首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Structural Fe(II) has been shown to reduce several oxidized environmental contaminants, including NO3, chlorinated solvents, Cr(VI), and U(VI). Studies investigating reduction of U(VI) by soils and sediments, however, suggest that abiotic reduction of U(VI) by Fe(II) is not significant, and that direct enzymatic reduction of U(VI) by metal-reducing bacteria is required for U(VI) immobilization as U(IV). Here evidence is presented for abiotic reduction and immobilization of U(VI) by structural Fe(II) in a redoximorphic soil collected from a hillside spring in Iowa. Oxidation of Fe(II) in the soil after reaction with U(VI) was demonstrated by Mössbauer spectroscopy and reduction of U(VI) by the pasteurized soil using U LIII-edge X-ray absorption spectroscopy (XAS). XAS indicates that both reduced U(IV) and oxidized U(VI) or U(V) are present after U(VI) interaction with the Fe(II) containing soil. The EXAFS data show the presence of a non-uraninite U(IV) phase and evidence of the oxidized U(V) or U(VI) fraction being present as a non-uranyl species. Little U(VI) reduction is observed by soil that has been exposed to air and oxidation of Fe(II) to goethite has occurred. Soil characterization based on chemical extractions, Mössbauer spectroscopy, and Fe K-edge XAS indicate that the majority of Fe(II) in the soil is structural in nature, existing in clay minerals and possibly a green rust-like phase. These data provide compelling evidence for abiotic reduction of U(VI) by structural Fe(II) from soil near Fe-rich oxic–anoxic boundaries in natural environments. The work highlights the potential for abiotic reduction of U(VI) by Fe(II) in reduced, Fe-rich environments.  相似文献   

2.
It has generally been assumed that the bioreduction of hexavalent uranium in groundwater systems will result in the precipitation of immobile uraninite (UO2). In order to explore the form and stability of uranium immobilized under these conditions, we introduced lactate (15 mM for 3 months) into flow-through columns containing sediments derived from a former uranium-processing site at Old Rifle, CO. This resulted in metal-reducing conditions as evidenced by concurrent uranium uptake and iron release. Despite initial augmentation with Shewanella oneidensis, bacteria belonging to the phylum Firmicutes dominated the biostimulated columns. The immobilization of uranium (∼1 mmol U per kg sediment) enabled analysis by X-ray absorption spectroscopy (XAS). Tetravalent uranium associated with these sediments did not have spectroscopic signatures representative of U-U shells or crystalline UO2. Analysis by microfocused XAS revealed concentrated micrometer regions of solid U(IV) that had spectroscopic signatures consistent with bulk analyses and a poor proximal correlation (μm scale resolution) between U and Fe. A plausible explanation, supported by biogeochemical conditions and spectral interpretations, is uranium association with phosphoryl moieties found in biomass; hence implicating direct enzymatic uranium reduction. After the immobilization phase, two months of in situ exposure to oxic influent did not result in substantial uranium remobilization. Ex situ flow-through experiments demonstrated more rapid uranium mobilization than observed in column oxidation studies and indicated that sediment-associated U(IV) is more mobile than biogenic UO2. This work suggests that in situ uranium bioimmobilization studies and subsurface modeling parameters should be expanded to account for non-uraninite U(IV) species associated with biomass.  相似文献   

3.
Reduction of U(VI) under iron reducing conditions was studied in a model system containing the dissimilatory metal-reducing bacterium Shewanella putrefaciens and colloidal hematite. We focused on the competition between direct enzymatic uranium reduction and abiotic reduction of U(VI) by Fe(II), catalyzed by the hematite surface, at relatively low U(VI) concentrations (< 0.5 μM) compared to the concentrations of ferric iron (> 10 mM). Under these conditions surface catalyzed reduction by Fe(II), which was produced by dissimilatory iron reduction, was the dominant pathway for uranium reduction. Reduction kinetics of U(VI) were identical to those in abiotic controls to which soluble Fe(II) was added. Strong adsorption of U(VI) at the hematite surface apparently favored the abiotic pathway by reducing the availability of U(VI) to the bacteria. In control experiments, lacking either hematite or bacteria, the addition of 45 mM dissolved bicarbonate markedly slowed down U(VI) reduction. The inhibition of enzymatic U(VI) reduction and abiotic, surface catalyzed U(VI) reduction by the bicarbonate amendments is consistent with the formation of aqueous uranyl-carbonate complexes. Surprisingly, however, more U(VI) was reduced when dissolved bicarbonate was added to experimental systems containing both bacteria and hematite. The enhanced U(VI) reduction was attributed to the formation of magnetite, which was observed in experiments. Biogenic magnetite produced as a result of dissimilatory iron reduction may be an important agent of uranium immobilization in natural environments.  相似文献   

