首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Quantifying the role of black carbon (BC) in geochemical processes is difficult due to the heterogeneous character of its chemical structure. Chestnut wood charcoal samples produced at heat treatment temperatures (HTT) from 200-1000 °C were analysed using two different solid state 13C NMR techniques. First, aromaticity was determined as the percentage of total signal present in the aromatic region of 13C direct polarisation (DP) spectra. This was found to increase through the low temperature range of 200-400 °C; at higher temperatures, aromaticity was found to be >90%. Second, aromatic condensation was determined through the measurement of the chemical shift of 13Cbenzene sorbed to the charcoals, which is influenced by the presence of “ring currents” in the aromatic domains of the charcoals. This technique was less sensitive to molecular changes through the lower temperature range, but showed there was a smooth increase in the degree of condensation of the aromatic structures with increasing temperature through the temperature range 400-1000 °C. Ab initio molecular modelling was used to estimate the size of aromatic domains in the charcoals based on the strength of the ring currents detected. These calculations indicated that charcoals produced at temperatures below 500 °C contain aromatic domains no larger than coronene (7 ring). At higher temperatures the size of these domains rapidly increases, with structures larger than a 19 ring symmetrical PAH being predominant in charcoals produced at temperatures above 700 °C. Data from this study were found to be generally consistent with previously published measurements using the benzenepolycarboxylic acid (BPCA) molecular marker method on the same set of samples.  相似文献   

2.
The various sources of pyrogenic and coalified carbon (black carbon, BC) in soil have considerable structural heterogeneity, making the quantification of BC a challenge. This study was aimed at evaluating the capability of different detection procedures to recover different types of BC from soil. We added defined quantities of urban dust (UD, NIST SRM1649a), diesel particulate matter (DPM, NIST SRM2975), charcoal, lignite, bituminous coal and wood to four topsoil samples. Mixtures were analyzed by way of chemo-thermal oxidation (CTO), thermal gradient oxidation (ThG), the benzene polycarboxylic acid method (BPCA) and mid-infrared spectroscopy (MIRS). CTO returned good quantification of soot BC in the pure DPM, yet the recovery of soot BC from soil was unsatisfactory (18–270%). ThG gave good precision but lower values for pure soot BC. It severely overestimated the BC content for all soil-standard mixtures. The BPCA method gave a low return for soot BC, but for the spiked soil it reliably detected charcoal and coalified C (69–107% avg. recovery) but underestimated soot BC (52–90% recovery of DPM). Linear coherence in specific MIR vibrations was found in one component soil-BC mixtures for each BC type. Applying these standard calibrations to multi-component mixtures allowed detecting charcoal and a quantification of soot BC (88% avg. recovery) via MIRS, but ignored the presence of diagenetic C. We see the greatest potential in differentiating soot from charcoal in soil by employing a combination of chemical and thermal oxidation and MIRS, while the differentiation from diagenetic C is not possible yet.  相似文献   

3.
Measurements of black carbon (BC) using either chemical or thermal oxidation methods are generally thought to indicate the amount of char and/or soot present in a sample. In urban environments, however, asphalt and coal-tar particles worn from pavement are ubiquitous and, because of their pyrogenic origin, could contribute to measurements of BC. Here we explored the effect of the presence of asphalt and coal-tar particles on the quantification of BC in a range of urban environmental sample types, and evaluated biases in the different methods used for quantifying BC. Samples evaluated were pavement dust, residential and commercial area soils, lake sediments from a small urban watershed, and reference materials of asphalt and coal tar. Total BC was quantified using chemical treatment through acid dichromate (Cr2O7) oxidation and chemo-thermal oxidation at 375 °C (CTO-375). BC species, including soot and char/charcoal, asphalt, and coal tar, were quantified with organic petrographic analysis. Comparison of results by the two oxidation methods and organic petrography indicates that both coal tar and asphalt contribute to BC quantified by Cr2O7 oxidation, and that coal tar contributes to BC quantified by CTO-375. These results are supported by treatment of asphalt and coal-tar reference samples with Cr2O7 oxidation and CTO-375. The reference asphalt is resistant to Cr2O7 oxidation but not to CTO-375, and the reference coal tar is resistant to both Cr2O7 oxidation and CTO-375. These results indicate that coal tar and/or asphalt can contribute to BC measurements in samples from urban areas using Cr2O7 oxidation or CTO-375, and caution is advised when interpreting BC measurements made with these methods.  相似文献   

