首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High-resolution 2D seismic data from the western side of Dogger Bank (North Sea) has revealed that the glacigenic sediments of the Dogger Bank Formation record a complex history of sedimentation and penecontemporaneous, large-scale, ice-marginal to proglacial glacitectonism. The resulting complex assemblage of glacial landforms and sediments record the interplay between two separate ice masses revealing that Late Devensian ice sheet dynamics across Dogger Bank were far more complex than previously thought, involving the North Sea lobe of the British and Irish Ice Sheet, advancing from the west, interacting with the Dogger Bank lobe which expanded from the north. The active northward retreat of the Dogger Bank lobe resulted in the development of a complex assemblage of arcuate thrust-block moraines (≤ 15 km wide, > 30 km long) composed of highly folded and thrust sediments, separated by sedimentary basins and meltwater channels filled by outwash. The impact of the North Sea lobe was restricted to the western margin of Dogger Bank and led to deep-seated (100–150 m thick) glacitectonism in response to ice-push from the west. During the earlier expansion of the North Sea lobe, this thrust and fold complex initially occupied a frontal marginal position changing to a more lateral ice-marginal position as the ice sheet continued to expand to the south. The complex structural relationships between the two glacitectonic complexes indicates that these ice masses interacted along the western side of Dogger Bank, with the inundation of this area by ice probably occurring during the last glaciation when the ice sheets attained their maximum extents.  相似文献   

2.
An assemblage of subglacial, ice-terminal and proglacial landforms and sediments provides evidence for the relationship between ice-marginal glacitectonics, sedimentary processes and subglacial and proglacial hydraulic processes at a retreating late Devensian ice margin in north-central Ireland. Deltas were deposited in glacial lakes impounded between the retreating ice margin and the southern Sperrin Mountains, followed by outwash and end moraine formation as the ice margin retreated south. Sediments within the moraines show evidence for ice margin oscillation from two opposing ice margins, including subglacial bedrock rafts and breccias which are separated by glacitectonic shears with silty partings. In adjacent outwash, vertically-disturbed proglacial sands, gravels and silts located in front of moraine positions attest to high hydraulic pressure and subsurface water flow during ice oscillation. The relationship between sedimentary and hydraulic processes in the ice margin region is described by a depositional model which links glacitectonic thrusting and subsurface water flow during ice oscillation to formation of subglacial, ice-terminal and proglacial sediments. The evidence presented in this paper shows that subglacial and proglacial morphosedimentary processes and patterns of sediment deposition are mediated by the presence of proglacial permafrost, which helps direct processes and patterns of groundwater flow.  相似文献   

3.
Outcrops of pebbly mud (diamict) at Scarborough in Southern Ontario, Canada (the so-called Sunnybrook ‘Till’) are associated with the earliest incursion of the Laurentide Ice Sheet (LIS) into mid-continent North America some 45,000 years ago. The Sunnybrook is a blanket-like deposit containing deepwater ostracodes and occurs conformably within a thick (100 m) succession of deltaic and glaciolacustrine facies that record water depth changes in a large proglacial lake. Contextual evidence (associated facies, sedimentary structures, deposit geometry and landforms) indicates a low energy depositional setting in an ice-dammed ancestral Lake Ontario in which scouring by floating ice masses was an important process. U-shaped, iceberg-cut scours (with lateral berms) up to 7 m deep, occur on the upper surface of the Sunnybrook and are underlain by ‘sub-scour’ structures that extend several meters below the scour base. Ice-rafted concentrations of clasts (‘clast layers’), grooved surfaces formed by floating ice glissading over a muddy lake floor (‘soft sediment striations’) and melanges of sand and mud mixed by grounding ice keels (‘ice keel turbates’) are present and are all well known from modern cold environments. The wider significance of this depositional model is that the LIS margin lay east of Scarborough and did not overrun Southern Ontario. This finding is in agreement with recent data from the Erie Basin of Canada, Ohio, and Indiana where deposits formerly correlated with the Sunnybrook (and thus implying an extensive early Wisconsin ice sheet) are now regarded as Illinoian. A speculative hypothesis is proposed that relates deposition of the Sunnybrook and two younger deposits of similar sedimentology, to surge-like instabilities of the southern LIS margin.  相似文献   

