首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 741 毫秒
1.
We investigated anaerobic ammonium oxidation (anammox) in continental shelf and slope sediments of the Irish and Celtic Seas by using anammox specific ladderane biomarker lipids. We used the presence of an intact ladderane phospholipid as a direct indicator for living anammox bacteria, and compared it with the abundance of ladderane core lipids derived from both living and dead bacterial biomass. All investigated sediments contained ladderane core lipids as well as the intact ladderane phospholipid, in agreement with 15N-labeling experiments, which revealed anammox activity at all sites. Ladderane core lipid and intact ladderane phospholipid concentrations were significantly correlated (R2 = 0.957 and 0.464, respectively) with anammox activity over the transect of the continental shelf and slope sediments. In the Irish Sea (50-100 m water depth) highest abundances of the intact ladderane phospholipid were found in the upper 2 cm of the sediment, indicating a zone of active anammox. A sharp decline further down-core suggested a strong decrease in anammox biomass and rapid degradation of the intact lipids. In comparison, ladderane core lipids were 1-2 orders of magnitude higher in concentration than the intact ladderane phospholipid and accumulated as dead cell remnants with depth. In the slope sediments of the Celtic Sea both ladderane core lipids and the intact ladderane phospholipid were found in sediments at water depths ranging from 500 to 2000 m. Here, anammox seemed to be active at greater depths of the sediment (>2 cm). Mean abundances of both intact and core ladderane lipids in whole sediment cores increased downslope, indicating an increasing importance of anammox in deeper slope sediments.  相似文献   

2.
Thermal stability of ladderane lipids as determined by hydrous pyrolysis   总被引:1,自引:0,他引:1  
Anaerobic ammonium oxidation (anammox) has been recognized as a major process resulting in loss of fixed inorganic nitrogen in the marine environment. Ladderane lipids, membrane lipids unique to anammox bacteria, have been used as markers for the detection of anammox in marine settings. However, the fate of ladderane lipids after sediment burial and maturation is unknown. In this study, anammox bacterial cell material was artificially matured by hydrous pyrolysis at constant temperatures ranging from 120 to 365 °C for 72 h to study the stability of ladderane lipids during progressive dia- and catagenesis. HPLC-MS/MS analysis revealed that structural alterations of ladderane lipids already occurred at 120 °C. At temperatures >140 °C, ladderane lipids were absent and only more thermally stable products could be detected, i.e., ladderane derivatives in which some of the cyclobutane rings were opened. These diagenetic products of ladderane lipids were still detectable up to temperatures of 260 °C using GC-MS. Thus, ladderane lipids are unlikely to occur in ancient sediments and sedimentary rocks, but specific diagenetic products of ladderane lipids will likely be present in sediments and sedimentary rocks of relatively low maturity (i.e., C31 hopane 22S/(22S + 22R) ratio <0.2 or ββ/(αβ + βα + ββ) ratio of >0.5).  相似文献   

3.
Anammox, the microbial anaerobic oxidation of NH4+ by NO2 to produce N2, is recognised as a key process in the marine, freshwater and soil N cycles, and has been found to be a major sink for fixed inorganic N in the ocean. Ladderane lipids are unique anammox bacterial membrane lipids used as biomarkers for such bacteria in recent and past environmental settings. However, their fate during diagenesis and early catagenesis is not well constrained. In this study, hydrous pyrolysis experiments were performed on anammox bacterial biomass and the generated aliphatic hydrocarbons, present in oil generated at 220–365 °C, were analysed. A unique class of hydrocarbons was detected, and a representative component was isolated and rigorously identified using 2D nuclear magnetic resonance (NMR) spectroscopy. It consisted of C24 to C31 branched long chain alkanes with two internal ethyl and/or propyl substituents. The alkanes were generated above 260 °C, with maximum generation at 320 and 335 °C. Their stable carbon isotopic values were depleted in 13C, similar to carbon isotope values of the original anammox lipids, indicating that they were thermal products generated from lipids of anammox bacterial biomass. A range of sediments from different geological periods where anammox may have been an important process was screened for the presence of these compounds as possible catagenetic products. They were not detected, either because the concentration was too low, or the sediments screened were too immature for them to have been generated, or because the artificially produced products of anammox lipids may not reflect the natural diagenetic and catagenetic products of ladderane lipids.  相似文献   

