首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This paper presents a detailed survey of the activities of selected man-made radionuclides in peat deposits located in SW Spitsbergen. Peat cores from the High Arctic (SW Spitsbergen) were analyzed by gamma spectrometry (137Cs), alpha spectrometry (238Pu, 239,240Pu, 241Am activities) and by ICPMS (240Pu/239Pu atom ratios). Maximum activities evident in the peats correspond to the 1963/1964 global maximum fallout from atmospheric testing of nuclear weapons; some of the activity profiles have been altered post-deposition by water infiltration. Activity ratios of 238Pu/239+240Pu, 241Am/239+240Pu, 239+240Pu/137Cs and 240Pu/239Pu atom ratios indicate mixing between global (stratospheric) and regional (tropospheric) sources of these radionuclides in the Svalbard area. The 238Pu/239+240Pu activity ratios varied from 0.02 ± 0.01 to 0.09 ± 0.03, suggesting global fallout as the dominant source of Pu. The 239+240Pu/137Cs activity ratios varied from 0.01 ± 0.01 to 0.42 ± 0.11, which apparently arises from the post-depositional mobility of 137Cs. The 241Am/239+240Pu activity ratios ranged between 0.10 ± 0.02 and 1.5 ± 0.3 and exceed the published global fallout ratio for Svalbard of 0.37 due to the relatively higher geochemical mobility of Pu vs. Am and/or ingrowth of Am from the decay of 241Pu. The atom ratio 240Pu/239Pu ranged from 0.142 ± 0.006 to 0.241 ± 0.027; however, the vast majority of peat samples exhibited 240Pu/239Pu atom ratios similar to the stratospheric fallout (∼0.18).  相似文献   

2.
Field experiments and laboratory studies were performed to investigate migration processes of plutonium isotopes from a near-surface radioactive waste trench to the underlying sandy aquifer at the Red Forest waste dump in the Chernobyl zone. The objectives of these experiments were to characterize the spatial distribution and possible migration mechanisms of plutonium in the aquifer. During 2002–2007 experimental investigations were carried out and spatial distributions of plutonium isotopes (239,240Pu, 238Pu), 90Sr and major ions in the aquifer in the direction of the groundwater flow were obtained. Specific activities of radionuclides in groundwater depended on the location of the piezometer and varied in the range of 1–360 mBq kg−1 for 239,240Pu, 0.5–180 mBq kg−1 for 238Pu and n–n·104 Bq kg−1 for 90Sr. It was found that the spatial features of the distributions of plutonium and strontium specific activities in the upper eolian aquifer were similar, i.e. there was a correlation between the positions of the activity maxima of the radionuclides. The Pu isotopes plume in the aquifer spreads about 15 m downstream of the radionuclides source. Characterization of the initial radionuclide composition of the waste showed that all plutonium in the aquifer originated from the trench. The ratio of plutonium isotopes (239,240Pu/238Pu) at the sampling time was the same in waste material and in groundwater samples. In situ ultrafiltration of several groundwater samples was carried out. The size fractionation data obtained suggest that a significant part of plutonium (50–98%) in the groundwater sampled close to the source from the upper part of the aquifer is associated with a very low molecular weight fraction (<1 kDa).  相似文献   

3.
239 + 240Pu activities of 100–450dpm/kg are found down to 15–18 cm in anoxic Saanich Inlet sediments, with a subsurface maximum in undisturbed deposits. Integrated 239 + 240Pu inventories which overlap delivery estimates are present both in two cores of anoxic sediments from Saanich Inlet and in one core of oxic sediments 65 km away in Dabob Bay, Washington. 241Am239 + 240Pu ratios in Saanich Inlet sediments overlap ratios in unfractionated midnorthern latitude fallout, in oxic sediments from the Washington continental shelf, and in anoxic sediments from two basins off southern California and Mexico. The 239 + 240Pu137Cs ratios in three intervals of Saanich Inlet sediments are also in agreement with ratios previously reported for oxic coastal marine sediments. The Pu inventories, the AmPu and PuCs ratios, and the Saanich Inlet Dabob Bay comparison all argue that Pu is not rapidly remobilized in anoxic sediments.The subsurface 239 + 240Pu activity maximum is not in agreement with the historical record of peak Pu fallout in 1963–1964 unless our 210Pb-derived sedimentation rates are incorrectly high. However, they are in good agreement with previous 210Pb and varve chronologies in Saanich Inlet, and also give reasonable dates for times when 239 + 240Pu and SNAP-9A supplied 238Pu first appear in the sediments. We conclude they properly date the maximum in sedimentary 239 + 240Pu activity at 1970–1973, and seek explanations for the 7–10yr time lag after peak fallout.239 + 240Pu inventories in one core from the eastern basin of the Cariaco Trench and in two cores from Golfo Dulce. an anoxic basin off the Pacific coast of Costa Rica, are also in reasonable agreement with fallout delivery to these latitudes when excess 210Pb inventories and fluxes are used to verify recovery of at least a major fraction of the most recently deposited sediments.  相似文献   