4.
Charcoal was sampled in four soil profiles at the Mayumbe forest boundary (DRC). Five fire events were recorded and 44 charcoal types were identified. One stratified profile yielded charcoal assemblages around 530 cal yr BP and > 43.5 cal ka BP in age. The oldest assemblage precedes the period of recorded anthropogenic burning, illustrating occasional long-term absence of fire but also natural wildfire occurrences within tropical rainforest. No other charcoal assemblages older than 2500 cal yr BP were recorded, perhaps due to bioturbation and colluvial reworking. The recorded paleofires were possibly associated with short-lived climate anomalies. Progressively dry climatic conditions since ca. 4000 cal yr BP onward did not promote paleofire occurrence until increasing seasonality affected vegetation at the end of the third millennium BP, as illustrated by a fire occurring in mature rainforest that persisted until around 2050 cal yr BP. During a drought episode coinciding with the ‘Medieval Climate Anomaly’, mature rainforest was locally replaced by woodland savanna. Charcoal remains from pioneer forest indicate that fire hampered forest regeneration after climatic drought episodes. The presence of pottery shards and oil-palm endocarps associated with two relatively recent paleofires suggests that the effects of climate variability were amplified by human activities.  相似文献   

5.
The aim of this work was to investigate changes in molecular form and surface charge of black carbon (BC) due to long-term natural oxidation and to examine how climatic and soil factors affect BC oxidation. Black C was collected from 11 historical charcoal blast furnace sites with a geographic distribution from Quebec, Canada, to Georgia, USA, and compared to BC that was newly produced (new BC) using rebuilt historical kilns. The results showed that the historical BC samples were substantially oxidized after 130 years in soils as compared to new BC or BC incubated for one year. The major alterations by natural oxidation of BC included: (1) changes in elemental composition with increases in oxygen (O) from 7.2% in new BC to 24.8% in historical BC and decreases in C from 90.8% to 70.5%; (2) formation of oxygen-containing functional groups, particularly carboxylic and phenolic functional groups, and (3) disappearance of surface positive charge and evolution of surface negative charge after 12 months of incubation. Although time of exposure significantly increased natural oxidation of BC, a significant positive relationship between mean annual temperature (MAT) and BC oxidation (O/C ratio with r = 0.83; P < 0.01) explained that BC oxidation was increased by 87 mmole kg C−1 per unit Celsius increase in MAT. This long-term oxidation was more pronounced on BC surfaces than for entire particles, and responded 7-fold stronger to increases in MAT. Our results also indicated that oxidation of BC was more important than adsorption of non-BC. Thus, natural oxidation of BC may play an important role in the effects of BC on soil biogeochemistry.  相似文献   

6.
8000 yr of black carbon accumulation in a colluvial soil from NW Spain   总被引:1,自引:0,他引:1  
Analytical pyrolysis-GC/MS and solid-state 13C NMR (nuclear magnetic resonance) were applied to the NaOH-extractable organic matter fraction of a colluvial soil from Galicia (NW Spain) that represents more than 8500 yr of accumulation. While molecular indicators of vegetation change were looked for, it seemed likely that any such signal was disturbed by the intense fire regime of the area. This conclusion was drawn from (1) the presence of three charcoal layers, (2) the high proportion of aryl C in NMR spectra (non-quantitative) and (3) the prevalence of benzenes and polycyclic aromatic hydrocarbons (PAHs) in the chromatograms (38 ± 6% of total identified peak area), also in charcoal-poor samples. If this conclusion is accurate, the area has been subjected to burning episodes for at least 8000 yr. Additionally, the results indicate that biomass burning residues (black carbon; BC) may become NaOH extractable after long periods of degradation in mineral soil. These results add to our knowledge of the long-term fate of BC in soil, which is a potential agent in the global C cycle.  相似文献   