4.
Anaerobic oxidation of ammonium (anammox) is an important process in the marine N cycle. It has been estimated to contribute up to 50% of N loss from the ocean and is especially prevalent within the oxygen minimum zone (OMZ). We studied the presence and distribution of anammox in the extended OMZ of the Eastern Tropical North Pacific (ETNP) using ladderane fatty acids (FAs), specific biomarkers for anammox bacteria. The validity of ladderane FAs as a proxy for anammox bacteria was demonstrated by their excellent correspondence with anammox 16S rRNA functional gene abundances and their expression and intact polar ladderane lipid concentrations in suspended particulate matter (SPM) from the Arabian Sea. In the ETNP, SPM was collected from various water depths at four stations along a northwest to southeast cruise transect and ladderane FAs were analysed at each station. In all SPM samples where ladderanes were detected, C18 ladderane FAs were on average fivefold more abundant than C20 ladderane FAs. Maximum ladderane FA concentrations (1.1–2.3 ng l−1) were recorded at 400–600 m, often corresponding to the depth of the secondary nitrite maximum. At one of the four stations, a second maximum in concentration was noted at a shallower depth (85 m), coinciding with higher nitrite availability at this depth. This suggests that nitrite, along with oxygen, may be a limiting factor for anammox activity in the ETNP. Anammox lipids were abundant within the OMZ at all stations and concentrations were comparable to those in other OMZs, suggesting that anammox may be responsible for a significant loss of N from the OMZ of the ETNP.  相似文献   

5.
We examined stable carbon isotope fractionation in biosynthesis of fatty acids of a piezophilic bacterium Moritella japonica strain DSK1. The bacterium was grown to stationary phase at pressures of 0.1, 10, 20, and 50 MPa in media prepared using sterile-filtered natural seawater supplied with glucose as the sole carbon source. Strain DSK1 synthesized typical bacterial fatty acids (C14-19 saturated, monounsaturated, and cyclopropane fatty acids) as well as long-chain polyunsaturated fatty acids (PUFA) (20:6ω3). Bacterial cell biomass and individual fatty acids exhibited consistent pressure-dependent carbon isotope fractionations relative to glucose. The observed ΔδFA-glucose (−1.0‰ to −11.9‰) at 0.1 MPa was comparable to or slightly higher than fractionations reported in surface bacteria. However, bulk biomass and fatty acids became more depleted in 13C with pressure. Average carbon isotope fractionation (ΔδFA-glucose) at high pressures was much higher than that for surface bacteria: −15.7‰, −15.3‰, and −18.3‰ at 10, 20, and 50 MPa, respectively. PUFA were more 13C depleted than saturated and monounsaturated fatty acids at all pressures. The observed isotope effects may be ascribed to the kinetics of enzymatic reactions that are affected by hydrostatic pressure and to biosynthetic pathways that are different for short-chain and long-chain fatty acids. A simple quantitative calculation suggests that in situ piezophilic bacterial contribution of polyunsaturated fatty acids to marine sediments is nearly two orders of magnitude higher than that of marine phytoplankton and that the carbon isotope imprint of piezophilic bacteria can override that of surface phytoplankton. Our results have important implications for marine biogeochemistry. Depleted fatty acids reported in marine sediments and the water column may be derived simply from piezophilic bacteria resynthesis of organic matter, not from bacterial utilization of a 13C-depleted carbon source (i.e., methane). The interpretation of carbon isotope signatures of marine lipids must be based on principles derived from piezophilic bacteria.  相似文献   

