首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sand production is a complex physical process that depends on the external stress and flow rate conditions as well as on the state of the material. Models developed for the prediction of sand production are usually solved numerically because of the complexity of the governing equations. Testing of new sand production models can very well be performed through calibration with laboratory experiments, which by construction possess geometric symmetry facilitating explicit mathematical analysis. We introduce an erosion model that is built upon the physics (poro‐mechanical coupling of the fluid‐solid system) usually incorporated in erosion models for the prediction of sand production. Around this model, we set up a mathematical framework in which sand production models because of erosion can be tested and calibrated without having to resort to complex numerical work or specialised software. The model is validated by data of volumetric sand production from a hollow cylinder test on synthetic sandstone. Generalisations of the model, which are naturally incorporated in the same framework and have useful phenomenological features, are discussed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
基于三维流-固耦合模型的油井出砂细观机制研究   总被引:1,自引:0,他引:1  
刘先珊  许明 《岩土力学》2013,34(8):2363-2370
油井出砂机制的研究是提高油藏产能和石油开采成本减小的关键课题,而常规的宏观力学理论和方法不能全面反映油藏开采过程中油井出砂的发生和发展。鉴于砂岩储层的物理性质和射孔试验特征,从岩土力学的角度建立基于柱坐标系的三维颗粒流数值模型,与理论分析成果进行比较,以说明该细观数值模型可行性,有效地模拟出砂过程中的渗流及流-固耦合效应。在该基础上,综合考虑流体压力梯度力和拖曳力,基于PFC3D模型模拟流体不同运动时的砂岩性态。数值分析得到的模型宏观应力图形说明流体运动对砂岩力学特性的影响不可忽略,且在相同条件下,流量越大,砂岩的塑性区越大,形成砂岩破坏出砂的几率也越大。同时,不同工况的砂岩黏结分布和颗粒转动图形表明,相同条件下流量越大,颗粒间平行黏结破坏越多,颗粒转动越大,失去黏结约束的颗粒也越多,出砂量就越大,可见两种细观特征图形与宏观应力图形变化规律一致,该模型可用于油井出砂机制的研究,可为出砂量预测及出砂控制提供新的研究思路。  相似文献   

3.
A unified constitutive model for unsaturated soils is presented in a critical state framework using the concepts of effective stress and bounding surface plasticity theory. Consideration is given to the effects of unsaturation and particle crushing in the definition of the critical state. A simple isotropic elastic rule is adopted. A loading surface and a bounding surface of the same shape are defined using simple and versatile functions. The bounding surface and elastic rules lead to the existence of a limiting isotropic compression line, towards which the stress trajectories of all isotropic compression load paths approach. A non‐associated flow rule of the same general form is assumed for all soil types. Isotropic hardening/softening occurs due to changes in plastic volumetric strains as well as suction for some unsaturated soils, enabling the phenomenon of volumetric collapse upon wetting to be accounted for. The model is used to simulate the stress–strain behaviour observed in unsaturated speswhite kaolin subjected to three triaxial test load paths. The fit between simulation and experiment is improved compared to that of other constitutive models developed using conventional Cam‐Clay‐based plasticity theory and calibrated using the same set of data. Also, the model is used to simulate to a high degree of accuracy the stress–strain behaviour observed in unsaturated Kurnell sand subjected to two triaxial test load paths and the oedometric compression load path. For oedometric compression theoretical simulations indicate that the suction was not sufficiently large to cause samples to separate from the confining ring. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
Based on hypotheses derived directly from experimental observations of the triaxial behaviour, a constitutive model for fibre reinforced sands is built in this paper. Both the sand matrix and the fibres obey their own constitutive law, whereas their contributions are superimposed using a volumetric homogenization procedure. The Severn‐Trent sand model, which combines well‐known concepts such as critical state theory, Mohr‐Coulomb like strength criterion, bounding surface plasticity and kinematic hardening, is adopted for the sand matrix. Although the fibres are treated as discrete forces with defined orientation, an equivalent continuum stress for the fibre phase is derived to allow the superposition of effects of sand and fibres. The fibres are considered as purely tensile elements following a linear elastic constitutive rule. The strain in the fibres is expressed as a fraction of the strain in the reinforced sample so that imperfect bonding is assumed at the sand‐fibre interface. Only those fibres oriented within the tensile strain domain of the sample can mobilize tensile stress—the orientation of fibres is one of the key ingredients to capture the anisotropic behaviour of fibre reinforced soil that is observed for triaxial compression and extension loading. A further mechanism of partition of the volume of voids between the fibres and the sand matrix is introduced and shown to be fundamental for the simulation of the volumetric behaviour of fibre‐reinforced soils. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
Rotational shear is the type of loading path where samples are subjected to cyclic rotation of principal stress directions while the magnitudes of principal stresses are maintained constant. This paper presents results from an experimental investigation on the drained deformation behaviour of saturated sand in rotational shear conducted in a hollow cylinder apparatus. Two types of granular materials, Leighton Buzzard sand and glass beads are tested. A range of influential factors are investigated including the material density, the deviatoric stress level, and the intermediate principal stress. It is observed that the volumetric strain during rotational shear is mainly contractive and most of strains are generated during the first 20 cycles. The mechanical behaviour of sand under rotational shear is generally non-coaxial, i.e., there is no coincidence between the principal axes of stress and incremental strain, and the variation of the non-coaxiality shows a periodic trend during the tests. The stress ratio has a significant effect on soil response in rotational shear. The larger the stress ratio, the more contractive behaviour and the lower degree of non-coaxiality are induced. The test also demonstrates that the effect of the intermediate principal stress, material density and particle shape on the results is pronounced.  相似文献   