7.
Anammox, the microbial anaerobic oxidation of ammonium by nitrite to produce dinitrogen gas, has been recognized as a key process in both the marine and freshwater nitrogen cycles, and found to be a major sink for fixed inorganic nitrogen in the oceans. Ladderane lipids are unique anammox bacterial membrane lipids that have been used as biomarkers for anammox bacteria in recent and past environmental settings. However, the fate of ladderane lipids during diagenesis is as of yet unknown. In this study, we performed oxic degradation experiments (at 20-100 °C) with anammox bacterial biomass to simulate early diagenetic processes occurring in the water column and at the sediment-water interface. Abundances of C18 and C20 ladderane lipids decreased with increasing temperatures, testifying to their labile nature. The most abundant products formed were ladderane lipids with a shorter alkyl side chain (C14 and C16 ladderane fatty acids), which was unambiguously established using two-dimensional NMR techniques on an isolated C14-[3]-ladderane fatty acid. The most pronounced production of these short-chain lipids was at 40 °C, suggesting that degradation of ladderane lipids was microbially mediated, likely through a β-oxidation pathway. An HPLC-MS/MS method was developed for the detection of these ladderane alteration products in environmental samples and positively tested on various sediments. This showed that the ladderanes formed during degradation experiments also naturally occur in the marine environment. Thus, short-chain ladderane lipids may complement the original longer-chain ladderane lipids as suitable biomarkers for the detection of anammox processes in past depositional environments.  相似文献   

8.
The transformation and mobility of charcoal in a fire-impacted watershed   总被引:3,自引:0,他引:3  
The incomplete combustion of fossil fuels and biomass has resulted in the global-scale distribution and accumulation of black carbon (BC) in the environment. Recently, the molecular identity of BC in the dissolved phase has been distinguished from that of natural organic matter. However, many of the processes that control BC cycling remain unidentified. We investigate changes in soil charcoal particle morphology and chemical composition using surface area analysis, scanning electron microscopy, energy dispersive X-ray spectroscopy, chemical oxidation, and 13C NMR spectroscopy. A comparison of soil charcoals differing in age by 100 years shows that aged charcoal has lower specific surface areas, higher BC/OC ratios, direct associations with soil minerals and microbial biomass, and a greater abundance of non-aromatic carbon. The water-soluble portion of soil charcoal and dissolved organic matter (DOM) from the watershed were also characterized by electrospray ionization mass spectrometry. Aqueous charcoal extracts are comprised mostly of condensed aromatic ring structures (CARS) which are also present in soil pore, river, and ground water samples. We present indirect evidence and a chemical rationale for a microbial BC dissolution mechanism. Furthermore, the speciation of CARS in the soil solution versus river and ground water provides molecular evidence of reactivity in the dissolved phase. The dissolution and export of soil BC are presently unmeasured fluxes with important implications for the global carbon cycle.  相似文献   

9.
Black carbon (BC) in soils plays a key role of carrying hydrophobic pollutants like polycyclic aromatic hydrocarbons (PAHs). However, little is known about the spatial distribution, sources of BC and its relationship with PAHs in urban soils. We studied BC, total organic carbon (TOC) and PAHs concurrently in 77 soils collected from downtown area, suburban and rural area and industrial area of Shanghai, China. BC was determined by both chemical oxidation (dichromate oxidation, BCCr) and chemo-thermal oxidation (CTO-375, BCCTO). BC sources were identified qualitatively by BC/TOC concentration ratios and BC-cogenerated high molecular weight (HMW) PAH isomer ratios and quantitatively by principal component analysis followed by multiple linear regression (PCA-MLR). Results showed that BCCr concentration (4.65 g/kg on average) was significantly higher than BCCTO (1.91 g/kg on average) in Shanghai soils. BCCr concentrations in industrial area were significantly higher than those in other two. Stronger correlation was found between PAHs and TOC, BCCr than that between PAHs and BCCTO, which indicates the possibility of PAHs being carried by charcoal and other organic matters thus negating its exclusive dependence on soot. Charcoal was therefore suggested to be taken into account in studies of BC and its sorption of PAHs. BC/TOC ratios showed a mixed source of biomass burning and fossil fuel combustion. PCA scores of BC-cogenerated HMW PAHs isomer ratios in potential sources and soil samples clearly demonstrated that sources of BC in urban soils may fall into two categories: coal and biomass combustion, and traffic (oil combustion and tire wear). PCA-MLR of HMW PAHs concentrations in soil samples indicated that coal and oil combustion had the largest contribution to BC in urban soils while tire wear and biomass combustion were important in downtown and rural area, respectively, which indicated they were main sources of HMW PAHs and presumably of BC.  相似文献   