6.
Hydrocarbon distributions and stable isotope ratios of carbonates (δ13Ccar, δ18Ocar), kerogen (δ13Cker), extractable organic matter (δ13CEOM) and individual hydrocarbons of Liassic black shale samples from a prograde metamorphic sequence in the Swiss Alps were used to identify the major organic reactions with increasing metamorphic grade. The studied samples range from the diagenetic zone (<100°C) to amphibolite facies (∼550°C). The samples within the diagenetic zones (<100 and 150°C) are characterized by the dominance of C<20n-alkanes, suggesting an origin related with marine and/or bacterial inputs. The metamorphic samples (200 to 550°C) have distributions significantly dominated by C12 and C13n-alkanes, C14, C16 and C18n-alkylcyclopentanes and to a lesser extend C15, C17 and C21n-alkylcyclohexanes. The progressive 13C-enrichment (up to 3.9‰) with metamorphism of the C>17n-alkanes suggests the occurrence of cracking reactions of high molecular weight compounds. The isotopically heavier (up to 5.6) C<17n-alkanes in metamorphic samples are likely originated by thermal degradation of long-chain homologous with preferential release of isotopically light C1 and C2 radicals. The dominance of specific even C-number n-alkylcyclopentanes suggests an origin related to direct cyclization mechanism (without decarboxylation step) of algal or bacterial fatty acids occurring in reducing aqueous metamorphic fluid conditions. The regular increase of the concentrations of n-alkylcycloalkanes vs. C>13n-alkanes with metamorphism suggests progressive thermal release of kerogen-linked fatty acid precursors and degradation of n-alkanes. Changes of the steroid and terpenoid distributions are clearly related to increasing metamorphic temperatures. The absence of 18α(H)-22,29,30-trisnorneohopane (Ts), the occurrence of 17β(H)-trisnorhopane, 17β(H), 21α(H)-hopanes in the C29 to C31 range and 5α(H),14α(H),17α(H)-20R C27, C29 steranes in the low diagenetic samples (<100°C) are characteristic of immature bitumens. The higher thermal stress within the upper diagenetic zone (150°C) is marked by the presence of Ts, the disappearance of 17β(H)-trisnorhopane and thermodynamic equilibrium of the 22S/(22S + 22R) homohopane ratios. The increase of the ααα-sterane 20S/(20S + 20R) and 20R ββ/(ββ + αα) ratios (from 0.0 to 0.55 and from 0.0 to 0.40, respectively) in the upper diagenetic zone indicates the occurrence of isomerization reactions already at <150°C. However, the isomerization at C-20 (R → S) reaches thermodynamic equilibrium values already at the upper diagenesis (∼150°C) whereas the epimerisation at C-14 and C-17 (αα → ββ) arrives to constant values in the lower anchizone (∼200°C). The ratios Ts vs. 17α(H)-22,29,30-trisnorneohopane [(Ts/(Ts + Tm)] and 18α(H)-30-norneohopane (C29Ts) vs. 17α(H),21β(H)-30-norhopane [C29Ts/(C29Ts + C29)] increase until the medium anchizone (200 to 250°C) from 0.0 to 0.96 and from 0.0 to 0.44, respectively. An opposite trend towards lower values is observed in the higher metamorphic samples.The occurrence of specific hydrocarbons (e.g., n-alkylcyclopentanes, cadalene, hydrogenated aromatic compounds) in metamorphic samples points to kerogen degradation reactions most probably occurring in the presence of water and under reducing conditions. The changes of hydrocarbon distributions and carbon isotopic compositions of n-alkanes related to metamorphism suggest that the organic geochemistry may help to evaluate the lowest grades of prograde metamorphism.  相似文献   