6.
Numerical pile segment analysis is conducted in this study with an advanced soil model to investigate the skin friction behaviour of a drilled Cast‐In‐Place (CIP) pile installed in sand. Although the interface between the sand and pile is considered rough, thin elements adjacent to the pile are used to include effects of localized shear. Unit weights of fluid concrete and accompanied changes in stress are considered as the effects of pile installation. Changes in effective stresses are the most prominent effect due to pile installation with a change in direction of the major principal stress from the vertical to the radial direction. Shear behaviour of the sand at the interface during the early shear stage is related to the contractive tendency of the sand at small strain levels. Changes in the stress field around the pile with little changes in volumetric strain take place during the early shear stage. Stress redistributions during the early shear stage depend on the direction of the major principal stress before shear. Results of the pile segment analyses for drilled CIP piles show good agreement with design methods. Parametric studies are used to characterize the effects of sand density and pile diameter on the skin friction behaviour of drilled CIP piles. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
膨润土与砂混合物的膨胀特性是评估核废料深层地质处置工程长期性能的重要指标。对比不同膨润土及其与砂混合物的膨胀试验结果可知,对纯膨润土及其低掺砂率混合物,浸水膨胀完成后蒙脱石孔隙比em与竖向应力?v在双对数坐标内呈惟一的线性关系,利用该线性关系可预测浸水完成后不同竖向应力下的体积变化量及不同初始状态对应的膨胀力;对高掺砂率混合物,在砂骨架形成之前,em-?v线性关系成立,随着竖向应力的增大,砂骨架形成,对应的em值脱离em-?v线性关系,混合物中掺砂率越大,脱离该线性关系时的竖向应力就越小。砂骨架形成前,砂颗粒被蒙脱石包围,外力由蒙脱石承担,最终变形量由试样中单位体积蒙脱石的含量决定;砂骨架形成后,竖向应力最终由砂骨架和蒙脱石共同承担。利用砂骨架孔隙比的概念可确定各种不同掺砂率混合物形成砂骨架时的应力起偏点。同时,还可确定混合物能够形成砂骨架的掺砂率范围。  相似文献   