4.
One option for immobilizing uranium present in subsurface contaminated groundwater is in situ bioremediation, whereby dissimilatory metal-reducing bacteria and/or sulfate-reducing bacteria are stimulated to catalyze the reduction of soluble U(VI) and precipitate it as uraninite (UO2). This is typically accomplished by amending groundwater with an organic electron donor. It has been shown, however, that once the electron donor is entirely consumed, Fe(III) (hydr)oxides can reoxidize biogenically produced UO2, thus potentially impeding cleanup efforts. On the basis of published experiments showing that such reoxidation takes place even under highly reducing conditions (e.g., sulfate-reducing conditions), thermodynamic and kinetic constraints affecting this reoxidation are examined using multicomponent biogeochemical simulations, with particular focus on the role of sulfide and Fe(II) in solution. The solubility of UO2 and Fe(III) (hydr)oxides are presented, and the effect of nanoscale particle size on stability is discussed. Thermodynamically, sulfide is preferentially oxidized by Fe(III) (hydr)oxides, compared to biogenic UO2, and for this reason the relative rates of sulfide and UO2 oxidation play a key role on whether or not UO2 reoxidizes. The amount of Fe(II) in solution is another important factor, with the precipitation of Fe(II) minerals lowering the Fe+2 activity in solution and increasing the potential for both sulfide and UO2 reoxidation. The greater (and unintuitive) UO2 reoxidation by hematite compared to ferrihydrite previously reported in some experiments can be explained by the exhaustion of this mineral from reaction with sulfide. Simulations also confirm previous studies suggesting that carbonate produced by the degradation of organic electron donors used for bioreduction may significantly increase the potential for UO2 reoxidation through formation of uranyl carbonate aqueous complexes.  相似文献   

5.
The long-term stability of biogenic uraninite with respect to oxidative dissolution is pivotal to the success of in situ bioreduction strategies for the subsurface remediation of uranium legacies. Batch and flow-through dissolution experiments were conducted along with spectroscopic analyses to compare biogenic uraninite nanoparticles obtained from Shewanella oneidensis MR-1 and chemogenic UO2.00 with respect to their equilibrium solubility, dissolution mechanisms, and dissolution kinetics in water of varied oxygen and carbonate concentrations. Both materials exhibited a similar intrinsic solubility of ∼10−8 M under reducing conditions. The two materials had comparable dissolution rates under anoxic as well as oxidizing conditions, consistent with structural bulk homology of biogenic and stoichiometric uraninite. Carbonate reversibly promoted uraninite dissolution under both moderately oxidizing and reducing conditions, and the biogenic material yielded higher surface area-normalized dissolution rates than the chemogenic. This difference is in accordance with the higher proportion of U(V) detected on the biogenic uraninite surface by means of X-ray photoelectron spectroscopy. Reasonable sources of a stable U(V)-bearing intermediate phase are discussed. The observed increase of the dissolution rates can be explained by carbonate complexation of U(V) facilitating the detachment of U(V) from the uraninite surface. The fraction of surface-associated U(VI) increased with dissolved oxygen concentration. Simultaneously, X-ray absorption spectra showed conversion of the bulk from UO2.0 to UO2+x. In equilibrium with air, combined spectroscopic results support the formation of a near-surface layer of approximate composition UO2.25 (U4O9) coated by an outer layer of U(VI). This result is in accordance with flow-through dissolution experiments that indicate control of the dissolution rate of surface-oxidized uraninite by the solubility of metaschoepite under the tested conditions. Although U(V) has been observed in electrochemical studies on the dissolution of spent nuclear fuel, this is the first investigation that demonstrates the formation of a stable U(V) intermediate phase on the surface of submicron-sized uraninite particles suspended in aqueous solutions.  相似文献   