7.
Benthic nitrogen (N) cycling was investigated at six stations along a transect traversing the Peruvian oxygen minimum zone (OMZ) at 11°S. An extensive dataset including porewater concentration profiles and in situ benthic fluxes of nitrate (NO3), nitrite (NO2) and ammonium (NH4+) was used to constrain a 1-D reaction-transport model designed to simulate and interpret the measured data at each station. Simulated rates of nitrification, denitrification, anammox and dissimilatory nitrate reduction to ammonium (DNRA) by filamentous large sulfur bacteria (e.g. Beggiatoa and Thioploca) were highly variable throughout the OMZ yet clear trends were discernible. On the shelf and upper slope (80-260 m water depth) where extensive areas of bacterial mats were present, DNRA dominated total N turnover (?2.9 mmol N m−2 d−1) and accounted for ?65% of NO3 + NO2 uptake by the sediments from the bottom water. Nonetheless, these sediments did not represent a major sink for dissolved inorganic nitrogen (DIN = NO3 + NO2 + NH4+) since DNRA reduces NO3 and, potentially NO2, to NH4+. Consequently, the shelf and upper slope sediments were recycling sites for DIN due to relatively low rates of denitrification and high rates of ammonium release from DNRA and ammonification of organic matter. This finding contrasts with the current opinion that sediments underlying OMZs are a strong sink for DIN. Only at greater water depths (300-1000 m) did the sediments become a net sink for DIN. Here, denitrification was the major process (?2 mmol N m−2 d−1) and removed 55-73% of NO3 and NO2 taken up by the sediments, with DNRA and anammox accounting for the remaining fraction. Anammox was of minor importance on the shelf and upper slope yet contributed up to 62% to total N2 production at the 1000 m station. The results indicate that the partitioning of oxidized N (NO3, NO2) into DNRA or denitrification is a key factor determining the role of marine sediments as DIN sinks or recycling sites. Consequently, high measured benthic uptake rates of oxidized N within OMZs do not necessarily indicate a loss of fixed N from the marine environment.  相似文献   

8.
This paper reports on the spatial distribution patterns and investigates the controlling mechanisms of phytoplankton biomarkers (brassicasterol for diatoms, alkenones for haptophytes, dinosterol for dinoflagellates) and terrestrial biomarkers (odd C number long-chain (C27 + C29 + C31) n-alkanes) in surface sediments from the southern Yellow Sea (SYS). The contents of the phytoplankton biomarkers in the SYS surface sediments reveals a clear spatial pattern, with low values near the coasts and increased values seaward, caused by higher phytoplankton primary productivity and low sedimentation rates in the basin. The contents of terrestrial biomarkers show high values in the northern part of the study areas off the Shandong Peninsula and Jiangsu coast, caused by inputs of materials from the modern Huanghe River and the old Huanghe delta, respectively. The results also indicate that biomarker ratios offer the best approach for reconstructing marginal sea C cycles, as these proxies can be used to estimate the contributions of both terrestrial and marine organic matter and to reconstruct paleoproductivity and paleoecological changes in the SYS.  相似文献   

9.
The natural abundance of radiocarbon (14C) provides unique insight into the source and cycling of sedimentary organic matter. Radiocarbon analysis of bacterial phospholipid lipid fatty acids (PLFAs) in salt-marsh sediments of southeast Georgia (USA)—one heavily contaminated by petroleum residues—was used to assess the fate of petroleum-derived carbon in sediments and incorporation of fossil carbon into microbial biomass. PLFAs that are common components of eubacterial cell membranes (e.g., branched C15 and C17, 10-methyl-C16) were depleted in 14C in the contaminated sediment (mean Δ14C value of +25 ± 19‰ for bacterial PLFAs) relative to PLFAs in uncontaminated “control” sediment (Δ14C = +101 ± 12‰). We suggest that the 14C-depletion in bacterial PLFAs at the contaminated site results from microbial metabolism of petroleum and subsequent incorporation of petroleum-derived carbon into bacterial membrane lipids. A mass balance calculation indicates that 6-10% of the carbon in bacterial PLFAs at the oiled site could derive from petroleum residues. These results demonstrate that even weathered petroleum may contain components of sufficient lability to be a carbon source for biomass production by marsh sediment microorganisms. Furthermore, a small but significant fraction of fossil carbon is assimilated even in the presence of a much larger pool of presumably more-labile and faster-cycling carbon substrates.  相似文献   