4.
The extent and behaviour of the southeast margin of the Laurentide Ice Sheet in Atlantic Canada is of significance in the study of Late Wisconsinan ice sheet-ocean interactions. Multibeam sonar imagery of subglacial, ice-marginal and glaciomarine landforms on German Bank, Scotian Shelf, provides evidence of the pattern of glacial-dynamic events in the eastern Gulf of Maine. Northwest-southeast trending drumlins and megaflutes dominate northern German Bank. On southern German Bank, megaflutes of thin glacial deposits create a distinct northwest-southeast grain. Lobate regional moraines (>10km long) are concave to the northwest, up-ice direction and strike southwest-northeast, normal to the direction of ice flow. Ubiquitous, overlying De Geer moraines (<10 km long) also strike southwest-northeast. The mapped pattern of moraines implies that, shortly after the last maximum glaciation, the tidewater ice sheet began to retreat north from German Bank, forming De Geer moraines at the grounding line with at least one glacial re-advance during the general retreat. The results indicate that the Laurentide Ice Sheet extended onto the continental shelf.  相似文献   

5.
In an area in southwesternmost Värmland, western Sweden, ice-marginal deposits have been mapped and studied. They can be correlated with the Norwegian Younger Dryas to Preboreal Ås, Ski and Aker ice-marginal ridges, and with lines of ice recession earlier constructed in Dalsland. Together they give valuable information about the mode of deglaciation in southern Scandinavia. They indicate a pattern of deglaciation with intense upbreaking by calving of the ice eastwards from the Oslo Fjord and northwards in the Vänern basin. This process caused a downdraw of ice around the highland between those areas. Ice streams and, later, valley glaciers were formed in the large Årjäng-Koppom and Glafsfjorden-Byälven valleys. Between them a lobe-shaped, stagnant ice cap was isolated from further supply from the main ice sheet in the north. This ice cap, here called the Dal lobe, wasted down with a complicated pattern from the west, south and east.  相似文献   

6.
Terminal-moraine ridges up to 6 m high have been forming at the snout of Styggedalsbreen for two decades. Based on intermittent observations during this period, combined with a detailed study of ridge morphology, sedimentary structures and composition during the 1993 field season, a model of terminal-moraine formation that involves the interaction of glacial and glacio-fluvial processes at a seasonally oscillating ice margin is presented. In winter, subglacial debris is frozen-on to the glacier sole; in summer, ice-marginal and supraglacial streams deposit sediments on the wasting ice tongue. The ice tongue overrides an embryonic moraine ridge during a late-winter advance and a double layer of sediment (diamicton overlain by sorted sands and gravels) is added to the moraine ridge during the subsequent ablation season. Particular ridges grow incrementally over many years and exert positive feedback by enhancing snout up-arching during the winter advance and constraining the course of summer meltwater streams close to the ice margin. The double-layer annual-meltout model is related to moraine formation by the stacking of subglacial frozen-on sediment slabs (Krüger 1993). Moraine ridges of this type have a complex origin. are not push moraines, and may be characteristic of dynamic high-latitude and high-altitude temperate glaciers.  相似文献   