4.
We have investigated the banded coral Montastrea annularis as a recorder of the history of fallout Pu in surface seawater. Thirty annual growth bands, representing growth during ‘coral years’ 1951–1980, were subsampled from M. annularis collected at St. Croix, U.S. Virgin Islands. ‘Coral years’ begin and end in late summer-early autumn and are designated for the calendar year in which they end. 239,240Pu was finite in coral years 1954–1980, and the coral Pu record is very simply related to the fallout history of 90Sr. Peaks in coral Pu in coral years 1959 and 1964 correspond to fallout peaks in 1959 and 1963, respectively. Peak broadening and time lags in the coral Pu record, as compared to the 90Sr fallout record are consistent with retention of fallout Pu in surface seawater for about two years (characteristic removal time) during the period of major fallout, and possibly longer thereafter. The simplicity of the coral Pu record and its close correspondence with fallout history suggest that 239,240Pu was incorporated into the coral skeleton with constant discrimination relative to Ca; the effects of speciation and oxidation state upon Pu incorporation are presently unknown.

To aid the Pu interpretation Ca, Mg, Sr, Na and natural radionuclides (238U, 228Ra, 232Th and 210Pb) were also determined in the annual bands. In small samples (0.5 g) Ca, Mg and Na show correlated variations which could be due to seasonal variability in uptake. The 238U and 228Ra records were generally consistent with uptake, at constant discrimination, from surface-water reservoirs of nearly constant concentration, although one sample showed probable diagenetic addition of U. 232Th was not detected with certainty; this implies that terrigenous particles were not consistently entrapped within the coral skeleton. Interpretation of 210Pb was difficult because 226Ra was not measured.

Montastrea annularis preserves a record of fallout Pu. To make this record useful it must be considered in the broadest possible geochemical context.  相似文献   


5.
The recommended concentrations of 239Pu, 240Pu and 239+240Pu in reference material IAEA‐315 (marine sediment) were estimated by three analytical methods: isotope dilution thermal ionisation mass spectrometry (TIMS), isotope dilution inductively coupled plasma‐mass spectrometry (ICP‐MS) and alpha spectrometry. The determination of 239Pu and 240Pu (239+240Pu by alpha spectrometry) was carried out with samples from randomly selected bottles using each method. Plutonium‐238 was also measured by alpha spectrometry. A plutonium‐242 reference material was used as a spike for the quantitative analysis. The influence of 242Pu in the samples was therefore calculated; however, this contribution was less than the range of uncertainty and did not influence the final results. The obtained data were statistically analysed using variance component analysis and paired comparison. The combined standard uncertainties from “method/measurement”, “bottle” and “sub‐sample” were in the order of 3 to 6%. The main contributions to the uncertainty were from the material heterogeneity and from systematic differences between methods. Based on this study with twenty‐seven analyses using 10–14 g sample mass, concentrations of (38 ± 3) Bq kg?1, (28 ± 3) Bq kg?1 and (66 ± 4) Bq kg?1 are proposed as recommended values for 239Pu, 240Pu and 239+240Pu, respectively, and (9.5 ± 0.4) Bq kg?1 for 238Pu as an information value in reference material IAEA‐315. In mass concentration units, these amount to (16.4 ± 1.2) ng kg?1, (3.3 ± 0.4) ng kg?1 and (0.015 ± 0.003) ng kg?1 for 239Pu, 240Pu and 238Pu, respectively. The certified reference materials NIST 4350B and NIST 4354 were also analysed by TIMS for quality assurance of the method used in this study.  相似文献   