10.
Anammox bacteria are widespread in the marine environment, but studies of anammox in marshes and other wetlands are still scarce. In this study, the role of anammox in nitrogen removal from marsh sediments was surveyed in four vegetation types characteristic of New England marshes and in unvegetated tidal creeks. The sites spanned a salinity gradient from 0 to 20 psu. The impact of nitrogen loading on the role of anammox in marsh sediments was studied in a marsh fertilization experiment and in marshes with high nitrogen loading entering through ground water. In all locations, nitrogen removal through anammox was low compared to denitrification, with anammox accounting for less than 3% of the total N2 production. The highest relative importance of anammox was found in the sediments of freshwater-dominated marshes, where anammox approached 3%, whereas anammox was of lesser importance in saline marsh sediments. Increased nitrogen loading, in the form of nitrate from natural or artificial sources, did not impact the relative importance of anammox, which remained low in all the nitrogen enriched locations (<1%).  相似文献   

11.
The biogeochemistry of organic matter (OM) in a macrotidal estuary, the Yalujiang River, was studied during two cruises: the flood season in August 1994 and the dry season in April 1996. Surface sediments were collected in the riverine zone (RZ), the turbidity maximum zone (TMZ), and the marine zone (MZ). The molecular distribution of the n-alkanes and fatty acid series and bulk sediment characteristics, such as C:N and δ13C, were used to assess differences in OM source and transport from the river upstream to the marine end member. Higher C:N values typical for terrestrial sources were observed at the upper reach for both seasons. The δ13C of OM in surface sediments varied from −27.3‰ to −21.6‰ in the flood season and from −26.8‰ to −31‰ in the dry season. The concentrations of n-alkanes varied between 0.3–21.4 μg g−1 and the variation of fatty acids was 4.8–32.9 μg g−1. The data showed mixing of terrestrial and autochthonous OM in the middle and lower reaches. The distribution of lipids (n-alkanes and Carbon Preference Index) encountered in this study confirmed the importance of terrestrial OM in the sediment samples from degraded soil material. The distribution of fatty acids suggested important phytoplankton, zooplankton, and microbial signals (short-chain and unsaturated acids; ≤C20). Branched fatty acids, such as the iso- and anteiso-C15 and C17 compounds, relfect bacterial contributions. All samples were characterized by a high proportion of mixture inputs in both seasons. A slight decreasing trend was observed with increasing salinity except for the highest percentage of mixed fatty acids in the TMZ of the flood season. Terrestrial fatty acids were approximately 20% in the flood season and 27–46% in the dry season. Differences in hydrological conditions and primary production between the TMZ, RZ, and MZ resulted in different OM distributions, which are reflected in the sources and degree of diagenesis of the sedimentary OM. Seasonal variation may be strongly influenced by hydrological characteristics rather than primary productivity and anthropogenic activities in the Yalujiang region.  相似文献   

12.
Long chain alkenones (LCA) are temperature-sensitive lipids with great potential for quantitative reconstruction of past continental climate. We conducted the first survey for alkenone biomarkers from 55 different lakes in the Northern Great Plains and Nebraska Sand Hills of the United States. Among those surveyed, we found 13 lakes that contain LCAs in the surface sediments. The highest concentrations of alkenones in sediments are found in cold (mean annual air temperature ∼11 °C versus 17 °C in our warmest sites), brackish to mesosaline (salinity = 8.5-9.7 g/L), and alkaline (pH = 8.4-9.0) lakes with high concentrations of sodium and sulfate. The dynamics of stratification and nutrient availability also appear to play a role in LCA abundance, as early spring mixing promotes a bloom of alkenone-producing haptophytes. Four of the alkenone-containing sites contain the C37:4 alkenone; however, we discovered an unprecedented lacustrine alkenone distribution in a cluster of lakes, with a total absence of C37:4 alkenone. We attribute this unusual composition to a different haptophyte species and show that the sulfate:carbonate ratio may control the occurrence of these two distinct populations. We created a new in-situ temperature calibration for lacustrine sites that contain C37:4 using a water-column calibration from Lake George, ND and show that is linearly correlated to lake water temperature (R2 = 0.74), but is not. A number of lakes contain an unidentified compound series that elutes close to the LCAs, highlighting the importance of routine GC-MS examination prior to using lacustrine LCAs for paleotemperature reconstructions.  相似文献   