6.
Subsurface regions of alluvial sediments characterized by an abundance of refractory or lignitic organic carbon compounds and reduced Fe and S bearing minerals, which are referred to as naturally reduced zones (NRZ), are present at the Integrated Field Research Challenge site in Rifle, CO (a former U mill site), and other contaminated subsurface sites. A study was conducted to demonstrate that the NRZ contains a variety of contaminants and unique minerals and potential contaminant hosts, investigate micron-scale spatial association of U with other co-contaminants, and determine solid phase-bounded U valence state and phase identity. The NRZ sediment had significant solid phase concentrations of U and other co-contaminants suggesting competing sorption reactions and complex temporal variations in dissolved contaminant concentrations in response to transient redox conditions, compared to single contaminant systems. The NRZ sediment had a remarkable assortment of potential contaminant hosts, such as Fe oxides, siderite, Fe(II) bearing clays, rare solids such as ZnS framboids and CuSe, and, potentially, chemically complex sulfides. Micron-scale inspections of the solid phase showed that U was spatially associated with other co-contaminants. High concentration, multi-contaminant, micron size (ca. 5–30 μm) areas of mainly U(IV) (53–100%) which occurred as biogenic UO2 (82%), or biomass – bound monomeric U(IV) (18%), were discovered within the sediment matrix confirming that biotically induced reduction and subsequent sequestration of contaminant U(VI) via natural attenuation occurred in this NRZ. A combination of assorted solid phase species and an abundance of redox-sensitive constituents may slow U(IV) oxidation rates, effectively enhancing the stability of U(IV) sequestered via natural attenuation, impeding rapid U flushing, and turning NRZs into sinks and long-term, slow-release sources of U contamination to groundwater.  相似文献   

7.
To increase the understanding of uranium transport in the environment and in the presence of steel corrosion products, the interaction of U(VI) with natural magnetite has been studied. Sorption studies have been carried out using X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectrometry (SIMS). The XPS results clearly indicate the reduction of U(VI) to U(IV) on the surface of magnetite facilitated by electron transfer between the Fe and U, leading to a coupled oxidation of Fe(II) to Fe(III).  相似文献   

8.
We have examined the effects of aqueous complexation on rates of dissimilatory reductive precipitation of uranium by Shewanella putrefaciens. Uranium(VI) was supplied as sole terminal electron acceptor to Shewanella putrefaciens (strain 200R) in defined laboratory media under strictly anaerobic conditions. Media were amended with different multidentate organic acids, and experiments were performed at different U(VI) and ligand concentrations. Organic acids used as complexing agents were oxalic, malonic, succinic, glutaric, adipic, pimelic, maleic, citric, and nitrilotriacetic acids, tiron, EDTA, and Aldrich humic acid. Reductive precipitation of U(VI), resulting in removal of insoluble amorphous UO2 from solution, was measured as a function of time by determination of total dissolved U. Reductive precipitation was measured, rather than net U(VI) reduction to U(IV), to assess overall U removal rates from solution, which may be used to gauge the influence of chelation on microbial U mineralization. Initial linear rates of U reductive precipitation were found to correlate with stability constants of 1:1 aqueous U(VI):ligand and U(IV):ligand complexes. In the presence of strongly complexing ligands (e.g., NTA, Tiron, EDTA), UO2 precipitation did not occur. Our results are consistent with ligand-retarded precipitation of UO2, which is analogous to ligand-assisted solid phase dissolution but in reverse: ligand exchange with the U4+ aquo cation acts as a rate-limiting reaction moderating coordination of water molecules with U4+, which is a necessary step in UO2 precipitation. Ligand exchange kinetics governing dissociation rates of ligands from U(VI)-organic complexes may also influence overall UO2 production rates, although the magnitude of this effect is unclear relative to the effects of U(IV)-organic complexation. Our results indicate that natural microbial-aqueous systems containing abundant organic matter can inhibit the formation of biogenic amorphous UO2.  相似文献   