6.
Vertical profiles of 137Cs and 239,240Pu were measured in soils collected from two sites in southern Sweden and three sites in southern Poland and were modeled using both a solute transport model and a bioturbation model to better understand their downward migration. A time series of measured 137Cs profiles indicates that 137Cs from Chernobyl was found at the soil surface in 1986 but it has migrated progressively downward into the soil 4.5-25.5 cm since. However, because of dispersion during the migration and mixing following Chernobyl deposition and the much higher activities of 137Cs from Chernobyl, stratospheric fallout of 137Cs from the 1960s cannot be identified as a second 137Cs activity maximum lower in the soil column at any of the sites. Conversely, the 240Pu/239Pu ratio indicates that no Chernobyl-derived Pu is present in any of the cores with the exception of one sample in Sweden. This difference may be attributed to the nature of the release from Chernobyl. Cesium volatilized at the reactor temperature during the accident, and was released as a vapor whereas Pu was not volatile and was only released in the form of minute fuel particles that traveled regionally. Both the solute diffusion and the bioturbation models accurately simulate the downward migration of the radionuclides at some sites but poorly describe the distributions at other sites. The distribution coefficients required by the solute transport model are about 100 times lower than reported values from the literature indicating that even though the solute transport model can simulate the profile shapes, transport as a solute is not the primary mechanism governing the downward migration of either Cs or Pu. The bioturbation model uses reported values from the literature of the distribution coefficients and can simulate the downward migration because that model buries the fallout by placing soil from depth on top and mixing it slightly throughout the mixing zone (0.6-2% per year of mixing). However, mixing in that model predicts concentrations in the top parts of the soil profiles which are too high in many cases. Future progress at understanding the downward migration of radionuclides and other tracers will require a more comprehensive approach, combining solute transport with bioturbation and including other important soil processes.  相似文献   

7.
Iodine-129 and 238Pu, 239Pu and 240Pu are radionuclides posing a long-term safety concern due to their potential integration in bio and geo-chemical cycles and their significant half-lives. They are present throughout the environment at very low levels, and more particularly, nuclear fuel reprocessing plants (NRP) have been identified as local sources of these radionuclides. However, due to measurement difficulties, published data concerning their activity levels in terrestrial environments around NRP facilities remain scarce. The aim of the present paper is to communicate 129I, 238Pu and 239+240Pu measurements results from the area surrounding the Marcoule NRP, which is situated in SE France. Several vegetation samples were collected around the nuclear installation in 1999 and 2000, in order to examine the possible impacts of its atmospheric I and Pu discharges. Based on 238Pu/239+240Pu activity ratios and 129I/127I isotopic ratios, local increases in Pu and 129I were detected and related to industrial activity.  相似文献   

8.
The concentrations of 238Pu, 239 + 240Pu, 241Am and 137Cs were determined in rain samples collected at Monaco in the course of 1978–1979. Based on these data, the annual deliveries of these radionuclides to the Mediterranean by rain are computed to be 0.18 ± 0.01 pCim?2 for 238Pu, 8.1 ± 0.1 pCim?2 for 239 + 240Pu, 0.58 ± 0.02 pCim?2 for 241Am and 351 ± 4 pCim?2 for 137Cs.Comparing the delivery data with the mixed layer inventories of 239 + 240Pu and 241Am in the Mediterranean, the upper limits of the mean residence time of these radionuclides in the mixed layer were estimated to be 12.3 yr for 239 + 240pu and 2.9 yr for 241Am. These values are consistent with the conclusion deduced from the vertical distribution pattern of these transuranic elements in the Mediterranean.Based on delivery values, the annual activity ratios for 238pu239 + 240Pu, 241Am239 + 240Pu and 239 + 240pu137Cs are found to be 0,022, 0.072 and 0.023 respectively. The 238pu239 + 240pu and 239 + 240Pu137Cs activity ratios vary within relatively narrow ranges with time, while a much wider variation was observed for the 241Am239 + 240Pu activity ratio. The cause of the wider variation of the 241Am239 + 240Pu ratio may be related to the difference in the mean age of fallout brought down in different seasons.  相似文献   

