changes in regional rainfall patterns, and which commonly do not have extensively managed catchments. To explore the application of high temporal frequency monitoring of salt playas using remote sensing, the Chott el Djerid, a large salt playa situated in southern Tunisia was targeted. A short time series of 39 Advanced Very High Resolution Radiometer (AVHRR; resolution 1.1 km at nadir) images of the Chott el Djerid (spanning 36 months between 1987 and 1990) were compiled along with climate information from a weather station at Tozeur. Using image histogram manipulation, lake areas were extracted from the time series. A good level of agreement was observed between recorded rainfall events and the presence of surface water on the playa, and for a limited sample of large flood events it was found that there were significant relationships between rainfall, evaporation and estimated lake areas (r2 = 98.5, p < 0.001). Overall, these data suggest that contemporary lake formation is largely controlled by temporal changes in effective precipitation within the basin. In addition, it was found that the coefficient of variation of the time series, and a combination of temporal reflectance profiles extracted from it, could be used to give a direct indication of which sedimentary surfaces on the playa are affected by large flood events, and the extent to which these events may be preserved within the recent sedimentary record at these sites. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

17.
The near-field expression of the tsunami produced by the 15 November 2006 Kuril earthquake (Mw 8.1–8.4) in the middle Kuril Islands, Russia, including runup of up to 20 m, remained unknown until we conducted a post-tsunami survey in the summer of 2007. Because the earthquake occurred between summer field expeditions in 2006 and 2007, we have observations, topographic profiles, and photographs from three months before and nine months after the tsunami. We thoroughly surveyed portions of the islands of Simushir and Matua, and also did surveys on parts of Ketoi, Yankicha, Ryponkicha, and Rasshua. Tsunami runup in the near-field of the middle Kuril Islands, over a distance of about 200 km, averaged 10 m over 130 locations surveyed and was typically between 5 and 15 m. Local topography strongly affected inundation and somewhat affected runup. Higher runup generally occurred along steep, protruding headlands, whereas longer inundation distances occurred on lower, flatter coastal plains. Sediment transport was ubiquitous where sediment was available—deposit grain size was typically sand, but ranged from mud to large boulders. Wherever there were sandy beaches, a more or less continuous sand sheet was present on the coastal plain. Erosion was extensive, often more extensive than deposition in both space and volume, especially in areas with runup of more than 10 m. The tsunami eroded the beach landward, stripped vegetation, created scours and trim lines, cut through ridges, and plucked rocks out of the coastal plain.  相似文献   

18.
Wind regimes in the vicinity of the Namib Sand Sea are high energy unimodal near the coast, becoming bimodal or complex inland. There is an overall decrease in wind energy and sand transport rates from south to north and west to east, such that sand moves from coastal and southern source areas to accumulate in the northern and central parts of the sand sea. Such a pattern can explain much of the observed spatial variability in dune types, sizes, and sediment characteristics and lends support to a climatic model of sand sea formation in this region. Seasonal and daily cycles of wind velocity and direction give rise to episodic sand transport, most of which is generated by winds of moderate velocity and frequency.  相似文献   

19.
The Sierra Gorda aquifer is one of the most extensive of southern Spain. The main groundwater discharge is produced at its northern boundary through several high‐flow springs. In this study, stable isotopes of dissolved sulfate (δ34S and δ18O) and groundwater chemistry were used to determine the origin of the sulfate and to characterize the groundwater flow. We sampled the main springs, as well as other minor outlets related to perched water tables, in order to determine the different sources of SO42? (e.g., dissolution of evaporites and atmospheric deposition). The substantial difference in the amount of dissolved SO42? between the springs located in its northwestern part (≈25 mg/L) and those elsewhere in the northern part (≈60 mg/L) suggests zones with separate groundwater flow systems. A third group of springs, far from the northeastern boundary of the permeable outcrops, shows higher SO42? content than the rest (≈125 mg/L). The isotopic range of sulfate (?0.3‰ to 14.82‰ V‐CTD) points to several sources, including dissolution of Triassic or Miocene evaporites, atmospheric deposition, and decomposition of organic material in the soil. Among these, the dissolution of Triassic gypsum—which overlies the saturated zone as a consequence of the folds and faults that deform the aquifer—is the main source of SO42? (range from 12.79‰ to 14.82‰ V‐CTD). This range is typical for Triassic gypsum. The higher karstification in the western sector, together with important differences in the saturated thickness between the western and eastern sectors, would also be due to the tectonic structure and could explain the difference in SO42? contents in the water. This singular arrangement may cause a higher residence time of groundwater in the eastern sector; thus, a higher contact time with Triassic evaporitic rocks is inferred. Accordingly, the stable isotopes of SO42? are found to be a valuable tool for identifying areas with different flow systems in the saturated zone of karstic aquifers, as well as for evaluating aspects such as the degree of karstification .  相似文献   

20.
Late Pleistocene sequences around Dundalk Bay, eastern Ireland, record glaciomarine sedimentation near the margin of a grounded ice lobe around 15 ka BP. A coastal exposure at Cooley Point consists of four major facies deposited outside this ice limit. (1) A basal mud facies deposited from sediment plumes accumulated following the initial ice marginal retreat inland. It contains a well-preserved Arctic microfauna dominated by the foram Elphidium clavatum and the ostracod Roundstonia globulifera. (2) A flat to undulating boulder facies (pavement), mostly one clast thick, is found pressed into the mud and is characterized by bevelled and striated upper clast surfaces. Pavement attributes are a result of intertidal activity in a cold climate. The boulder source is due to rafting by ice floes from glacigenic debris deposited during an ice advance. (3) Laminated sand facies drape the pavement and are a result of variable current activity. (4) The overlying gravel facies is separated from the sand facies by a marine erosion surface. The gravel facies is subaqueous, channelized and is overlain by late glacial raised beach ridges. Locally the gravels have been deformed by ice pressure from partially floating ice floes. Facies changes record terrestrial submergence and provide evidence for changes in relative sea level during part of the last deglacial cycle. The boulder pavement and deformed gravel facies suggest that ice floes and sea ice effects may be more common within stratigraphies along emergent coasts than previously thought, though they have a low preservation potential. Extreme conditions during the deglacial favoured opportunistic microfaunas during mud deposition. This event may be related to a major meltwater event within the Irish Sea Basin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号