首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The chemical reactivity of NO and NO2 is so rapid that their fluxes and concentrations can be considerably modified from that expected for conserved variables in the atmospheric surface layer, even as low as a meter above the surface. Fitzjarrald and Lenschow (1983) have calculated flux and mean concentration profiles for NO, NO2 and O3 in the surface layer using numerical techniques. However, their solutions do not approach the photostationary state at large heights. Here we solve a simpler set of equations analytically (i.e. we assume a constant O3 concentration and neutral hydrodynamic stability), and are able to show how the flux profiles behave at large heights assuming that the concentrations approach their photostationary values. We find, for example, that at large heights the ratio of the flux of NO to that of NO2 is equal to the ratio of their concentrations. These results are relevant to estimating surface fluxes of NO and NO2, and are most applicable to nonurban environments where NO and NO2 concentrations are usually much less than O3 concentration.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

2.
A modified profile method for determining the vertical deposition (or/and exhalation) fluxes of NO, NO2, ozone, and HNO3 in the atmospheric surface layer is presented. This method is based on the generally accepted micrometeorological ideas of the transfer of momentum, sensible heat and matter near the Earth's surface and the chemical reactions among these trace gases. The analysis (aerodynamic profile method) includes a detailed determination of the micrometeorological quantities (such as the friction velocity, the fluxes of sensible and latent heat, the roughness length and the zero plane displacement), and of the height-invariant fluxes of the composed chemically conservative trace gases with group concentrations c 1=[NO]+[NO2]+[HNO3], c 2=[NO2]+[O3]+3/2·[HNO3], and c 3=[NO]–[O3]–1/2·[HNO3]. The fluxes of the individual species are finally determined by the numerical solution of a system of coupled nonlinear ordinary differential equations for the concentrations of ozone and HNO3 (decoding method). The parameterization of the fluxes is based on the flux-gradient relationships in the turbulent region of the atmospheric surface layer. The model requires only the vertical profile data of wind velocity, temperature and humidity and concentrations of NO, NO2, ozone, and HNO3.The method has been applied to vertical profile data obtained at Jülich (September 1984) and collected in the BIATEX joint field experiment LOVENOX (Halvergate, U.K., September 1989).  相似文献   

3.
Measurements of atmospheric composition have been made over a remote rainforest landscape. A box model has previously been demonstrated to model the observed daytime chemistry well. However the box model is unable to explain the nocturnal measurements of relatively high [NO] and [O3], but relatively low observed [NO2]. It is shown that a one-dimensional (1-D) column model with simple O3-NOx chemistry and a simple representation of vertical transport is able to explain the observed nocturnal concentrations and predict the likely vertical profiles of these species in the nocturnal boundary layer (NBL). Concentrations of tracers carried over from the end of the night can affect the atmospheric chemistry of the following day. To ascertain the anomaly introduced by using the box model to represent the NBL, vertically-averaged NBL concentrations at the end of the night are compared between the 1-D model and the box model. It is found that, under low to medium [NOx] conditions (NOx?<?1 ppbv), a simple parametrisation can be used to modify the box model deposition velocity of ozone, in order to achieve good agreement between the box and 1-D models for these end-of-night concentrations of NOx and O3. This parametrisation would could also be used in global climate-chemistry models with limited vertical resolution near the surface. Box-model results for the following day differ substantially if this effective nocturnal deposition velocity for ozone is implemented; for instance, there is a 9% increase in the following days peak ozone concentration. However under medium to high [NOx] conditions (NOx > 1 ppbv), the effect on the chemistry due to the vertical distribution of the species means no box model can adequately represent chemistry in the NBL without modifying reaction rate coefficients.  相似文献   