9.
The radionuclide burden of vegetation comprising a tide-washed pasture at Ince Marsh in the Mersey Estuary, U.K., derives mainly from adhered external particulates originating as suspended sediments in estuarine water. Radionuclide concentrations are dominated by the growth cycle of the vegetation, with the highest winter levels of contamination activity an order of magnitude greater than the lowest levels in mid-summer. A secondary effect due to sediment transfer during periods of severe flooding produces subsidiary features on this dominant seasonal profile. Radionuclide concentrations on vegetation are in the range137Cs=8–191,134Cs=0.3–0.9,241Am=0.6–46,238Pu=0.1–1.5, and239/240Pu=0.8–44 Bq kg−1. These ranges reflect the relative concentrations of radionuclides in estuarine sediment (137Cs=615,241Am=202, and239/240Pu=104 Bq kg−1) rather than the values in filtered estuary water (137Cs=0.4,241Am=0.001, and239/240Pu=0.001 Bq 1−1). Median Kd values for these radionuclide species are Cs=1,400, Am=200,000, and Pu=80,000 1 kg−1).  相似文献   

10.
Direct dating of fossil coral reefs using the U-series chronometer provides an important independent test of the Milankovitch orbital forcing theory of climate change. However, well-dated fossil corals pre-dating the last interglacial period (>130 thousand years ago; ka) are scarce due to, (1) a lack of sampling localities, (2) insufficient analytical precision in U-series dating methods, and (3) diagenesis which acts to violate the assumption of closed-system U-series isotopic decay in fossil corals. Here we present 50 new high-precision U-series age determinations for fossil corals from Henderson Island, an emergent coral atoll in the central South Pacific. U-series age determinations associated with the Marine Isotope Stage (MIS) 9 interglacial and MIS 7.5 interstadial periods are reported. The fossil corals show relatively little open-system U-series behaviour in comparison to other localities with fossil coral reefs formed prior to the last glacial cycle, however, open-system U-series behaviour is still evident in most of the dated corals. In particular, percent-level shifts in the [230Th/238U]act composition are observed, leading to conventional U-series ages that are significantly younger or older than the true sample age. This open-system U-series behaviour is not accounted for by any of the open-system U-series models, indicating that new models should be derived. The new U-series ages reported here support and extend earlier findings reported in Stirling et al. (2001), providing evidence of prolific coral reef development on Henderson Island at ∼320 ka, most likely correlated with MIS 9.3, and subsequent reef development at ∼307 ka during MIS 9.1, while relative sea-level was potentially ∼20 m lower than during MIS 9.3. The U-series ages for additional well-preserved fossil corals are suggestive of minor reef development on Henderson Island during MIS 7.5 (245-230 ka) at 240.3 ± 0.8 and 234.7 ± 1.3 ka. All U-series observations are consistent with the Milankovitch theory of climate change, in terms of the timing of onset and termination of the dated interglacial and interstadial periods. The best preserved samples also suggest that the oceanic 234U/238U during MIS 9 and MIS 7.5 was within five permil of the modern open ocean composition.  相似文献   

11.
The integrity of coral-based reconstructions of past climate variability depends on a comprehensive knowledge of the effects of post-depositional alteration on coral skeletal geochemistry. Here we combine millimeter-scale and micro-scale coral Sr/Ca data, scanning electron microscopy (SEM) images, and X-ray diffraction with previously published δ18O records to investigate the effects of submarine and subaerial diagenesis on paleoclimate reconstructions in modern and young sub-fossil corals from the central tropical Pacific. In a 40-year-old modern coral, we find secondary aragonite is associated with relatively high coral δ18O and Sr/Ca, equivalent to sea-surface temperature (SST) artifacts as large as −3 and −5 °C, respectively. Secondary aragonite observed in a 350-year-old fossil coral is associated with relatively high δ18O and Sr/Ca, resulting in apparent paleo-SST offsets of up to −2 and −4 °C, respectively. Secondary Ion Mass Spectrometry (SIMS) analyses of secondary aragonite yield Sr/Ca ratios ranging from 10.78 to 12.39 mmol/mol, significantly higher compared to 9.15 ± 0.37 mmol/mol measured in more pristine sections of the same fossil coral. Widespread dissolution and secondary calcite observed in a 750-year-old fossil coral is associated with relatively low δ18O and Sr/Ca. SIMS Sr/Ca measurements of the secondary calcite (1.96-9.74 mmol/mol) are significantly lower and more variable than Sr/Ca values from more pristine portions of the same fossil coral (8.22 ± 0.13 mmol/mol). Our results indicate that while diagenesis has a much larger impact on Sr/Ca-based paleoclimate reconstructions than δ18O-based reconstructions at our site, SIMS analyses of relatively pristine skeletal elements in an altered coral may provide robust estimates of Sr/Ca which can be used to derive paleo-SSTs.  相似文献   