8.
岩土材料应力路径无关硬化参量的构成方法   总被引:2,自引:0,他引:2  
罗汀  姚仰平 《岩土力学》2007,28(1):69-76
在分析砂土试验结果的基础上,揭示了基本硬化内参量(塑性体积应变、塑性剪应变)变化的应力路径相关性,提出了应力路径无关硬化参量的一般表达式。并指出了塑性功硬化参量及其提出的黏土和砂土统一硬化参量均是所提一般表达式框架下的特例。还将该统一硬化参量直接和修正剑桥模型结合,并与试验结果对比,表现出描述剪胀特性的简单性和有效性。  相似文献   

9.
10.
钙质砂与钢板接触面力学特性试验研究   总被引:3,自引:0,他引:3  
吴梦喜  楼志刚 《岩土力学》2003,24(3):369-371
对一种人工制备的钙质砂与光滑铜板接触面进行了一系列的单调和循环剪切试验,表明钙质砂与光滑钢板的接触属于摩擦接触,界面剪应力与正应力之比与剪切位移关系有较好的归一性。等正应力试验中钙质砂的的缩性较大;等体积试验中接触面的抗剪强度因正应力的降低而远低于等正应力试验;循环剪切中加荷与卸荷曲线基本重合,经历循环剪切作用后接触面的抗剪强度有降低的趋势。界面湿摩擦系数低于干摩擦系数。  相似文献   

11.
This paper extends earlier work on sand erosion and presents an attempt to couple sand erosion to mechanical damage of rock around a wellbore. Porosity which evolves in time and space as surface erosion progresses, is chosen as the coupling parameter. Both rock elasticity and strength (cohesion) are assumed to depend on porosity in such a way that the material becomes weaker with increasing porosity. The mathematical model, consists of erosion equations, mixture flow equations and stress equilibrium equations, is solved numerically by Galerkin finite element method. Numerical results suggest that erosion, resulting in sand production, is high close to the free surface. Erosion is accompained by changes in porosity and a significant permeability increase. Erosion in the vicinity of the wellbore induces alterations in the mechanical behaviour of the medium. Weakening of rock stiffness leads to severe alteration of both effective stresses and pore pressure near the cavity. Since cohesion decreases with increasing porosity, one can also identify the time instant at which rock mechanical failure starts. © 1998 John Wiley & Sons, Ltd.  相似文献   

12.
纪文栋  张宇亭  王洋  裴文斌 《岩土力学》2018,39(Z1):282-288
对普通硅质砂和西沙群岛珊瑚钙质砂开展多级正应力下循环单剪试验,对比多循环周期下两种砂土剪切性质和颗粒破碎的差异。研究发现,两种砂样在循环剪切下体积变化都比较微弱,剪切过程中存在阶段性剪胀,使得试样的轴向位移呈波动变化;循环单剪下剪应力峰值包络线可以用联合型指数函数表达;剪应力随循环周期变化分为同步阶段和差异阶段,两个阶段转变节点对应的循环周期数随着正应力的增大而迅速减小;同步增长阶段珊瑚钙质砂和普通硅质砂的剪应力变化一致,在差异阶段普通硅质砂的剪应力要高出珊瑚钙质砂。两种砂剪应力差异程度随试验正应力不同而变化,普通硅质砂剪应力最大可高出珊瑚钙质砂14.7%;珊瑚钙质砂和普通硅质砂的颗粒破碎存在明显差异,珊瑚钙质砂全粒径范围内颗粒破碎分布更均衡,普通硅质砂在特定粒径区间内出现了剧烈的颗粒破碎,颗粒级配曲线存在明显拐点。普通硅质砂和珊瑚钙质砂滞回曲线的形状及随循环次数的变化规律有显著差异,是两种砂样剪切性质不同的重要体现。  相似文献   