7.
During the last (MIS 2) and older glaciations of the North Sea, a North Sea Lobe (NSL) of the British-Irish Ice Sheet flowed onshore and terminated on the lowlands of eastern England, constructing inset sequences of either substantial ice-marginal deposits and tills or only a thin till veneer, indicative of complex and highly dynamic glaciological behaviour. The glaciation limit represented by the Marsh Tills and the Stickney and Horkstow Moraines in Lincolnshire is regarded as the maximum margin of the NSL during MIS 2 and was attained at ∼19.5 ka as determined by OSL dating of overridden lake sediments at Welton le Wold. A later ice marginal position is recorded by the Hogsthorpe-Killingholme Moraine belt, within which ice-walled lake plains indicate large scale ice stagnation rapidly followed ice advance at ∼18.4 ka based on dates from supraglacial lake deposits. The NSL advanced onshore in North Norfolk slightly earlier constructing a moraine ridge at Garrett Hill at ∼21.5ka. In addition to the large ice-dammed lakes in the Humber and Wash lowlands, we propose that an extensive Glacial Lake Lymn was dammed in the southern Lincolnshire Wolds by the NSL ice margin at the Stickney Moraine. Previous proposals that older glacier limits might be recorded in the region, lying between MIS 2 and MIS 12 deposits, are verified by our OSL dates on the Stiffkey moraine, which lies immediately outside the Garrett Hill moraine and appears to be of MIS 6 age.  相似文献   

8.
The efficiency of subglacial drainage is known to have a profound influence on subglacial deformation and glacier dynamics with, in particular, high meltwater contents and/or pressures aiding glacier motion. The complex sequence of Middle Pleistocene tills and glacial outwash sediments exposed along the north Norfolk coast (Eastern England) were deposited in the ice-marginal zone of the British Ice Sheet and contain widespread evidence for subglacial deformation during repeated phases of ice advance and retreat. During a phase of easterly directed ice advance, the glacial and pre-glacial sequences were pervasively deformed leading to the development of a thick unit of glacitectonic mélange. Although the role of pressurised meltwater has been recognised in facilitating deformation and mélange formation, this paper provides evidence for the subsequent development of a channelised subglacial drainage system beneath this part of the British Ice Sheet filled by a complex assemblage of sands, gravels and mass flow deposits. The channels are relatively undeformed when compared to the host mélange, forming elongate, lenticular to U-shaped, flat-topped bodies (up to 20–30 m thick) located within the upper part of this highly deformed unit. This relatively stable channelised system led to an increase in the efficiency of subglacial drainage from beneath the British Ice Sheet and the collapse of the subglacial shear zone, potentially slowing or even arresting the easterly directed advance of the ice sheet.  相似文献   

9.
During the Vashon Stade of the Fraser Glaciation, about 15,000–13,000 yr B.P., a lobe of the Cordilleran Ice Sheet occupied the Puget lowland of western Washington. At its maximum extent about 14,000 yr ago, the ice sheet extended across the Puget lowland between the Cascade Range and Olympic Mountains and terminated about 80 km south of Seattle. Meltwater streams drained southwest to the Pacific Ocean and built broad outwash trains south of the ice margin. Reconstructed longitudinal profiles for the Puget lobe at its maximum extent are similar to the modern profile of Malaspina Glacier, Alaska, suggesting that the ice sheet may have been in a near-equilibrium state at the glacial maximum. Progressive northward retreat from the terminal zone was accompanied by the development of ice-marginal streams and proglacial lakes that drained southward during initial retreat, but northward during late Vashon time. Relatively rapid retreat of the Juan de Fuca lobe may have contributed to partial stagnation of the northwestern part of the Puget lobe. Final destruction of the Puget lobe occurred when the ice retreated north of Admiralty Inlet. The sea entered the Puget lowland at this time, allowing the deposition of glacial-marine sediments which now occur as high as 50 m altitude. These deposits, together with ice-marginal meltwater channels presumed to have formed above sea level during deglaciation, suggest that a significant amount of postglacial isostatic and(or) tectonic deformation has occurred in the Puget lowland since deglaciation.  相似文献   

10.
The landscape of northeast Norfolk is dominated by a high (>50 m) ridge which has been interpreted as an end moraine (Cromer Ridge). This feature is truncated by coastal erosion at Trimingham. Evidence of large- and small-scale compressive styles of deformation is found throughout the sequence, except at the very top, where late Anglian/early Hoxnian lake sediments are found within an undeformed kettle hole. The deformation consists of open folds (including chevron folds) and listric thrust faults. It is suggested that these are the result of a single compressive event, which was caused by proglacial glaciotectonic deformation. It is inferred that this deformation is due to a combination of frontal pushing and compressive stresses transmitted through a subglacial deforming wedge. It is also shown that strain increases towards the ice sheet margin, as reflected by the deformational styles (from open folding up-glacier to listric thrust faulting down-glacier). The Cromer Ridge is shown to be a push moraine complex related to an actively retreating ice margin.  相似文献   