12.
The deep-sea coral, Enallopsammia rostrata, a member of the Dendrophylliidae family, is a major structure-forming species that creates massive dendroid colonies, up to 1 m wide and 0.5 m tall. Living colonies of E. rostrata have been collected using the PISCES submersibles from three locations from 480 to 788 m water depth in the Line Islands (∼160°W) in the Equatorial Pacific. We have applied to these colonies a high sensitivity, low blank technique to determine U-series ages in small quantities (70 ± 15 mg) of modern and near modern calcareous skeletons using MC-ICP-MS (Multi-collector Inductively Coupled Plasma Mass Spectrometer). The application of this method to living slow-growing colonies from a range of sites as well as the observations of axial growth patterns in thin sections of their skeletons offer the first expanded and well constrained data on longevity, growth pattern and mean growth rates in E. rostrata. Absolute dated specimens indicate life spans of colonies ranging from 209 ± 8 yrs to 605 ± 7 yrs with radial growth rates from 0.012 to 0.072 mm yr−1 and vertical extension rates from 0.6 to 1.9 mm yr−1. The linear growth rates reported here are lower than those reported for other deep-sea scleractinian corals (Lophelia pertusa and Madrepora oculata). The U-series dating indicates that the growth ring patterns of E. rostrata are not consistent with annual periodicity emphasizing the importance of absolute radiometric dating methods to constrain growth rates. Slow accretion and extreme longevity make this species and its habitat especially vulnerable to disturbances and impacts from human activities. This dating method combined with observation of growth patterns opens up new perspectives in the field of deep-sea corals since it can provide quantitative estimates of growth rates and longevity of deep-sea corals in general.  相似文献   

13.
One hundred eighty U-Th data, including 23 isochrons on 24 pristine modern and Holocene corals and 33 seawater samples, were analyzed using sector-field mass spectrometry to understand the variability of initial 230Th/232Th (230Th/232Th0). This dataset allows us to further assess the accuracy and precision of coral 230Th dating method. By applying quality control, including careful sampling and subsampling protocols and the use of contamination-free storage and workbench spaces, the resulting low procedural blanks give an equivalent uncertainty in age of only ±0.2-0.3 yr for 1-2 g of coral sample. Using site-specific 230Th/232Th0 values or isochron techniques, our study demonstrates that corals with an age less than 100 yrs can be 230Th-dated with precisions of ±1 yr. Six living subtidal coral samples were collected from two continental shelf sites, Nanwan off southern Taiwan in the western Pacific and Son Tra off central Vietnam in the South China Sea; one coral core was drilled from an open-ocean site, Santo Island, Vanuatu, in the western tropical Pacific; and modern and fossil intertidal coral slabs, 17 in total, were cut from six sites around the islands of Simeulue, Lago, North Pagai and South Pagai of Sumatra in the eastern Indian Ocean. The results indicate that the main source of thorium is the dissolved phase of seawater, with variation of 230Th/232Th0 depending on local hydrology. With intense input of terrestrial material, low 230Th/232Th0 atomic ratios of 4.9 × 10−6 and 3.2 × 10−6 with a 10% variation are observed in Nanwan and Son Tra, respectively. At the Santo site, we find a value of 5.6 × 10−6 at 4 horizons and one high value of 24 × 10−6 in a sample from AD 1974.6 ± 0.5, likely due to the upwelling of cold water during a La Niña event between AD 1973 and 1976. The natural dynamics of 230Th/232Th0 recorded in the intertidal corals at sites in the Sumatran islands are complicated so that this value varies significantly from 3.0 to 9.4 × 10−6. Three of the 141 modern coral 230Th ages differ from their true ages by −23 to +4, indicating the presence of detrital material with anomalous 230Th/232Th values. Duplicate measurement of coeval subsamples is therefore recommended to verify the age accuracy. This improved high precision coral 230Th dating method raises the prospects of refining the age models for band-counted and tracer-tuned chronologies and of advancing coral paleoclimate research.  相似文献   