4.
Summary Vertical profiles of H2O, CO2, O3, NO and NO2 were measured during the Hartheim Experiment (HartX) to develop and calibrate a multi-layer resistance model to estimate deposition and emission of the cited gaseous species. The meteorological and gas concentration data were obtained with a 30 m high telescopic mast with 7 gas inlets located at 5 m intervals and meteorological sensors at 5, 15 and 30 m above ground; a complete gas profile was obtained every 9 min 20 s. Measured profiles were influenced by several exchange processes, namely evapotranspiration, dewfall, assimilation of CO2 in the tree crowns, soil respiration, deposition of NO2 and O3 to the soil and advection of NOx from the nearby highway. Surprisingly, no decrease in O3 concentration was observed in the crown layer during daytime, probably due to the relatively low density of foliage elements and strong turbulent mixing.The advantage of measuring in-canopy profiles is that turbulent exchange coefficients need not be estimated as a prerequisite to obtaining vertical flux estimates. In recent years, flux-gradient relationships in canopies have been subject to many criticisms. If fluxes are calculated at several heights considering only the transfers between the turbulent air and the interacting surfaces at a certain height, and those fluxes are then integrated vertically in a subsequent step, then exchange estimates (deposition or emission) can be obtained independent of turbulent exchange conditions.Typical estimated deposition velocities calculated for a 3-day period are between 4 and 10 mm/s for NO2 and about 4–9 mm/s for O3 (day and night values respectively). This leads to deposition rates of about 20–40 ng N/m2s for NO2 and about 30–40 mg O3/m2 deposited daily under the conditions encountered during HartX. Sensitivity tests done with the best available and most realistic values for model parametrization have shown that sensitivity is large with respect to the soil and cuticula resistances as well as for gas-phase ozone destruction and that more research is required to describe the effectiveness of cuticula and soil in modifying sink characteristics for NO2 and O3.With 12 Figures  相似文献   

5.
Using the new high-frequency measurement equipment of the research aircraft DO 128, which is described in detail, turbulent vertical fluxes of ozone and nitric oxide have been calculated from data sampled during the ESCOMPTE program in the south of France. Based on airborne turbulence measurements, radiosonde data and surface energy balance measurements, the convective boundary layer (CBL) is examined under two different aspects. The analysis covers boundary-layer convection with respect to (i) the control of CBL depth by surface heating and synoptic scale influences, and (ii) the structure of convective plumes and their vertical transport of ozone and nitric oxides. The orographic structure of the terrain causes significant differences between planetary boundary layer (PBL) heights, which are found to exceed those of terrain height variations on average. A comparison of boundary-layer flux profiles as well as mean quantities over flat and complex terrain and also under different pollution situations and weather conditions shows relationships between vertical gradients and corresponding turbulent fluxes. Generally, NOx transports are directed upward independent of the terrain, since primary emission sources are located near the ground. For ozone, negative fluxes are common in the lower CBL in accordance with the deposition of O3 at the surface.The detailed structure of thermals, which largely carry out vertical transports in the boundary layer, are examined with a conditional sampling technique. Updrafts mostly contain warm, moist and NOx loaded air, while the ozone transport by thermals alternates with the background ozone gradient. Evidence for handover processes of trace gases to the free atmosphere can be found in the case of existing gradients across the boundary-layer top. An analysis of the size of eddies suggests the possibility of some influence of the heterogeneous terrain in mountainous area on the length scales of eddies.  相似文献   

6.
Summary  In the central region of Taiwan, ozone episodes occur most often during autumn. Two field experiments were conducted during the autumns of 1998 and 1999 to analyze the vertical profile of the boundary layer and determine its effects on ozone concentration over the region. The vertical virtual potential temperature and wind profiles were derived from tethersonde data. The NOx, NMHC and O3 concentration vertical profiles were monitored up to a height of 500 meters using black-covered Teflon tedler sampling bags. During the experimental periods, nighttime terrestrial long wave radiation could cause the inversion height to reach 500 meters by the following morning. It was shown that these types of synoptic structures suppress the vertical diffusion of NOx, NMHC and O3. During the daytime, measurements indicate that pollutants were well mixed in the upper portion of the mixing layer. At night, the ground level ozone concentration was on the decrease but increased with altitude to a height of 500 m. The NOx decreased with altitude whereas the NMHC showed no significant variations. Received April 13, 2000 Revised July 24, 2000  相似文献   