11.
A Pleistocene drift sequence in hummocky terrain along part of the southern Avalon Peninsula of Newfoundland is interpreted to comprise complexly interrelated lodgement till, melt-out till, flow till, supraglacial and proglacial outwash, and supraglacial rhythmites. The gray and tan melt-out tills are stacked in imbricate fashion, giving rise to exceptionally thick stratigraphic sections. Contacts between melt-out tills are interpreted as remnants of shear planes because they are sharp, they dip in the up-ice direction, and they converge toward valley margins. Overlying flow tills interdigitate with supraglacial outwash. The drift sequence was deposited during a single episode of glaciation, rather than by repeated glacier advance, as previously proposed. It is the product of thrusting of englacial debris along ice-marginal shear planes, subsequent melting-out of englacial debris, and formation of supraglacial flow till and outwash. Preservation of this sequence probably is due to high content of englacial debris within the Wisconsinan ice. The sedimentary, glacitectonic, and morphologic features of this sequence are similar to those found at the margins of certain Arctic glaciers of subpolar thermal regime which have recently been the subject of Pleistocene glacial sedimentation models for west-central Canada and Great Britain. Recognition of these distinct elements indicates wisconsinan glacier lobes were of the cold Arctic type in southeastern Newfoundland. Alternative explanations for this sequence, such as deposition by glaciers of temperate thermal regime or by surging glaciers, are discounted. Because the features described here are complex and difficult to recognize, they may be more widespread in Pleistocene drift than has previously been interpreted.  相似文献   

12.
《Quaternary Science Reviews》2007,26(19-21):2375-2405
Late Devensian glacigenic sediments and landforms along the north-west coast of Wales document the advance and subsequent retreat of the eastern margin of an Irish Sea Ice Stream that met, coalesced and ultimately uncoupled from ice radiating outwards from the adjacent Welsh Ice Cap centred over Snowdonia. Across the boundary between the two former ice masses is a set of sediment–landform assemblages that reflect rapidly changing erosional and depositional conditions during ice interaction. From the inner part of the ice-stream the assemblages range outwards, from a subglacial depositional assemblage, characterised by drumlin swarms; through a subglacial erosional assemblage, marked by prominent bedrock scours and large subglacial rock channels; through an ice-marginal assemblage, identified by closely spaced, glaciotectonised push moraines and intervening marginal sandur troughs; into a freely expanding proglacial sandur and lacustrine delta assemblage. The ice-marginal assemblage provides evidence for numerous oscillatory episodes during retreat and at least 20 ice-marginal limits can be identified. At least 11 of these display multiple criteria for identifying readvance and, in the ideal case, is characterised by a moraine form built by localised tectonic stacking of diamict to the rear, fronted by a clastic wedge of ice-front alluvial fan gravel and intercalated flow till. The distribution of sediment–landform assemblages suggests a highly dynamic, convergent ice-stream flow pattern, with high ice velocity, a sharply delineated lateral shear margin, pervasive ice-marginal glaciotectonic deformation and a tightly focused ice-marginal sediment delivery system; all signature characteristics of contemporary ice streams.  相似文献   