13.
We present a systematic study of chain-length distributions and D/H ratios of n-alkyl lipids (both n-alkanes and n-alkanoic acids) in a wide range of terrestrial and aquatic plants around and in Blood Pond, Massachusetts, USA. The primary goal is to establish a model to quantitatively assess the aquatic plant inputs of the mid-chain length n-alkyl lipids to lake sediments and to determine the average hydrogen isotopic ratios of these lipids in different plants. Our results show that middle-chain n-alkyl lipids (C21-C23n-alkanes and C20-C24n-alkanoic acids) are exceptionally abundant in floating and submerged aquatic plants, in contrast to the dominance of long-chain n-alkyl lipids (C27-C31n-alkanes and C26-C32n-alkanoic acids) in other plant types, which are consistent with previously published data from Mountain Kenya and the Tibetan Plateau. Combining available data in different environmental settings allows us to establish statistically robust model distributions of n-alkyl lipids in floating/submerged macrophytes relative to other plant types. Based on the model distributions, we established a multi-source mixing model using a linear algebra approach, in order to quantify the aquatic inputs of mid-chain n-alkyl lipids in lake sediments. The results show that ∼97% of the mid-chain n-alkyl lipids (C23n-alkane and C22n-acid (behenic acid)) in Blood Pond sediments are derived from floating and submerged macrophytes. In addition, D/H ratios of C22n-acid and C23n-alkane in the floating and submerged plants from Blood Pond display relatively narrow ranges of variation (−161 ± 16‰ and −183 ± 18‰, respectively). Our study demonstrates that mid-chain n-alkyl lipids such as C23n-alkane and C22n-acid could be excellent recorders of past lake water isotopic ratios in lakes with abundant floating and submerged macrophyte inputs.  相似文献   

14.
Transfer of organic carbon (OC) from the terrestrial to the oceanic carbon pool is largely driven by riverine and aeolian transport. Before transport, however, terrigenous organic matter can be retained in intermediate terrestrial reservoirs such as soils. Using compound-specific radiocarbon analysis of terrigenous biomarkers their average terrestrial residence time can be evaluated.Here we show compound-specific radiocarbon (14C) ages of terrigenous biomarkers and bulk 14C ages accompanied by geochemical proxy data from core top samples collected along transects in front of several river mouths in the Black Sea. 14C ages of long chain n-alkanes, long chain n-fatty acids and total organic carbon (TOC) are highest in front of the river mouths, correlating well with BIT (branched and isoprenoid tetraether) indices, which indicates contribution of pre-aged, soil-derived terrigenous organic matter. The radiocarbon ages decrease further offshore towards locations where organic matter is dominated by marine production and aeolian input potentially contributes terrigenous organic matter. Average terrestrial residence times of vascular plant biomarkers deduced from n-C29+31 alkanes and n-C28+30 fatty acids ages from stations directly in front of the river mouths range from 900 ± 70 years to 4400 ± 170 years. These average residence times correlate with size and topography in climatically similar catchments, whereas the climatic regime appears to control continental carbon turnover times in morphologically similar drainage areas of the Black Sea catchment. Along-transect data imply petrogenic contribution of n-C29+31 alkanes and input via different terrigenous biomarker transport modes, i.e., riverine and aeolian, resulting in aged biomarkers at offshore core locations. Because n-C29+31 alkanes show contributions from petrogenic sources, n-C28+30 fatty acids likely provide better estimates of average terrestrial residence times of vascular plant biomarkers. Moreover, sedimentary n-C28 and n-C30 fatty acids appear clearly much less influenced by autochthonous sources than n-C24 and n-C26 fatty acids as indicated by increasing radiocarbon ages with increasing chain-length and are, thus, more representative as vascular plant biomarkers.  相似文献   