7.
It is frequently observed in field experiments that the eddy covariance heat fluxes are systematically underestimated as compared to the available energy. The flux imbalance problem is investigated using the NCAR’s large-eddy simulation (LES) model imbedded with an online scheme to calculate Reynolds-averaged fluxes. A top–down and a bottom–up tracer are implemented into the LES model to quantify the influence of entrainment and bottom–up diffusion processes on flux imbalance. The results show that the flux imbalance follows a set of universal functions that capture the exponential decreasing dependence on u */w *, where u * and w * are friction velocity and the convective velocity scale, respectively, and an elliptic relationship to z/z i , where z i is the mixing-layer height. The source location in the boundary layer is an important factor controlling the imbalance magnitude and its horizontal and vertical distributions. The flux imbalance of heat and the bottom–up tracer is tightly related to turbulent coherent structures, whereas for the top–down diffusion, such relations are weak to nonexistent. Our results are broadly consistent with previous studies on the flux imbalance problem, suggesting that the published results are robust and are not artefacts of numerical schemes.  相似文献   

8.
A stainless steel soil corer which was filled with homogenized soil was used to measure the flux (J) of NO between soil and atmosphere and the vertical profile of the NO mixing ratios (m) in the soil atmosphere, both as function of the NO mixing ratio (mm a ) in the atmosphere of the headspace. The NO emission flux decreased linearly with increasing NO mixing ratio and turned into a deposition flux after passage of the compensation point (m c) at about 400 ppbv NO. Almost the same compensation point was obtained when the turnover of NO was measured in flask-incubated soil samples as function of the NO mixing ratio. The flux (J) of NO at the soil-atmosphere interface was calculated from the production rate (P) of NO and the NO uptake rate constant (k) that were measured in these flask-incubated soil samples using the diffusion model of Galbally and Johansson (1989). The calculated fluxes agreed within <15% with those actually measured. The vertical profiles of NO were fitted to an exponential function and analyzed by Fick's first law of diffusion. The shape of the profiles indicated a net production of NO in the upper 10 cm soil layer when the atmospheric NO mixing ratio was below the compensation point and in a net consumption of NO when the atmospheric NO mixing ratio was above the compensation point. In soil layers below 10 cm depth, the turnover of NO resulted in compensation of production and consumption rates. Measurement of the actual diffusion coefficient using SF6 showed that gas transport in the soil core was not only due to molecular diffusion but in addition due to a bidirectional gas flow. The experimentally determined diffusion coefficient was smaller than that computed from soil porosities, but resulted together with the additional transport term in NO fluxes that were close (< ±15%) to those measured. This is the first comprehensive study of NO concentration profiles and turnover rates in soil providing a theoretical basis for modelling NO fluxes at the soil-atmosphere interface.  相似文献   

9.
In summer, atmospheric ozone was measured from an aircraft platform simultaneously with nitric oxide (NO), oxides of nitrogen (NO y ), and water vapor over the Pacific Ocean in east Asia from 34° N to 19° N along the longitude of 138±3°E. NO y was measured with the aid of a ferrous sulfate converter. The altitude covered was from 0.5 to 5 km. A good correlation in the smoothed meridional distributions between ozone and NO y was seen. In particular, north of 25° N, ozone and NO y mixing ratios were considerably higher than those observed in tropical marine air south of 25° N. NO y and O3 reached a minimum of 50 pptv and 4 ppbv respectively in the boundary layer at a latitude of 20° N. The NO concentration between 2 and 5 km at the same latitude was 30 pptv. The profiles of ozone and water vapor mixing ratios were highly anti-correlated between 25° N and 20° N. In contrast, it was much poorer at the latitude of 33° N, suggesting a net photochemical production of ozone there.  相似文献   

10.
Eddy correlation measurements of NO vertical flux were made periodically from October 1983 through June 1984 at a height of eight meters above grass in northeastern Illinois, U.S.A. From 207 data points, each representing a 25 min average, 19 daytime cases and 8 nighttime cases were selected on the basis of steady, nonadvective atmospheric conditions. Each case was represented by a set of data constituting a 3 to 5 hr average. Concentrations of O3, NO, and NO y (from which NO2 was inferred) and local atmospheric and surface conditions also were measured, to provide the information necessary to assess the relative importance of surface deposition, surface emission, and air chemistry on the observed NO flux. On the basis of a linear regression analysis applied with independent variables representing physical, chemical, and biological processes, surface uptake of NO was very small for data primarily collected in the daytime during spring, and measured deposition velocities at a height of 8 m were very small, much smaller than expected for NO2. For the same time period, the surface emission rates of elemental nitrogen in NO were in the range of 1.4 to 4.2 ng m-2 s-1 for moist, unsaturated soils at temperatures near 15° C. These emissions were partially masked in the measured fluxes by rapid in-air chemical reactions involving O3 and NO2. The effects of rapid in-air chemical reactions involving O3 were to decrease the (upward) flux of NO with height. While the information collected at night was too limited to strongly support hypotheses concerning emissions and deposition, a pathway for NO production by reactions involving NO3 and related compounds was indicated. For daytime conditions, this production pathway is not evident, probably because of the relatively strong effects of photochemical reactions involving NO, NO2, and O3.Formerly with the Chemical Technology Division of Argonne National Laboratory and currently affiliated with Bio-Rad Laboratories, Digilab Division, Minneapolis, MN, U.S.A.  相似文献   