13.
An investigation into the late Pleistocene sediments exposed at Afton Lodge has helped to clarify the glacial history of western central Scotland. The sequence includes several allochthonous bodies of ‘shelly clay’ (Afton Lodge Clay Formation) associated with Late Devensian (Weichselian) age diamict. The shelly clay contains abundant marine macro- and microfauna, as well as palynomorphs consistent with its deposition within a shallow marine to estuarine environment. Faunal changes within the main body of marine clay record at least one, millennial-scale cycle of Arctic-Boreal, to Boreal, and back to Arctic-Boreal climatic conditions. A radiocarbon date of over 41 ka 14C BP obtained from the foraminifera indicates that the marine clays are older than the surrounding till. Afton Lodge is thus one of a suite of ‘high-level’ shelly clay occurrences around the Scottish coasts that are now considered to be glacially transported. Together with closely associated ‘shelly tills’, the rafts were emplaced during an early phase of the last glaciation by ice flowing from the western Grampian Highlands of Scotland through the topographically-confined Firth of Clyde basin. The blocks of marine sediment were detached subglacially, unfrozen, and carried at least 10 km by ice that splayed out onshore against reversed slopes favouring raft emplacement and the creation of closely associated ribbed moraine. Transport of the rafts was facilitated by water-lubricated décollement surfaces and their accretion was accompanied by dewatering. The shelly tills were formed mainly by the attenuation and crushing of rafts of shelly clay during their transport within the subglacial deforming bed.  相似文献   

14.
The ice sheet that once covered Ireland has a long history of investigation. Much prior work focussed on localised evidence-based reconstructions and ice-marginal dynamics and chronologies, with less attention paid to an ice sheet wide view of the first order properties of the ice sheet: centres of mass, ice divide structure, ice flow geometry and behaviour and changes thereof. In this paper we focus on the latter aspect and use our new, countrywide glacial geomorphological mapping of the Irish landscape (>39 000 landforms), and our analysis of the palaeo-glaciological significance of observed landform assemblages (article Part 1), to build an ice sheet reconstruction yielding these fundamental ice sheet properties. We present a seven stage model of ice sheet evolution, from initiation to demise, in the form of palaeo-geographic maps. An early incursion of ice from Scotland likely coalesced with local ice caps and spread in a south-westerly direction 200 km across Ireland. A semi-independent Irish Ice Sheet was then established during ice sheet growth, with a branching ice divide structure whose main axis migrated up to 140 km from the west coast towards the east. Ice stream systems converging on Donegal Bay in the west and funnelling through the North Channel and Irish Sea Basin in the east emerge as major flow components of the maximum stages of glaciation. Ice cover is reconstructed as extending to the continental shelf break. The Irish Ice Sheet became autonomous (i.e. separate from the British Ice Sheet) during deglaciation and fragmented into multiple ice masses, each decaying towards the west. Final sites of demise were likely over the mountains of Donegal, Leitrim and Connemara. Patterns of growth and decay of the ice sheet are shown to be radically different: asynchronous and asymmetric in both spatial and temporal domains. We implicate collapse of the ice stream system in the North Channel – Irish Sea Basin in driving such asymmetry, since rapid collapse would sever the ties between the British and Irish Ice Sheets and drive flow configuration changes in response. Enhanced calving and flow acceleration in response to rising relative sea level is speculated to have undermined the integrity of the ice stream system, precipitating its collapse and driving the reconstructed pattern of ice sheet evolution.  相似文献   

15.
Because of its well-developed ice-marginal zones, SW Sweden is an important reference area for the study of deglaciation, chronology and palaeoclimate 13,500-10,000 B.P. The ice-marginal zones are described and defined. Earlier research and opinions concerning the deglaciation are summarized. Based on radiocarbon dates from shells, vertebrate bones and limnic sediments, a revised deglaciation chronology is presented. This chronology is supported by biostratigraphic transects of time-space diagrams. The radiocarbon and varve chronologies are compared. Some ice-marginal zones are supposed to be 400 to 900 years older than expected from the varve chronology. The deglaciation chronology is correlated within the southern margin of the Scandinavian inland ice. Various consequences for the interpretation of glacial dynamics, shoreline displacement, and the biological environment are mentioned.  相似文献   