13.
刘先珊  陈治 《岩土力学》2013,34(10):2984-2990
随着黏度较大的油藏陆续投入开发,油藏黏性对储层砂岩力学特性的影响研究意义重大。基于柱坐标系建立射孔试验的三维颗粒流数值模型,考虑不同黏性的流体运动对砂岩力学响应的影响,反映油井的出砂过程。砂岩的宏观应力曲线说明流速相同时,随着黏滞系数的增大,切向应力和偏应力均增大,使得砂岩剪切破坏的几率增大,砂岩更容易屈服破坏而出砂。另外,砂岩黏结应力图说明油井附近的应力较大,且随着黏滞系数增大,黏结张拉应力的增大是局部的,而剪应力的增大是全局的,且变化趋势更明显;颗粒的旋转也说明随着流体黏性的增大,颗粒旋转增大,砂岩形成离散颗粒而出砂的几率增大。上述结果与实际开采中的砂岩力学响应吻合,说明了在相同的外界条件下,黏性越大的流体运动对砂岩受力的影响越大,出砂越明显,该成果对不同黏性的油藏开采采用有效的防砂方法提供了重要的科学依据。  相似文献   

14.
15.
颗粒破碎是粒状材料在高应力状态下的一种基本现象。为了研究冻结砂土中颗粒破碎对应力应变关系的影响,将冻结砂土视为复合颗粒材料,忽略冰的压融,考虑内摩擦角随应力状态的变化,构建一个适用于冻结砂土的考虑颗粒破碎的非线性本构模型。构建过程分为三步,首先是基于三轴剪切前后颗粒分析对冻结砂土颗粒破碎模式和产生机理进行探讨;其次是基于考虑颗粒破碎的能量平衡方程,对冻土在三轴剪切试验过程中的颗粒破碎耗能进行分析,结果表明颗粒破碎耗能随轴向应变呈双曲线变化趋势;最后应用考虑颗粒破碎的剪胀方程修正沈珠江三参数非线性模型中的体积切线模量νt,得到一个考虑颗粒破碎的非线性本构模型,模型参数可以通过单轴压缩试验和常规三轴试验确定。将原模型和修正后模型的计算结果与控制温度为-6℃,围压为1 MPa、4 MPa、6 MPa、8 MPa和10 MPa时冻结砂土的试验结果进行对比,结果表明该模型能够较好的模拟冻结砂土从低围压到高围压的应变软化特征与剪胀特征。   相似文献   

16.
The paper describes the development of a constitutive model for a poorly graded sand, which was used in geotechnical experiments on buried pipes (reported elsewhere). The sand was tested extensively in the laboratory to determine the state parameter constants. Triaxial tests on the sand included conventional drained triaxial compression tests, as well as more specialized shearing tests at constant mean effective stress and others at constant volume. Single element simulation of the triaxial tests was performed to validate the proposed constitutive model. The adopted model allowed non-linear elastic behaviour prior to yielding. After yielding of the sand, the state parameter-based model for the sand permitted non-associated plastic flow. Dilation and frictional strength were both dependent on the current value of the state parameter. The combination of laboratory testing and single element modelling resulted in the selection of a single set of material constants for the soil, which adequately described the full range of triaxial tests. Subsequently the model was applied to the problem of a plate loading test on the sand and the model predictions were compared with the test data.  相似文献   

17.
方志  陈育民  何森凯 《岩土力学》2018,39(5):1851-1857
减饱和法是一种通过减小饱和砂土地基中水的饱和度来处置可液化砂土地基的方法。基于单相流-固耦合理论,将减饱和砂中水-气两相流体等效为单相流体,提出一种可以考虑加载过程中孔隙流体体积模量变化的减饱和砂土静态液化的单相流改进算法,用其进行单调荷载作用下三轴不排水压缩试验数值模拟研究,分析了不同饱和度条件下的减饱和砂土的不排水反应并与饱和砂土三轴不排水试验结果进行对比。研究结果表明,单相流改进算法能够很好地反映减饱和法的抗液化特性。此外,对比不同数值分析方法模拟结果,得出以下结论:采用单相流简化算法分析减饱和砂土的不排水反应时,因为不考虑加载过程中的孔隙流体体积模量变化,所以初始的流体体积模量取值会影响减饱和砂土的强度,初始围压为100 kPa、饱和度为96%的减饱和砂土在单调荷载作用下,气体体积模量取值从100 kPa增加至200 kPa时,减饱和砂试样的峰值偏应力会减小约30%,孔隙压力会增加约40%;通过对比同等条件下的单相流改进算法和两相流算法的应力-应变关系曲线以及饱和度和体积应变变化曲线,两者结果相近,误差在5%以内。综上所述,单相流改进算法是一种较为合理而简洁地模拟减饱和砂土静态液化的计算方法。  相似文献   