9.
Microbially mediated in situ reduction of soluble U(VI) to insoluble U(IV) (as UO2) has been proposed as a means of preventing the migration of that radionuclide with groundwater, but preventing the oxidative resolubilization of U has proven difficult. We hypothesized that relatively slow rates of U(VI) bioreduction would yield larger UO2 precipitates that would be more resistant to oxidation than those produced by rapid U(VI) bioreduction. We manipulated U(VI) bioreduction rates by varying the density of Shewanella putrefaciens CN32 added to U(VI) containing solutions with lactate as an electron donor. Characterization of biogenic UO2 particles by extended X-ray absorption fine-structure spectroscopy and transmission electron microscopy revealed that UO2 nanoparticles formed by relatively slow rates of U(VI) reduction were larger and more highly aggregated than those formed by relatively rapid U(VI) reduction. UO2 particles formed at various rates were incubated under a variety of abiotically and biologically oxidizing conditions. In all cases, UO2 that was formed by relatively slow U(VI) reduction was oxidized at a slower rate and to a lesser extent than UO2 formed by relatively rapid U(VI) bioreduction, suggesting that the stability of UO2 in situ may be enhanced by stimulation of relatively slow rates of U(VI) reduction.  相似文献   

10.
Iron isotope fractionation between aqueous Fe(II) and biogenic magnetite and Fe carbonates produced during reduction of hydrous ferric oxide (HFO) by Shewanella putrefaciens, Shewanella algae, and Geobacter sulfurreducens in laboratory experiments is a function of Fe(III) reduction rates and pathways by which biogenic minerals are formed. High Fe(III) reduction rates produced 56Fe/54Fe ratios for Fe(II)aq that are 2-3‰ lower than the HFO substrate, reflecting a kinetic isotope fractionation that was associated with rapid sorption of Fe(II) to HFO. In long-term experiments at low Fe(III) reduction rates, the Fe(II)aq-magnetite fractionation is −1.3‰, and this is interpreted to be the equilibrium fractionation factor at 22°C in the biologic reduction systems studied here. In experiments where Fe carbonate was the major ferrous product of HFO reduction, the estimated equilibrium Fe(II)aq-Fe carbonate fractionations were ca. 0.0‰ for siderite (FeCO3) and ca. +0.9‰ for Ca-substituted siderite (Ca0.15Fe0.85CO3) at 22°C. Formation of precursor phases such as amorphous nonmagnetic, noncarbonate Fe(II) solids are important in the pathways to formation of biogenic magnetite or siderite, particularly at high Fe(III) reduction rates, and these solids may have 56Fe/54Fe ratios that are up to 1‰ lower than Fe(II)aq. Under low Fe(III) reduction rates, where equilibrium is likely to be attained, it appears that both sorbed Fe(II) and amorphous Fe(II)(s) components have isotopic compositions that are similar to those of Fe(II)aq.The relative order of δ56Fe values for these biogenic minerals and aqueous Fe(II) is: magnetite > siderite ≈ Fe(II)aq > Ca-bearing Fe carbonate, and this is similar to that observed for minerals from natural samples such as Banded Iron Formations (BIFs). Where magnetite from BIFs has δ56Fe >0‰, the calculated δ56Fe value for aqueous Fe(II) suggests a source from midocean ridge (MOR) hydrothermal fluids. In contrast, magnetite from BIFs that has δ56Fe ≤0‰ apparently requires formation from aqueous Fe(II) that had very low δ56Fe values. Based on this experimental study, formation of low-δ56Fe Fe(II)aq in nonsulfidic systems seems most likely to have been produced by dissimilatory reduction of ferric oxides by Fe(III)-reducing bacteria.  相似文献   

11.
Reductive biostimulation is currently being explored as a possible remediation strategy for U-contaminated groundwater, and is being investigated at a field site in Rifle, CO, USA. The long-term stability of the resulting U(IV) phases is a key component of the overall performance of the remediation approach and depends upon a variety of factors, including rate and mechanism of reduction, mineral associations in the subsurface, and propensity for oxidation. To address these factors, several approaches were used to evaluate the redox sensitivity of U: (1) measurement of the rate of oxidative dissolution of biogenic uraninite (UO2(s)) deployed in groundwater at Rifle, (2) characterization of a zone of natural bioreduction exhibiting relevant reduced mineral phases, and (3) laboratory studies of the oxidative capacity of Fe(III) and reductive capacity of Fe(II) with regard to U(IV) and U(VI), respectively.  相似文献   