10.
Stability of biomass-derived black carbon in soils   总被引:16,自引:0,他引:16  
Black carbon (BC) may play an important role in the global C budget, due to its potential to act as a significant sink of atmospheric CO2. In order to fully evaluate the influence of BC on the global C cycle, an understanding of the stability of BC is required. The biochemical stability of BC was assessed in a chronosequence of high-BC-containing Anthrosols from the central Amazon, Brazil, using a range of spectroscopic and biological methods. Results revealed that the Anthrosols had 61-80% lower (P < 0.05) CO2 evolution per unit C over 532 days compared to their respective adjacent soils with low BC contents. No significant (P > 0.05) difference in CO2 respiration per unit C was observed between Anthrosols with contrasting ages of BC (600-8700 years BP) and soil textures (0.3-36% clay). Similarly, the molecular composition of the core regions of micrometer-sized BC particles quantified by synchrotron-based Near-Edge X-ray Fine Structure (NEXAFS) spectroscopy coupled to Scanning Transmission X-ray Microscopy (STXM) remained similar regardless of their ages and closely resembled the spectral characteristics of fresh BC. BC decomposed extremely slowly to an extent that it was not possible to detect chemical changes between youngest and oldest samples, as also confirmed by X-ray Photoelectron Spectroscopy (XPS). Deconvolution of NEXAFS spectra revealed greater oxidation on the surfaces of BC particles with little penetration into the core of the particles. The similar C mineralization between different BC-rich soils regardless of soil texture underpins the importance of chemical recalcitrance for the stability of BC, in contrast to adjacent soils which showed the highest mineralization in the sandiest soil. However, the BC-rich Anthrosols had higher proportions (72-90%) of C in the more stable organo-mineral fraction than BC-poor adjacent soils (2-70%), suggesting some degree of physical stabilization.  相似文献   

11.
In a comprehensive study, we compared depositional conditions, organic matter (OM) composition, and organic carbon turnover in sediments from two different depositional systems along the Chilean continental margin: at ∼23° S off Antofagasta and at ∼36° S off Concepción. Both sites lie within the Chilean coastal upwelling system and have an extended oxygen minimum zone in the water column. However, the northern site (23° S) borders the Atacama Desert, while the southern site (36° S) has a humid hinterland. Eight surface sediment cores (up to 30 cm long) from water depths of 126-1350 m were investigated for excess 210Pb (210Pbxs) activity, total organic and total inorganic carbon concentrations (TOC and TIC, respectively), C/N-ratios, organic carbon isotopic compositions (δ13C), chlorin concentrations, Chlorin Indices (CI), and sulfate reduction rates (SRR). Sediment accumulation rates obtained from 210Pb-analysis were similar in both regions (0.04-0.15 cm yr−1 at 23° S, 0.10-0.19 cm yr−1 at 36° S), although total 210Pbxs fluxes indicated that the vertical particle flux was higher at 36° S than at 23° S. We propose that sediment focusing in isolated deposition centers led to high sediment accumulation rates at 23° S. Furthermore, there were no indications for sediment mixing at 23° S, while bioturbation was intense at 36° S. δ13C-values (−24.5‰ to −20.1‰ vs. VPDB) and C/N-ratios (molar, 8.6-12.8) were characteristic of a predominantly marine origin of the sedimentary OM in both investigated areas. The extent of OM alteration in the water column was partly reflected in the surface sediments as chlorin concentrations decreased and C/N-ratios and CI increased with increasing water depth of the sampling site. SRR were lower at 23° S (areal SRR 0.12-0.60 mmol m−2 d−1) than at 36° S (areal SRR 0.82-1.18 mmol m−2 d−1), which was partly due to the greater water depth of most of the sediments investigated in the northern region and consistent with a lower quality of the sedimentary OM at 23° S. Reaction rate constants for TOC degradation that were obtained from measured SRR (kSRR; 0.0004-0.0022 yr−1) showed a good correspondence to kTOC that were derived from the depth profiles of TOC (0.0003-0.0014 yr−1). Both, kSRR and kTOC, reflect differences in OM composition. At 36° S they were related to the degradation state of bulk OM (represented by C/N-ratios), whereas near 23° S they were related to the freshness of a small fraction of labile OM (represented by CI). Our study shows that although rates of organic carbon accumulation were similar in both investigated sites, the extent and kinetics of organic carbon degradation were closely linked to differing depositional conditions.  相似文献   