14.
In order to investigate the incorporation of Sr, Mg, and U into coral skeletons and its temperature dependency, we performed a culture experiment in which specimens of the branching coral (Porites cylindrica) were grown for 1 month at three seawater temperatures (22, 26, and 30 °C). The results of this study showed that the linear extension rate of P. cylindrica has little effect on the skeletal Sr/Ca, Mg/Ca, and U/Ca ratios. The following temperature equations were derived: Sr/Ca (mmol/mol) = 10.214(±0.229) − 0.0642(±0.00897) × T (°C) (r2 = 0.59, p < 0.05); Mg/Ca (mmol/mol) = 1.973(±0.302) + 0.1002(±0.0118) × T (°C) (r2 = 0.67, p < 0.05); and U/Ca (μmol/mol) = 1.488(±0.0484) − 0.0212(±0.00189) × T (°C) (r2 = 0.78, p < 0.05). We calculated the distribution coefficient (D) of Sr, Mg, and U relative to seawater temperature and compared the results with previous data from massive Porites corals. The seawater temperature proxies based on D calibrations of P. cylindrica established in this study are generally similar to those for massive Porites corals, despite a difference in the slope of DU calibration. The calibration sensitivity of DSr, DMg, and DU to seawater temperature change during the experiment was 0.64%/°C, 1.93%/°C, and 1.97%/°C, respectively. These results suggest that the skeletal Sr/Ca ratio (and possibly the Mg/Ca and/or U/Ca ratio) of the branching coral P. cylindrica can be used as a potential paleothermometer.  相似文献   

15.
The interaction of Pu3+ bearing solutions with the muscovite (0 0 1) basal plane is explored using a combination of ex-situ approaches including alpha-counting, to determine the Pu3+ adsorption isotherm, and X-ray reflectivity (XR) and resonant anomalous X-ray reflectivity (RAXR), to probe the interfacial structure and Pu-specific distribution, respectively. Pu uptake to the muscovite (0 0 1) surface from Pu3+ solutions in a 0.1 M NaClO4 background electrolyte at pH 3 follows an approximate Langmuir isotherm with an apparent adsorption constant, Kapp = 5 × 104 M−1, and with a maximum coverage that is consistent with the amount needed to fully compensate the surface charge by trivalent Pu. The XR results show that the muscovite surface reacted with a 10−3 M Pu3+ solution (at pH 3 with 0.1 M NaClO4) and dried in the ambient environment, maintains a 30-40 Å thick layer, indicating the presence of a residual hydration layer (possibly including adventitious carbon). The RAXR results indicate that Pu sorbs on the muscovite surface with an intrinsically broad distribution with an average height of 18 Å, substantially larger than heights expected for any specifically adsorbed inner- or outer-sphere complexes. These results are discussed in the context of recent studies of cation adsorption trends on muscovite and the possible roles of Pu hydrolysis species in controlling the Pu-muscovite interactions.  相似文献   