12.
Uranium co-precipitation with iron oxide minerals   总被引:2,自引:0,他引:2  
In oxidizing environments, the toxic and radioactive element uranium (U) is most soluble and mobile in the hexavalent oxidation state. Sorption of U(VI) on Fe-oxides minerals (such as hematite [α-Fe2O3] and goethite [α-FeOOH]) and occlusion of U(VI) by Fe-oxide coatings are processes that can retard U transport in environments. In aged U-contaminated geologic materials, the transport and the biological availability of U toward reduction may be limited by coprecipitation with Fe-oxide minerals. These processes also affect the biological availability of U(VI) species toward reduction and precipitation as the less soluble U(IV) species by metal-reducing bacteria.To examine the dynamics of interactions between U(VI) and Fe oxides during crystallization, Fe-oxide phases (containing 0.5 to 5.4 mol% U/(U + Fe)) were synthesized by means of solutions of U(VI) and Fe(III). Wet chemical (digestions and chemical extractions) and spectroscopic techniques were used to characterize the synthesized Fe oxide coprecipitates after rinsing in deionized water. Leaching the high mol% U solids with concentrated carbonate solution (for sorbed and solid-phase U(VI) species) typically removed most of the U, leaving, on average, about 0.6 mol% U. Oxalate leaching of solids with low mol% U contents (about 1 mol% U or less) indicated that almost all of the Fe in these solids was crystalline and that most of the U was associated with these crystalline Fe oxides. X-ray diffraction and Fourier-transform infrared (FT-IR) spectroscopic studies indicate that hematite formation is preferred over that of goethite when the amount of U in the Fe-oxides exceeds 1 mol% U (∼4 wt% U). FT-IR and room temperature continuous wave luminescence spectroscopic studies with unleached U/Fe solids indicate a relationship between the mol% U in the Fe oxide and the intensity or existence of the spectra features that can be assigned to UO22+ species (such as the IR asymmetric υ3 stretch for O = U = O for uranyl). These spectral features were undetectable in carbonate- or oxalate-leached solids, suggesting solid phase and sorbed U(VI)O22+ species are extracted by the leach solutions. Uranium L3-edge x-ray absorption spectroscopic (XAFS) analyses of the unleached U-Fe oxide solids with less than 1 mol% U reveal that U(VI) exists with four O atoms at radial distances of 2.19 and 2.36 Å and second shell Fe at a radial distance at 3.19 Å.Because of the large ionic radius of UO22+ (∼1.8 Å) relative to that of Fe3+ (0.65 Å), the UO22+ ion is unlikely to be incorporated in the place of Fe in Fe(III)-oxide structures. Solid-phase U(VI) can exist as the uranyl [U(VI)O22+] species with two axial U-O double bonds and four or more equatorial U-O bonds or as the uranate species (such as γ-UO3) without axial U-O bonds. Our findings indicate U6+ (with ionic radii of 0.72 to 0.8 Å, depending on the coordination environment) is incorporated in the Fe oxides as uranate (without axial O atoms) until a point of saturation is reached. Beyond this excess in U concentration, precipitating U(VI) forms discrete crystalline uranyl phases that resemble the uranyl oxide hydrate schoepite [UO2(OH)2·2H2O]. Molecular modeling studies reveal that U6+ species could bond with O atoms from distorted Fe octahedra in the hematite structure with an environment that is consistent with the results of the XAFS. The results provide compelling evidence of U incorporation within the hematite structure.  相似文献   