11.
A second-order modelling technique is used to investigate the influence of turbulence on chemical reactions. The covariance and variance equations for the NO-O3-NO2 system are developed as a function of the ratio of the timescale of turbulence ( t ) and the timescale of chemistry (Ch): the first Damköhler number ( t /Ch). Special attention is given to the calculation of the covariance between NO and O3 normalized by the product of their means, the so-called intensity of segregation (I S ). This parameter quantifies the state of mixing of two chemical species.The intensity of segregation is calculated as a function of the flux of NO and the first Damköhler number. The model results presented illustrate the importance of taking the effect of turbulence on chemical reactions into account for higher values of the NO flux, for values of the ratio O3/NO larger than 12.5 and for values of the ratio t /CH larger than 0.1. For such cases, the effective reaction rates are slower than if the chemical species are assumed to be uniformly mixed.  相似文献   

12.
This paper explores the utility of specifying the eddy viscosity for the horizontally uniform boundary layer as the product of the variance of vertical velocity and an empirical time scale τ w , as opposed to the more usual formulation where k is the turbulent kinetic energy (TKE), λ k is a length scale and α is a dimensionless coefficient. Simulations were compared with the observations on Day 33 of the Wangara experiment, and with a plausible specification of τ w (or λ k ) each model simulated convective boundary-layer development reasonably well, although the closure produced a more realistic width for the entrainment layer. Under the light winds of Day 33, and with the onset of evening cooling, an excessively shallow and strongly-stratified nocturnal inversion developed, and limited its own further deepening. Boundary-layer models that neglect radiative heat transport and parametrize convective transport by eddy viscosity closure are prone to this runaway (unstable) feedback when forced by a negative (i.e. downward) surface flux of sensible heat.  相似文献   

13.
The simultaneous measurements of NO, NO2 and HNOA mixing‐ratio profiles carried out on the Stratoprobe balloon flight of 22 July 1974 have been simulated with a time‐dependent model using the measured temperature and ozone profiles. The calculated ratios of NO/NO2, HNO3/NO2 using currently accepted photochemistry are consistent with the measured ratios within the experimental errors of the measurements. The measured NO2/NO ratio is almost a factor of two smaller than predicted, although the discrepancy is still within the experimental errors. A remarkable proportionality in the NO2 and O3 profiles has been noted and is unexplained. A time‐dependent simulation has been employed to convert the measurements into diurnally‐averaged profiles suitable for intercomparison with two‐dimensional stratospheric models and a comparison with constituent profiles from Prinn et al. (1975) is carried out as an example. The NOV mixing ratio, formed from the sum of the NO, NO2 and HNO2 measurements is similar to the NOV mixing ratio from several one‐ and two‐dimensional models used to predict the effects of SST's on the ozone layer. The odd nitrogen mixing ratio is roughly constant from 20 to 35 km at 11 ppbv.  相似文献   