15.
Kinetics of microbial sulfate reduction in estuarine sediments   总被引:2,自引:0,他引:2  
Kinetic parameters of microbial sulfate reduction in intertidal sediments from a freshwater, brackish and marine site of the Scheldt estuary (Belgium, the Netherlands) were determined. Sulfate reduction rates (SRR) were measured at 10, 21, and 30 °C, using both flow-through reactors containing intact sediment slices and conventional sediment slurries. At the three sites, and for all depth intervals studied (0-2, 2-4, 4-6 and 6-8 cm), the dependence of potential SRR on the sulfate concentration followed the Michaelis-Menten rate equation. Apparent sulfate half-saturation concentrations, Km, measured in the flow-through reactor experiments were comparable at the freshwater and marine sites (0.1-0.3 mM), but somewhat higher at the brackish site (0.4-0.9 mM). Maximum potential SRR, Rmax, in the 0-4 cm depth interval of the freshwater sediments were similar to those in the 0-6 cm interval of the marine sediments (10-46 nmol cm−3 h−1 at 21 °C), despite much lower in situ sulfate availability and order-of-magnitude lower densities of sulfate-reducing bacteria (SRB), at the freshwater site. Values of Rmax in the brackish sediments were lower (3.7-7.6 nmol cm−3 h−1 at 21 °C), probably due to less labile organic matter, as inferred from higher Corg/N ratios. Inflow solutions supplemented with lactate enhanced potential SRR at all three sites. Slurry incubations systematically yielded higher Rmax values than flow-through reactor experiments for the freshwater and brackish sediments, but similar values for the marine sediments. Transport limitation of potential SRR at the freshwater and brackish sites may be related to the lower sediment porosities and SRB densities compared to the marine site. Multiple rate controls, including sulfate availability, organic matter quality, temperature, and SRB abundance, modulate in situ sulfate-reducing activity along the estuarine salinity gradient.  相似文献   

16.
The TEX86 (TetraEther indeX of tetraethers consisting of 86 carbon atoms) paleothermometer is based on the relative distribution of archaeal lipids, i.e. isoprenoid glycerol dibiphytanyl glycerol tetraethers (GDGTs), and is increasingly used to reconstruct past sea water temperatures. To establish a more extensive, global calibration of the TEX86 paleothermometer, we analyzed GDGTs in 287 (in comparison with 44 in currently used calibration) core-top sediments distributed over the world oceans and deposited at different depths. Comparisons of TEX86 data with (depth-weighted) annual mean temperatures of the overlying waters between 0 m and 4000 m as well as with different seasonal mean temperatures at 0 m water depth showed that the TEX86 proxy reflects mostly annual mean temperatures of the upper mixed layer. The relationship between TEX86 values and sea-surface temperatures (SSTs) was non-linear mainly because below 5 °C the change in TEX86 values was minor with temperature. This suggests that the TEX86 proxy might not be directly applicable for the Polar Oceans. Nevertheless, between 5 °C and 30 °C, the TEX86 proxy has a strong linear relationship with SSTs. Here, we, therefore, propose a new linear calibration model (T = −10.78 + 56.2 ∗ TEX86, r2 = 0.935, n = 223) for past SST reconstructions using the TEX86 palaeothermometer.  相似文献   

17.
The alkenone unsaturation index UK′37 has been applied to reconstruct past temperature changes in both marine and lacustrine systems. However, few studies have addressed whether the relative abundance of the C37:4 alkenone to the total C37 production (%C37:4) can reflect surface salinity changes in lacustrine systems. Here we present long-chain C37 alkenone distribution patterns in surface sediments from Lake Qinghai, China. Surface sediments were sampled over a large range of surface salinity changes (1.7-25 g/l) within Lake Qinghai and its surrounding lakes, while temperature differences at these sampling locations should be relatively small. We have found that %C37:4 varies from 15% to 49% as surface salinity decreases. We tentatively describe this %C37:4-salinity link with a general linear regression: %C37:4 = 53.4 (±7.8) − 1.73 (±0.45) × S (n = 28, r2 = 0.62), although step-wise %C37:4 changes in response to salinity variation may exist. UK′37 values vary between 0.10 and 0.16 at these sites and the inferred range of lake water temperature changes is ∼2-3 °C, suggesting that UK′37 largely reflects temperature signal across a large salinity range, consistent with previous findings that UK′37 can indicate temperature changes over a large diversity of environmental settings. We have also found that UK′37 values are correlated with salinity changes (r2 = 0.4), and thus cannot exclude potential temperature effect on %C37:4 and salinity effect on UK′37 in this study. However, even extreme estimates of temperature differences within the lake are still unable to explain the observed %C37:4 changes. We therefore suggest that %C37:4 could be used to infer past lake salinity changes at a regional scale.  相似文献   