12.
全球新元古代冰期的记录和时限   总被引:7,自引:0,他引:7  
赵彦彦  郑永飞 《岩石学报》2011,27(2):545-565
化学沉淀碳酸盐矿物在沉积后很容易受到各种作用的影响,其中最重要的是其在成岩阶段所经历的成岩作用。碳酸盐沉积物在成岩过程中主要受大气降水、海水和埋藏过程中孔隙流体的控制,经历一系列压实、溶解、矿物的多相转变、重结晶、胶结等成岩作用,逐渐转变为固结的岩石。在成岩过程中,由于孔隙流体与沉积流体之间的异同以及温度的变化,碳酸盐沉积物的原始矿物成分、地球化学特征可能会很好的保存下来,但在许多情况下,也可能会改变,从而使我们无法准确反演碳酸盐沉积物在沉积时水体的特征。因此,我们在应用碳酸盐岩重建相关古环境和古气候变化的时候,必须要通过有效的方法来对碳酸盐岩是否受到成岩作用的影响进行鉴定。  相似文献   

13.
The Ulster White Limestone Formation is an unusual chalk because it underwent a period of post-depositional emergence and erosion, followed by burial under 1·5–2·0 km of Tertiary basalts. A high degree of pressure solution and cementation produced a well-lithified limestone with low porosities (2·3–10·4%). The Ulster White Limestone shows no evidence of thermally induced textural alteration, except for thin (<0·5 m) pseudospar contact recrystallization zones adjoining basalt dykes. Whole-rock δ18O values of samples not associated with basalt dykes range from - 3·26%o to - 6·50%o (PDB). The δ18O values of macropore cements range from - 4·96%o to - 11·52%o (mean=-8·27%o). Modelling of the diagenesis of the Ulster White Limestone using trace element concentrations and carbon, oxygen and strontium isotopic ratios of whole rock and cement samples suggests a low water-rock ratio and either marine or mixed marine-meteoric pore water environment during the main episode of recrystallization. The maximum possible burial temperature was modelled to be ? 105°C. The diagenetic history of the Ulster White Limestone is similar to that of North Sea chalks that are at comparable burial depths as the Ulster White Limestone after basalt deposition. The geochemical data show no indication of hydrothermal alteration associated with the overlying basalts. The degree of alteration of fine-grained limestones composed predominantly of low-magnesium calcite, such as the Cretaceous/Tertiary chalks, appears to be controlled largely by the burial (effective stress) history of the limestone.  相似文献   

14.
碳酸盐沉积物的成岩作用   总被引:4,自引:2,他引:2  
赵彦彦  郑永飞 《岩石学报》2011,27(2):501-519
化学沉淀碳酸盐矿物在沉积后很容易受到各种作用的影响,其中最重要的是其在成岩阶段所经历的成岩作用.碳酸盐沉积物在成岩过程中主要受大气降水、海水和埋藏过程中孔隙流体的控制,经历一系列压实、溶解、矿物的多相转变、重结晶、胶结等成岩作用,逐渐转变为固结的岩石.在成岩过程中,由于孔隙流体与沉积流体之间的异同以及温度的变化,碳酸盐沉积物的原始矿物成分、地球化学特征可能会很好的保存下来,但在许多情况下,也可能会改变,从而使我们无法准确反演碳酸盐沉积物在沉积时水体的特征.因此,我们在应用碳酸盐岩重建相关古环境和古气候变化的时候,必须要通过有效的方法来对碳酸盐岩是否受到成岩作用的影响进行鉴定.  相似文献   