16.
We present the first comprehensive set of dissolved 10Be and 9Be concentrations in surface waters and vertical profiles of all major sub-basins of the Arctic Ocean, which are complemented by data from the major Arctic rivers Mackenzie, Lena, Yenisey and Ob. The results show that 10Be and 9Be concentrations in waters below 150 m depth are low and only vary within a factor of 2 throughout the Arctic Basin (350-750 atoms/g and 9-15 pmol/kg, respectively). In marked contrast, Be isotope compositions in the upper 150 m are highly variable and show systematic variations. Cosmogenic 10Be concentrations range from 150 to 1000 atoms/g and concentrations of terrigenous 9Be range from 7 to 65 pmol/kg, resulting in 10Be/9Be ratios (atom/atom) between 0.5 and 14 × 10−8. Inflowing Atlantic water masses in the Eurasian Basin are characterized by a 10Be/9Be signature of 7 × 10−8. The inflow of Pacific water masses across the Bering Strait is characterized by lower ratios of 2-3 × 10−8, which can be traced into the central Arctic Ocean, possibly as far as the Fram Strait. A comparison of the high dissolved surface 10Be and 9Be concentrations (corresponding to low 10Be/9Be signatures of ∼2 × 10−8) in the Eurasian Basin with hydrographic parameters and river data documents efficient and rapid transport of Be with Siberian river waters across the Siberian Arctic shelves into the central Arctic Basin, although significant loss and exchange of Be on the shelves occurs. In contrast, fresh surface waters from the Canada Basin also show high cosmogenic 10Be contents, but are not enriched in terrigenous 9Be (resulting in high 10Be/9Be signatures of up to 14 × 10−8). This is explained by a combination of efficient scavenging of Be in the Mackenzie River estuary and the shelves and additional supply of cosmogenic 10Be via atmospheric fallout and melting of old sea ice. The residence time of Be in the deep Arctic Ocean estimated from our data is 800 years and thus similar to the average Be residence time in the global ocean.  相似文献   

17.
Deep-sea coral geochemistry: Implication for the vital effect   总被引:2,自引:0,他引:2  
Deep-sea corals hold a great potential as a key to important aspects of paleoceanography for at least two reasons, 1) they offer temporal high resolution records of deep-sea environment, because they have growth banding structures, 2) and they are well suited for studying vital effects, because the deep-sea environment does not change over short time scales. However, the relationship between the chemical composition of deep-sea coral skeletons and environmental factors is not well understood. In this study, the chemical composition of deep-sea corals was measured in bulk individuals and along skeletal micro-structures. Among the bulk individuals, δ18O value and Sr / Ca ratio show a negative but weak correlation with ambient temperature. On the other hand, the Mg / Ca ratio has a positive, weak correlation with the temperature. Large variations were found among samples collected from similar temperature. The variation is up to 3.8‰ for δ18O, 0.9 mmol/mol for Sr / Ca ratios, and 0.78 mmol/mol for Mg / Ca ratios among samples with ambient average temperature within 1 °C. This variation may be due to a large vital effect. The centers of calcification (COCs), which were formed at high calcification rate, have lower Sr / Ca, U / Ca and higher Mg / Ca ratios than surrounding fasciculi. This chemical distribution supports the model that elemental incorporation depends on calcification rate. This suggests that calcification rate is a very important factor for the chemical composition in deep-sea corals and is one of the most significant mechanisms of the vital effect. Because of this large vital effect, further investigations are essential to use the deep-sea coral as a temperature proxy.  相似文献   

18.
Analyses of zircon grains from the Queureuilh Quaternary tephras (pumice) provide new information about their pre-eruptive history. U-Pb dating was performed in situ using two methods: SHRIMP and LA-MC-ICPMS equipped with a multi-ion counting system. Both methods provided reliable 207Pb/206Pb and 206Pb/238U ratios as well as U and Th abundances required for U-Pb Concordia intercept age determination, after initial 230Th disequilibrium correction. The new LA-MC-ICPMS method was validated by dating a reference zircon (61.308B) and zircons from a phonolitic lava dated independently with the two techniques. A time resolution of about 20 kyr for 1 Ma zircon crystals was achieved for both methods.The clear euhedral zircon population from Queureuilh tephras is quite complex from several points of view: (1) some grains are reddish or yellowish while others are colorless; (2) the U and Th composition changes by more than an order of magnitude and Th/U is generally high (∼1-2); (3) there are three discrete ages recorded at 2.35 ± 0.04, 1.017 ± 0.008 and 0.640 ± 0.010 Ma.From the previously determined 40Ar/39Ar age at 0.571 ± 0.060 Ma [Duffell H. (1999) Contribution géochronologique à la stratigraphie volcanique du Massif des Monts Dore par la méthode 40Ar/39Ar. D.E.A. Univ. Clermont-Ferrand, 56 p.], the discontinuous zircon age populations, the color of the grains and their composition, we favor the following model as explanation: The oldest, less numerous group of reddish zircons represents xenocrystic grains resulting from assimilation of the local material during magma ascent. A primitive magma chamber, perhaps deep in crustal level, was formed at 1.0 Ma. The related magma, previously characterized by high Th/U ratio (2.2 ± 1.1), underwent rejuvenation during ascent to a new chamber at shallow depth and/or during injection of more mafic magmas. During this stage, at 0.64 Ma, the colorless zircon grains of lower Th/U ratio (1.3 ± 0.5) crystallized. This last stage defined the magma residence time of 70 kyr prior to eruption dated by the 40Ar/39Ar method. However, if the primitive magma is considered, the magma residence time as a whole from this first stage reached 446 kyr.In the light of the complex history of such magmas, which commonly involves recycling of zircon grains that precipitated tens to hundreds of kyr earlier than eruptions, the use of Zr concentration in geochemical modeling of whole rock compositional data can be problematic.  相似文献   