14.
Intact soils cores were taken with a stainless steel corer from a sandy podzol and a loamy luvisol, and used to measure the flux (J) of NO between soil and atmosphere and the vertical profile of the NO mixing ratios (m) in the soil atmosphere, both as function of the NO mixing ratio (m a) in the atmosphere of the headspace. These measurements were repeated after stepwise excavation of the soil column from the top, e.g. by removing the upper 2 cm soil layer. The gaseous diffusion coefficients of NO in the soil cores were either computed from soil porosity or were determined from experiments using SF6. The NO fluxes (J) that were actually measured at the soil surface were compared to the fluxes which were calculated either from the vertical NO profiles (J c ) or from the NO production and uptake rates (J m ) determined in the excavated soil samples. In the podzol, the actually measured (J) and the calculated (J m , Jm) NO fluxes agreed within a factor of 2. In the luvisol, the measured NO fluxes (J) and those calculated from the vertical NO profiles (J c ) also agreed well, but in the upper 6 cm soil layer the NO fluxes (J m ) calculated from NO production and uptake rates were up to 7 times higher than the measured NO fluxes. This poor agreement was probably due to the inhomogeneous distribution of NO production and consumption processes and the change of diffusivities within the top layers of the luvisol. Indeed, the luvisol showed a pronounced maximum of the NO mixing ratios at about 6 cm depth, whereas the podzol column exhibited a steady and exponential decrease of the NO mixing ratios with depth. The inhomogeneities in the luvisol were confirmed by incubation of the soil cores under anoxic conditions. This treatment resulted in production of NO at several depths indicating a zonation of increased potential activities within the luvisol profile which may have biased the modelling of the NO surface flux from turnover measurements in soil samples. Inhomogeneities could be achieved even in homogenized soil by fertilization with nitrate solution.  相似文献   

15.
For measurements of eddy fluxes in the atmospheric boundary layer of gases (such as CO2) whose average concentration is very large compared to the fluctuations, corrections for air density fluctuations are required. With the boundary condition of no flux of dry air at the surface, the evaporation correction to eddy fluxes is 2.6 times larger than has been estimated with the boundary condition of no mass flux at all at the surface. The heat flux correction is also increased by a few per cent.  相似文献   

16.
We examine daily (morning–afternoon) transitions in the atmospheric boundary layer based on large-eddy simulations. Under consideration are the effects of the stratification at the top of the mixed layer and of the wind shear. The results describe the transitory behaviour of temperature and wind velocity, their second moments, the boundary-layer height Z m (defined by the maximum of the potential temperature gradient) and its standard deviation σ m , the mixed-layer height z i (defined by the minimum of the potential temperature flux), entrainment velocity W e, and the entrainment flux H i . The entrainment flux and the entrainment velocity are found to lag slightly in time with respect to the surface temperature flux. The simulations imply that the atmospheric values of velocity variances, measured at various instants during the daytime, and normalized in terms of the actual convective scale w*, are not expected to collapse to a single curve, but to produce a significant scatter of observational points. The measured values of the temperature variance, normalized in terms of the actual convective scale Θ*, are expected to form a single curve in the mixed layer, and to exhibit a considerable scatter in the interfacial layer.  相似文献   

17.
The nocturnal atmospheric boundary layer (ABL) poses several challenges to standard turbulence and dispersion models, since the stable stratification imposed by the radiative cooling of the ground modifies the flow turbulence in ways that are not yet completely understood. In the present work we perform direct numerical simulation of a turbulent open channel flow with a constant (cooling) heat flux imposed at the ground. This configuration provides a very simplified model for the surface layer at night. As a result of the ground cooling, the Reynolds stresses and the turbulent fluctuations near the ground re-adjust on times of the order of L/u τ , where L is the Obukhov length scale and u τ is the friction velocity. For relatively weak cooling turbulence survives, but when ReL=Lut/n <~100{Re_L=Lu_\tau/\nu \lesssim 100} turbulence collapses, a situation that is also observed in the ABL. This criterion, which can be locally measured in the field, is justified in terms of the scale separation between the largest and smallest structures of the dynamic sublayer.  相似文献   

18.
The response of tropospheric ozone to a change in solar UV penetration due to perturbation on column ozone depends critically on the tropospheric NO x (NO+NO2) concentration. At high NO x or a polluted area where there is net ozone production, a decrease in column ozone will increase the solar UV penetration to the troposphere and thus increase the tropospheric ozone concentration. However, the opposite will occur, for example, at a remote oceanic area where NO x is so low that there is net ozone destruction. This finding may have important implication on the interpretation of the long term trend of tropospheric ozone. A change in column ozone will also induce change in tropospheric OH, HO2, and H2O2 concentrations which are major oxidants in the troposphere. Thus, the oxidation capacity and, in turn, the abundances of many reduced gases will be perturbed. Our model calculations show that the change in OH, HO2, and H2O2 concentrations are essentially independent of the NO x concentration.  相似文献   