15.
By using continuous helium flow during the crushing of calcite speleothem samples, we are able to recover liberated inclusion waters without isotopic fractionation. A paleotemperature record for the Jacklah Jill Cave locality, Vancouver Island, BC, was obtained from a 30-cm tall stalagmite that grew 10.3-6.3 Ka ago, using δ18O values of the crushed calcite and of the inclusion water as inferred from its δD. It is found that the locality experienced mean annual temperature variations up to 11 °C over a 4-Ka period in the early Holocene. At the beginning of the period, local temperature quickly increased from a minimum of ∼1 °C to around 10 °C, but this early climate optimum, about 3 °C warmer than today, only lasted for ∼1200 years. About 8.6 Ka ago, temperature had declined to ∼7 °C, approximately the same as the modern cave temperature. Since then, the study area has experienced only minor temperature fluctuations, but there was a brief fall to ∼4 °C at around 7 Ka ago, which might be caused by a short lived expansion of local alpine glaciers. The long-term T-dependence of δD was 1.47‰/°C, identical to the value in modern precipitation.  相似文献   

16.
Charcoal peaks in lake-sediment records are commonly used to reconstruct fire histories spanning thousands of years, but quantitative methods for evaluating the suitability of records for peak detection are largely lacking. We present a signal-to-noise index (SNI) that quantifies the separation of charcoal peaks (signal) from other variability in a record (noise). We validate the SNI with simulated and empirical charcoal records and show that an SNI > 3 consistently identifies records appropriate for peak detection. The SNI thus offers a means to evaluate the suitability of sediment-charcoal records for reconstructing local fires. MATLAB and R functions for calculating SNI are provided.  相似文献   

17.
Very little is known about the macromolecular properties of biomass combustion residues referred to as black carbon (BC). Pyrolysis-gas chromatography–mass spectrometry (Py-GC/MS) was performed on: (i) peat from Spain at 400–1200 °C to investigate the effect of charring on pyrolysis fingerprint and (ii) natural charcoal from Laos in order to link molecular information to published chemical and reactivity parameters. Confirming earlier Py-GC/MS studies, the BC in the artificially charred peat and the natural charcoal produced predominantly benzene, toluene, C2-benzenes, PAHs and benzonitriles. Furthermore, some charcoal samples produced significant amounts of phenols, methoxyphenols, carbohydrate markers, n-alkanes and n-alkenes upon pyrolysis, reflecting non-charred and weakly charred biomass. A series of pyrolysis product ratios related to the degree of dealkylation of the pyrolysis products (benzene/toluene, naphthalene/C1-naphthalenes, C1-naphthalenes/C2-naphthalenes, benzofuran/C1-benzofurans and benzonitrile/C1-benzonitrile) increased with increasing artificial charring (peat) and, for the natural charcoal, these ratios were in accordance with established chemical and reactivity parameters related to charring intensity from other methods: proportion of aromatic C obtained from solid state 13C nuclear magnetic resonance spectroscopy (NMR), the proportion of charred material as estimated from NMR in conjunction with a molecular mixing model (NMR–MMM) and the resistance to acid dichromate oxidation. The alkyl side chains of aromatic pyrolysis products are probably inherited from short chain aliphatic C chains that cross link the predominantly aromatic building blocks of BC, and these linkages seem to disappear with increasing charring intensity. Thus, the degree of thermal alteration of BC can be discerned from the pyrolysis fragmentation pattern.  相似文献   