19.
By using accelerator mass spectrometry, we measured 10Be (T1/2 = 1.5 Ma) concentrations in nine Ivory Coast (IVC) tektites, in six soil samples collected near the Bosumtwi impact crater, the likely source region, and in a depth profile taken through a 23 g moldavite. In the core of the moldavite sample we also measured an upper limit on the 36Cl (T1/2 = 0.3 My) concentration. The average 10Be concentration in IVC tektites of (22 ± 11) × 106 atom/g exceeds reasonable limits for a meteoritic component or cosmic-ray production in situ after tektite formation. The 10Be must be meteoric, which implies that IVC tektites formed from soils or sediments. Corrected to the time of formation (ToF) 1.07 Ma ago and for a small in situ component, the average 10Be concentration of (35 ± 7) × 106 atom/g (1 − σ mean) is considerably lower than those of contemporary Bosumtwi soils, ∼250 × 106 atom/g, or of Australasian tektites at their ToF, 0.8 Ma B.P. near Lake Bosumtwi today the soil column is only ∼1 m thick. If the landscape was similar 1.07 Ma ago, then the total thickness of the tektite formation zone probably did not exceed 10 m. With increasing depth below the surface of the moldavite, the 10Be concentrations decrease rapidly owing to the presence of a surface component, probably of recent origin. The main interior mass of the sample contains ∼0.8 × 106 atom 10Be/g and fewer than 0.1 × 106 atom 36Cl/g, little of which can be meteoritic. Although not definitive, consideration of several possible cosmic-ray exposure histories suggests that about half the interior 10Be has a meteoric origin, which if corrected to the time of formation yields a concentration compatible with those measured in typical contemporary soils. The observations are consistent with the formation of three of the four main tektite groups from surface soils or sediments.  相似文献   

20.
This study was designed to investigate the effect of light and temperature on Sr/Ca and Mg/Ca ratios in the skeleton of the coral Acropora sp. for the purpose of evaluating temperature proxies for paleoceanographic applications. In the first experiment, corals were cultivated under three light levels (100, 200, 400 μmol photons m−2 s−1) and constant temperature (27 °C). In the second experiment, corals were cultivated at five temperatures (21, 23, 25, 27, 29 °C) and constant light (400 μmol photons m−2 s−1). Increasing the water temperature from 21 to 29 °C, induced a 5.7-fold increase in the rate of calcification, which induced a 30% increase in the Mg/Ca ratio. In contrast, by increasing the light level by a factor of 4, the rate of calcification was increased only by a factor of 1.7, with a corresponding 9% increase in the Mg/Ca ratio. Thus, the relative change in the calcification rate in the two experiments (5.7 vs. 1.7) scales with the corresponding relative change in Mg/Ca ratio (30% vs. 9%). We conclude that there is a strong biological control on the incorporation of Mg.For Sr/Ca, good correlations were also observed with water temperature and the calcification rate induced by temperature changes. However, in sharp contrast with the Mg/Ca ratio, a temperature-induced 5.7-fold increase in the calcification rate only induced a 4.5% change (decrease) in the Sr/Ca ratio. An important finding for paleoceanographic applications is that the Sr/Ca ratio did not appear to be sensitive to changes in the light level, or to changes in calcification rate induced by changes in the light level. Thus, in this study, water temperature was found to be the dominant parameter controlling the skeletal Sr/Ca ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号