13.
The chemical reduction of U(VI) by Fe(II) is a potentially important pathway for immobilization of uranium in subsurface environments. Although the presence of surfaces has been shown to catalyze the reaction between Fe(II) and U(VI) aqueous species, the mechanism(s) responsible for the enhanced reactivity remain ambiguous. To gain further insight into the U-Fe redox process at a complexing, non-conducting surface that is relevant to common organic phases in the environment, we studied suspensions containing combinations of 0.1 mM U(VI), 1.0 mM Fe(II), and 4.2 g/L carboxyl-functionalized polystyrene microspheres. Acid-base titrations were used to monitor protolytic reactions, and Fe K-edge and U L-edge X-ray absorption fine structure spectroscopy was used to determine the valence and atomic environment of the adsorbed Fe and U species. In the Fe + surface carboxyl system, a transition from monomeric to oligomeric Fe(II) surface species was observed between pH 7.5 and pH 8.4. In the U + surface carboxyl system, the U(VI) cation was adsorbed as a mononuclear uranyl-carboxyl complex at both pH 7.5 and 8.4. In the ternary U + Fe + surface carboxyl system, U(VI) was not reduced by the solvated or adsorbed Fe(II) at pH 7.5 over a 4-month period, whereas complete and rapid reduction to U(IV) nanoparticles occurred at pH 8.4. The U(IV) product reoxidized rapidly upon exposure to air, but it was stable over a 4-month period under anoxic conditions. Fe atoms were found in the local environment of the reduced U(IV) atoms at a distance of 3.56 Å. The U(IV)-Fe coordination is consistent with an inner-sphere electron transfer mechanism between the redox centers and involvement of Fe(II) atoms in both steps of the reduction from U(VI) to U(IV). The inability of Fe(II) to reduce U(VI) in solution and at pH 7.5 in the U + Fe + carboxyl system is explained by the formation of a transient, “dead-end” U(V)-Fe(III) complex that blocks the U(V) disproportionation pathway after the first electron transfer. The increased reactivity at pH 8.4 relative to pH 7.5 is explained by the reaction of U(VI) with an Fe(II) oligomer, whereby the bonds between Fe atoms facilitate the transfer of a second electron to the hypothetical U(V)-Fe(III) intermediate. We discuss how this mechanism may explain the commonly observed higher efficiency of uranyl reduction by adsorbed or structural Fe(II) relative to aqueous Fe(II).  相似文献   

14.
15.
Past mining, processing, and waste disposal activities have left a legacy of uranium-contaminated soil and groundwater. Phosphate addition to subsurface environments can potentially immobilize U(VI) in-situ through interactions with uranium at mineral-water interfaces. Phosphate can induce the precipitation of low solubility U(VI)-phosphates, and it may enhance or inhibit U(VI) adsorption to iron(III) (oxy)hydroxide surfaces. Such surfaces may also facilitate the heterogeneous nucleation of U(VI)-phosphate precipitates. The interactions among phosphate, U(VI), and goethite (α-FeOOH) were investigated in a year-long series of experiments at pH 4. Reaction time, total U(VI), total phosphate, and the presence and absence of goethite were systematically varied to determine their effects on the extent of U(VI) uptake and the dominant uranium immobilization mechanism. Dissolved U(VI) and phosphate concentrations were interpreted within a reaction-based modeling framework that included dissolution-precipitation reactions and a surface complexation model to account for adsorption. The best available thermodynamic data and past surface complexation models were integrated to form an internally consistent framework. Additional evidence for the uptake mechanisms was obtained using scanning electron microscopy and X-ray diffraction. The formation and crystal growth of a U(VI)-phosphate phase, most likely chernikovite, UO2HPO4·4H2O(s), occurred rapidly for initially supersaturated suspensions both with and without goethite. Nucleation appears to occur homogeneously for almost all conditions, even in the presence of goethite, but heterogeneous nucleation was likely at one condition. The U(VI)-phosphate solids exhibited metastability depending on the TOTU:TOTP ratio. At the highest phosphate concentration studied (130 μM), U(VI) uptake was enhanced due to the likely formation of a ternary surface complex for low (∼1 μM) to intermediate (∼10 μM) TOTU concentrations and to U(VI)-phosphate precipitation for high TOTU (∼100 μM) concentrations. For conditions favoring precipitation, the goethite surface acted as a sink for dissolved phosphate that resulted in higher dissolved U(VI) concentrations relative to goethite-free conditions. Based on the total uranium and available sorption sites, a critical phosphate concentration between 15 μM and 130 μM was required for preferential precipitation of uranium phosphate over U(VI) adsorption.  相似文献   