18.
The carbon geochemistry of serpentinized peridotites and gabbroic rocks recovered at the Lost City Hydrothermal Field (LCHF) and drilled at IODP Hole 1309D at the central dome of the Atlantis Massif (Mid-Atlantic Ridge, 30°N) was examined to characterize carbon sources and speciation in oceanic basement rocks affected by long-lived hydrothermal alteration. Our study presents new data on the geochemistry of organic carbon in the oceanic lithosphere and provides constraints on the fate of dissolved organic carbon in seawater during serpentinization. The basement rocks of the Atlantis Massif are characterized by total carbon (TC) contents of 59 ppm to 1.6 wt% and δ13CTC values ranging from −28.7‰ to +2.3‰. In contrast, total organic carbon (TOC) concentrations and isotopic compositions are relatively constant (δ13CTOC: −28.9‰ to −21.5‰) and variations in δ13CTC reflect mixing of organic carbon with carbonates of marine origin. Saturated hydrocarbons extracted from serpentinites beneath the LCHF consist of n-alkanes ranging from C15 to C30. Longer-chain hydrocarbons (up to C40) are observed in olivine-rich samples from the central dome (IODP Hole 1309D). Occurrences of isoprenoids (pristane, phytane and squalane), polycyclic compounds (hopanes and steranes) and higher relative abundances of n-C16 to n-C20 alkanes in the serpentinites of the southern wall suggest a marine organic input. The vent fluids are characterized by high concentrations of methane and hydrogen, with a putative abiotic origin of hydrocarbons; however, evidence for an inorganic source of n-alkanes in the basement rocks remains equivocal. We propose that high seawater fluxes in the southern part of the Atlantis Massif likely favor the transport and incorporation of marine dissolved organic carbon and overprints possible abiotic geochemical signatures. The presence of pristane, phytane and squalane biomarkers in olivine-rich samples associated with local faults at the central dome implies fracture-controlled seawater circulation deep into the gabbroic core of the massif. Thus, our study indicates that hydrocarbons account for an important proportion of the total carbon stored in the Atlantis Massif basement and suggests that serpentinites may represent an important—as yet unidentified—reservoir for dissolved organic carbon (DOC) from seawater.  相似文献   

19.
The respiratory reduction of nitrate (denitrification) is acknowledged as the most important process that converts biologically available nitrogen to gaseous dinitrogen (N2) in marine ecosystems. Recent findings, however, indicate that anaerobic ammonium oxidation by nitrite (anammox) may be an important pathway for N2 formation and N removal in coastal marine sediments and in anoxic water columns of the oceans. In the present study, we explored this novel mechanism during N mineralization by 15N amendments (single and coupled additions of 15NH4+, 14NO3 and 15NO3) to surface sediments with a wide range of characteristics and overall reactivity. Patterns of 29/30N2 production in the pore water during closed sediment incubations demonstrated anammox at all 7 of the investigated sites. Stoichiometric calculations revealed that 4% to 79% of total N2 production was due to this novel route. The relative importance of anammox for N2 release was inversely correlated with remineralized solute production, benthic O2 consumption, and surface sediment Chl a. The observed correlations indicate competition between reductants for pore water nitrite during early diagenesis and that additional factors (e.g. availability of Mn-oxides), superimposed on overall patterns of diagenetic activity, are important for determining absolute and relative rates of anammox in coastal marine sediments.  相似文献   

20.
Long chain 1,14-diols have been reported in diatoms of the genus Proboscia and applied as specific biomarker lipids for such algae. We report here the presence of saturated C28, C30 and C32 1,14-diols in a culture of the marine heterokont alga Apedinella radians (Class Dictyochophyceae, order Pedinellales). Apedinella species occur globally, although predominantly in estuarine waters, so the finding has potential implications for the use of long chain 1,14-diols as biomarkers of Proboscia diatoms and as an indicator of upwelling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号