19.
Summary Water vapour flux profiles in the atmospheric boundary layer have been derived from measurements of water vapour density fluctuations by a ground-based Differential Absorption Lidar (DIAL) and of vertical wind fluctuations by a ground-based Doppler lidar. The data were collected during the field experiment LITFASS-2003 in May/June 2003 in the area of Lindenberg, Germany. The eddy-correlation method was applied, and error estimates of ±50 W/m2 for latent heat flux were found. Since the sampling error dominates the overall measurement accuracy, time intervals between 60 and 120 min were required for a reliable flux calculation, depending on wind speed. Rather large errors may occur with low wind speed because the diurnal cycle restricts the useful interval length. In the lower height range, these measurements are compared with DIAL/radar-RASS fluxes. The agreement is good when comparing covariance and error values. The lidar flux profiles are well complemented by tower measurements at 50 and 90 m above ground and by area-averaged near surface fluxes from a network of micrometeorological stations. Water vapour flux profiles in the convective boundary layer exhibit different structures mainly depending on the magnitude of the entrainment flux. In situations with dry air above the boundary layer a positive entrainment flux is observed which can even exceed the surface flux. Flux profiles which linearly increase from the surface to the top of the boundary layer are observed as well as profiles which decrease in the lower part and increase in the upper part of the boundary layer. In situations with humid air above the boundary layer the entrainment flux is about zero in the upper part of the boundary layer and the profiles in most cases show a linear decrease.  相似文献   

20.
The Regional Atmospheric Modeling System (RAMS)-based Forest Large-Eddy Simulation (RAFLES), developed and evaluated here, is used to explore the effects of three-dimensional canopy heterogeneity, at the individual tree scale, on the statistical properties of turbulence most pertinent to mass and momentum transfer. In RAFLES, the canopy interacts with air by exerting a drag force, by restricting the open volume and apertures available for flow (i.e. finite porosity), and by acting as a heterogeneous source of heat and moisture. The first and second statistical moments of the velocity and flux profiles computed by RAFLES are compared with turbulent velocity and scalar flux measurements collected during spring and winter days. The observations were made at a meteorological tower situated within a southern hardwood canopy at the Duke Forest site, near Durham, North Carolina, U.S.A. Each of the days analyzed is characterized by distinct regimes of atmospheric stability and canopy foliage distribution conditions. RAFLES results agreed with the 30-min averaged flow statistics profiles measured at this single tower. Following this intercomparison, two case studies are numerically considered representing end-members of foliage and midday atmospheric stability conditions: one representing the winter season with strong winds above a sparse canopy and a slightly unstable boundary layer; the other representing the spring season with a dense canopy, calm conditions, and a strongly convective boundary layer. In each case, results from the control canopy, simulating the observed heterogeneous canopy structure at the Duke Forest hardwood stand, are compared with a test case that also includes heterogeneity commensurate in scale to tree-fall gaps. The effects of such tree-scale canopy heterogeneity on the flow are explored at three levels pertinent to biosphere-atmosphere exchange. The first level (zero-dimensional) considers the effects of such heterogeneity on the common representation of the canopy via length scales such as the zero-plane displacement, the aerodynamic roughness length, the surface-layer depth, and the eddy-penetration depth. The second level (one-dimensional) considers the normalized horizontally-averaged profiles of the first and second moments of the flow to assess how tree-scale heterogeneities disturb the entire planar-averaged profiles from their canonical (and well-studied planar-homogeneous) values inside the canopy and in the surface layer. The third level (three-dimensional) considers the effects of such tree-scale heterogeneities on the spatial variability of the ejection-sweep cycle and its propagation to momentum and mass fluxes. From these comparisons, it is shown that such microscale heterogeneity leads to increased spatial correlations between attributes of the ejection-sweep cycle and measures of canopy heterogeneity, resulting in correlated spatial heterogeneity in fluxes. This heterogeneity persisted up to four times the mean height of the canopy (h c ) for some variables. Interestingly, this estimate is in agreement with the working definition of the thickness of the canopy roughness sublayer (2h c –5h c ).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号