16.
The potential for Mn oxides to modify the biogeochemical behavior of U during reduction by the subsurface bacterium Shewanella putrefaciens strain CN32 was investigated using synthetic Mn(III/IV) oxides (pyrolusite [β-MnO2], bixbyite [Mn2O3] and K+-birnessite [K4Mn14O27 · 8H2O]). In the absence of bacteria, pyrolusite and bixbyite oxidized biogenic uraninite (UO2[s]) to soluble U(VI) species, with bixbyite being the most rapid oxidant. The Mn(III/IV) oxides lowered the bioreduction rate of U(VI) relative to rates in their absence or in the presence of gibbsite (Al[OH]3) added as a non-redox-reactive surface. Evolved Mn(II) increased with increasing initial U(VI) concentration in the biotic experiments, indicating that valence cycling of U facilitated the reduction of Mn(III/IV). Despite an excess of the Mn oxide, 43 to 100% of the initial U was bioreduced after extended incubation. Analysis of thin sections of bacterial Mn oxide suspensions revealed that the reduced U resided in the periplasmic space of the bacterial cells. However, in the absence of Mn(III/IV) oxides, UO2(s) accumulated as copious fine-grained particles external to the cell. These results indicate that the presence of Mn(III/IV) oxides may impede the biological reduction of U(VI) in subsoils and sediments. However, the accumulation of U(IV) in the cell periplasm may physically protect reduced U from oxidation, promoting at least a temporal state of redox disequilibria.  相似文献   

17.
The concentrations of uranium, iron and the major constituents were determined in groundwater samples from aquifer containing uranyl phosphate minerals (meta-autunite, meta-torbernite and torbernite) in the Köprüba?? area. Groundwater samples from wells located at shallow depths (0.5–6 m) show usually near neutral pH values (6.2–7.1) and oxidizing conditions (Eh = 119–275 mV). Electrical conductivity (EC) values of samples are between 87 and 329 μS/cm?1. They are mostly characterized by mixed cationic Ca dominating bicarbonate types. The main hydrogeochemical process is weathering of the silicates in the shallow groundwater system. All groundwater in the study area are considered undersaturated with respect to torbernite and autunite. PHREEQC predicted UO2(HPO4) 2 2? as the unique species. The excellent positive correlation coefficient (r = 0.99) between U and PO4 indicates the dissolved uranium in groundwater would be associated with the dissolution of uranyl phosphate minerals. The groundwater show U content in the range 1.71–70.45 μg/l but they are mostly lower than US EPA (2003) maximum contaminant level of 30 μg/l. This low U concentrations in oxic groundwater samples is attributed to the low solubility of U(VI) phosphate minerals under near neutral pH and low bicarbonate conditions. Iron closely associated with studied sediments, were also detected in groundwater. The maximum concentration of Fe in groundwater samples was 2837 μg/l, while the drinking water guidelines of Turkish (TSE 1997) and US EPA (2003) were suggested 200 and 300 μg/l, respectively. Furthermore, iron and uranium showed a significant correlation to each other with a correlation coefficient (r) of 0.94. This high correlation is probably related to the iron-rich sediments which contain also significant amounts of uranium mineralization. In addition to pH and bicarbonate controlling dissolution of uranyl phosphates, association of uranyl phosphates with iron (hydr) oxides seems to play important role in the amount of dissolved U in shallow groundwater.  相似文献   

18.
Depending upon oxygen fugacity, uranium exists in three different oxidation states in magmatic silicate liquids. The hexavalent state, present as the uranyl group, UO2+2, is stable under highly oxidizing conditions, but can still be detected in the presence of the NiNiO buffer. Under the same conditions the pentavalent state forms about 30–40% of total uranium and is also characteristic of relatively high oxygen fugacities. Optical absorption spectra obtained on granitic and basaltic glasses synthesized in the presence of the NiNiO buffer are very different: this is interpreted as being due to the presence of UO+2 complexes in the former and 6-coordinated U(V) in the latter. The tetravalent state is the most stable under reducing conditions: at the FeFeO buffer, it is the only one present. An 8-coordinated U(IV) species seems the most probable, by comparison of the spectra with those of crystallized U(IV) compounds. The trivalent state was not detected, even under the most reducing conditions. Interpretation of the spectra obtained in the glasses in terms of coordination and bonding is however difficult, due to the lack of knowledge of 5f-systems in iono-covalent systems such as oxide glasses. The presence of the pentavalent state must be taken into account in discussing partition coefficients of uranium and trans-uranium compounds in natural and synthetic systems (because of the effect of oxygen fugacity and oxide ion activity on the U(IV) U(V) system). During postmagmatic hydrothermal processes U(V) is destroyed, resulting in the early precipitation of U(IV) containing minerals and possible migration of uranyl ions.  相似文献   