18.
Spontaneous combustion, less than 1 Ma ago, affected a 60-m thick sediment pile of biomicrite at the Khushaym Matruck site (Jordan). The present study shows that three retrograde alteration stages occurred: weathering, thermal stress and oxidative alkaline perturbation. μ-FT-i.r. spectra of isolated kerogens and oxygen index of whole rocks indicate that oxidation of organic matter occurred down to ∼10 m beneath the metamorphosed zone at Khushaym Matruck. The occurrence of the oxidative weathering bacterially mediated, as suggested by the mass chromatograms of saturated hydrocarbons, can explain high Rock-Eval Tmax values and low petroliferous potential measured along the sedimentary pile. On the other hand, the thermal extent of combustion events was limited to the first 2 m from the contact. The mean reflectance of 0.20–0.24% and porosity of ca. 50% of the grey clayey biomicrites indicate that organic matter was very immature and sediments were unconsolidated at the time of the combustion event. Using mineralogy, microscopic analyses of vegetable debris and magnetic susceptibility, a suite of characteristic points corresponding to the thermal imprint can be assessed: (i) x = 0m, T ∼ 1000 °C, (ii) x = 1 m, T ∼ 350 °C, (iii) x = 2 m, T ∼ 150 °C and (iv) x > ∼ 8 m, T ∼ 30 °C. Paleocirculation of meteoric groundwater in the ‘cement-marbles’ generated high-pH fluids that have circulated via fractures and through the matrix porosity of the underlying biomicrites but have also induced alkaline hydrolysis and oxidative attack of the organic matter. The polysaccharide/lignin ratio derived from μ-FT-i.r. analyses shows that the delignification of vegetable debris and degradation of polysaccharides progressively decline in the indurated zone, which indicates a decrease in the pH of migrating solutions. The latter also severely oxidized organic matter at 2.10 and 3.05 m as revealed by the oxygen index and induced the generation of bitumen. The spatial correlation between the oxidation levels of organic matter and the metal contents (Fe, Ti and Cr) suggests that redox reactions were responsible for the immobilization of metals in the indurated biomicrites. The intensity of these reactions is attributed to changes in the fluid flow regime within the sedimentary column.  相似文献   

19.
Authigenic sedimentary low-temperature K-feldspar separated from Albian-Turonian carbonates in Israel was dated by the step-heating 40Ar-39Ar method. In contrast to high-temperature K-feldspars, ca. 90% of the radiogenic Ar was released at temperatures lower than 600 °C and fusion mostly occurred below 750 °C. Though formed under low temperature, Ar loss in all but one sample is estimated to be less than 2%. Nevertheless, the effect of 39Ar recoil is evident in some separates, probably due to their very fine size (4-10 μm). The plateau age of one sample with the highest content of authigenic K-feldspar (93%, 96 Ma) is slightly younger than the assumed stratigraphic age and thus defines the timing of an early diagenetic event within a few million years after deposition. Other samples where a plateau age could be determined yield ages slightly older. Strong acid etching (7 N HNO3, 85 °C) of the K-feldspar-enriched fraction may have improved the 39Ar-40Ar spectra but did not eliminate the presence of minute quantities of detrital K-bearing minerals. Though the present set of data is insufficient for a clear-cut conclusion, the activation energy of the authigenic K-feldspar is in the range of 14-26 kcal mol− 1 s− 1, much lower than that of magmatic and hydrothermal K-feldspars and can probably be attributed to the heating schedule and the small crystal size. It is not clear whether the formation at low temperatures (< 50 °C) has any effect on the activation energy.  相似文献   

20.
The analysis of macroscopic wood charcoal fragments extracted from soils is frequently used as a palaeoecological tool for reconstructing stand-scale forest composition and fire history. Here we explored the putative loss of palaeoecological information due to charcoal degradation through time and in different biogeographical settings. We compared the relationship between charcoal mass and abundance for soil samples from five biogeographical regions of boreal northeastern North America spanning most of the Holocene period. We verified whether charcoal (Ø ≥ 2 mm) conservation differed as a consequence of different taphonomical processes between organic and mineral soil types. We also assessed the mass/abundance relationship as a function of charcoal residence time in soil. Overall, the slope of the regression between charcoal particles mass (g) and abundance (number of particles) was 0.0042. The slope was not significantly different in samples from organic and mineral soil, and all biogeographical regions had similar slope values except one (higher charcoal fragmentation, probably due to high colluvial activity). Charcoal conservation also did not vary according to residence time in soil. This study shows that macroscopic soil charcoal particles resist fragmentation over millennia in different biogeographical settings and under the influence of various taphonomical processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号