18.
砂土液化流动变形的简化方法   总被引:1,自引:0,他引:1  
陈育民  高星  刘汉龙 《岩土力学》2013,34(6):1567-1573
已有的液化砂土流动特性试验结果表明,砂土在液化流动状态下是剪切稀化非牛顿流体,可以用幂函数表示其剪应力-剪应变率的关系,从而建立了砂土液化流动的本构方程。基于FLAC3D程序的二次开发平台,将液化流动本构方程开发到FLAC3D中,建立了液化流动变形的简化分析方法。通过倾斜场地的液化流动变形分析,发现倾斜场地的液化变形曲线可以用正弦函数曲线描述,这与Towhata的理论分析成果一致,验证了本方法的合理性。分析了液化层坡度、稠度系数、流动指数以及弹性参数等变量对液化变形的影响。计算结果表明,液化变形随液化层坡度的增大而逐渐增大,液化砂土的稠度系数和流动指数对液化流动变形有重要的影响,而弹性参数对变形基本无影响,因此,在实际工程分析中,需要对流动模型参数进行深入研究。  相似文献   

19.
徐敏  陈立  何俊  李东锋 《水科学进展》2017,28(5):712-719
为了弄清选沙相似律对动床模型沙波相似性的影响,开展基于起动相似等3种不同相似律选择模型沙的沙波水槽试验。基于试验观测的沙波波高、波长以及沙波不同部位的水深、流速,对比分析了沙波尺度及其随水流强度变化过程的相似性。结果表明:当模型沙重率、形状与原型沙相同时,满足起动相似的模型沙沙波尺度与原型相似性最高,满足悬浮相似模型沙的沙波整体偏高、偏长,兼顾起动与悬浮相似的模型沙介于两者之间;不同选沙相似律不影响沙波波高、波长随相对水流强度的变化规律,满足不同相似律的模型沙沙波波高均在相同的相对水流强度达到最大值,波长随相对水流强度增大而增大。说明偏离起动相似越少,沙波相似程度越高。  相似文献   

20.
Bubbly sand is found in intertidal zones and has been considered to be closely related to swash and tides. Unlike bubble structures that arise from in situ methane gas production and bubble growth in river and marine sediments due to organic matter decomposition, the formation mechanism and conditions of bubbly sand remain unresolved. The present study aims to resolve them on the basis of a conceptual model and controlled laboratory experiments. The study demonstrates that bubbly sand is a consequence of the cyclic expansion of sand under groundwater table fluctuations. The varying intensity of dynamics of suction, which is sand moisture tension defined by negative pore water pressure relative to atmospheric pressure, controls the manifestation of a full spectrum of sand behaviour relevant to the formation of bubbly sand. Namely, with increasing intensity of suction dynamics under larger groundwater table fluctuations, the sand behaviour varies from enhanced cyclic contraction, to weak contraction, loosening and expansion resulting in bubbly sand. The suction dynamics-induced cyclic expansion of sand occurs under conditions where the maximum suction developed exceeds the air-entry suction of sand such that the degree of saturation becomes lower than 60%, while the groundwater tables cyclically rise to and fall from the sediment surface. Accordingly, the sand porosity changes remarkably from dense to super-loose states of bubbly sand. These findings account for previously unanswered questions with respect to bubbly sand, both qualitatively and quantitatively, and will lead to a renewed understanding of the geological record and morphological features at waterfronts that are subject to groundwater table fluctuations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号