19.
The subsurface acid mine drainage (AMD) environment of an abandoned underground uranium mine in Königstein/Saxony/Germany, currently in the process of remediation, is characterized by low pH, high sulfate concentrations and elevated concentrations of heavy metals, in particular uranium. Acid streamers thrive in the mine drainage channels and are heavily coated with iron precipitates. These precipitates are biologically mediated iron precipitates and related to the presence of Fe-oxidizing microorganisms forming copious biofilms in and on the Fe-precipitates. Similar biomineralisations were also observed in stalactite-like dripstones, called snottites, growing on the gallery ceilings.The uranium speciation in these solutions of underground AMD waters flowing in mine galleries as well as dripping from the ceiling and forming stalactite-like dripstones were studied by time resolved laser-induced fluorescence spectroscopy (TRLFS). The fluorescence lifetime of uranium species in both AMD water environments were best described with a mono-exponential decay, indicating the presence of one major species. The detected positions of the emission bands and by comparing it in a fingerprinting procedure with spectra obtained for acid sulfate reference solutions, in particular Fe(III) - SO42− - UO22+ reference solutions, indicated that the uranium speciation in the AMD environment of Königstein is dominated in the pH range of 2.5-3.0 by the highly mobile aquatic uranium sulfate species UO2SO4(aq) and formation of uranium precipitates is rather unlikely as is retardation by sorption processes. The presence of iron in the AMD reduces the fluorescence lifetime of the UO2SO4(aq) species from 4.3 μs, found in iron-free uranium sulfate reference solutions, to 0.7 μs observed in both AMD waters of Königstein and also in the iron containing uranium sulfate reference solutions.Colloids were not observed in both drainage water and dripping snottite water as photon correlation spectroscopy analyses and centrifugation experiments at different centrifugal accelerations between 500g and 46000g revealed. Thus transport and uranium speciation at the investigated AMD sites is neither influenced by U(IV) or U(VI) eigencolloids nor by uranium adsorbed on colloidal particles.This study shows that TRLFS is a suitable spectroscopic technique to identify the uranium speciation in bulk solutions of AMD environments.  相似文献   

20.
The biomineralization of U(VI) phosphate as a result of microbial phosphatase activity is a promising new bioremediation approach to immobilize uranium in both aerobic and anaerobic conditions. In contrast to reduced uranium minerals such as uraninite, uranium phosphate precipitates are not susceptible to changes in oxidation conditions and may represent a long-term sink for uranium in contaminated environments. So far, the biomineralization of U(VI) phosphate has been demonstrated with pure cultures only. In this study, two uranium contaminated soils from the Department of Energy Oak Ridge Field Research Center (ORFRC) were amended with glycerol phosphate as model organophosphate source in small flow-through columns under aerobic conditions to determine whether natural phosphatase activity of indigenous soil bacteria was able to promote the precipitation of uranium(VI) at pH 5.5 and 7.0. High concentrations of phosphate (1-3 mM) were detected in the effluent of these columns at both pH compared to control columns amended with U(VI) only, suggesting that phosphatase-liberating microorganisms were readily stimulated by the organophosphate substrate. Net phosphate production rates were higher in the low pH soil (0.73 ± 0.17 mM d−1) compared to the circumneutral pH soil (0.43 ± 0.31 mM d−1), suggesting that non-specific acid phosphatase activity was expressed constitutively in these soils. A sequential solid-phase extraction scheme and X-ray absorption spectroscopy measurements were combined to demonstrate that U(VI) was primarily precipitated as uranyl phosphate minerals at low pH, whereas it was mainly adsorbed to iron oxides and partially precipitated as uranyl phosphate at circumneutral pH. These findings suggest that, in the presence of organophosphates, microbial phosphatase activity can contribute to uranium immobilization in both low and circumneutral pH soils through the formation of stable uranyl phosphate minerals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号