16.
Reitsma (A response to ‘simplifying complexity’. Geoforum 34 (1) (2003) 13), in response to the article ‘Simplifying Complexity’ (Manson, S.M., Simplifying complexity: a review of complexity theory. Geoforum 32 (3) (2001) 405), highlights a number of interesting and important aspects of complexity theory that invite further discussion. In particular, there are three areas of complexity research that are open to deeper exploration: (1) the width and breadth of ‘complexity’ defined as a scientific endeavor; (2) the role of theory relative to practice and their relationship with pattern and process in complex systems; and (3) the need for greater discussion and exploration in order to define the conceptual bounds of complexity theory.  相似文献   

17.
The tidewater glacier complex of Kongsvegen/Kronebreen, at the head of Kongsfjorden in north-west Spitsbergen, has advanced rapidly several times since its Neoglacial maximum. Two such advances, 1869 and 1948, are well constrained in time and space and are widely interpreted as glacier surges. During the 1869 advance an ice-dammed lake formed on the western side of Ossian Sarsfjellet. This ice-dammed lake is associated with a thrust moraine complex. Four lake levels are identified, two of which are associated with rock-cut shorelines implying a degree of lake stability. The history of this lake, the nature of the ice dam and its relationship to the thrust moraine complex are discussed. The lake history spanning 28 to 35 years is used to assess the ice-marginal dynamics of the Kongsvegen/Kronebreen glacier. It is concluded that, contrary to previous suggestions, the rapid advance of this tidewater glacier may simply be an example of a non-climatic ice-marginal fluctuation, of the type common to tidewater glacier, as opposed to a glacier surge. A second ice-dammed lake, to the east of Ossian Sarsfjellet, formed sometime after 1869 as the ice retreated, and still exists today. This largely supraglacial lake is associated with a very different geomorphological assemblage, which has a poor long-term preservation potential. The geomorphological characteristics of the two lakes on Ossian Sarsfjellet are compared and used to discuss the problems associated with the recognition of ice-dammed lakes within the Pleistocene record. On the basis of the evidence presented here, ice-dammed lakes may be more common during deglaciation than currently suggested.  相似文献   

18.
A model for sedimentation by surging glaciers is developed from analysis of the debris load, sedimentary processes, and proglacial stratigraphy observed at the Icelandic surging glacier, Eyjabakkajökull. Three aspects of the behavior of surging glaciers explain the distinctive landformsediment associations which they may produce: (a) sudden loading of proglacial sediments during rapid glacier advances results in the buildup of excess pore pressures, failure, and glacitectonic deformation of the overridden sediments; (b) reactivation of stagnant marginal ice by the downglacier propagation of surges is associated with large longitudinal compressive stresses. These induce intense folding and thrusting during which basal debris-rich ice is elevated into an englacial position in a narrow marginal zone. As the terminal area of the glacier stagnates between surges, debris from this ice is released supraglacially and deposited by meltout and sediment flows; (c) local variations in overburden pressure beneath stagnant, crevassed ice cause subglacial lodgement tills, which are sheared during surges, to flow into open crevasses and form “crevasse-fill” ridges.  相似文献   

19.
Middle Pleistocene preglacial and glacial sediments are described from Sidestrand in north Norfolk, UK. The sequence consists of estuarine and fluvial deposits of the Wroxham Crag and Cromer Forest-bed formations that were deposited by, and adjacent to, a major river system that drained northern and central England during the ‘Cromerian Complex’. These preglacial sediments were subsequently overridden and partially tectonised during a glaciation that deposited till of the Happisburgh Formation associated with the first lowland glaciation of eastern England. Detailed examination of the stratigraphy and structural evolution of the sequence reveals that glaciotectonic rafts of Sidestrand Unio Bed material, a regionally important biostratigraphic marker horizon, have been remobilised and partially mixed with other lithologies whilst being transported and emplaced further up-sequence by glaciotetconic processes. Caution should therefore be exercised when examining this deposit for biostratigraphic and palaeoenvironmental purposes to ensure that sampling is from in situ material.  相似文献   

20.
Approximately 35 parallel, discontinuous glacial ridges occur in an area of about 100 km2 in north‐central Wisconsin. The ridges are located between about 6 and 15 km north (formerly up‐ice) of the maximum extent of the Wisconsin Valley Lobe of the Laurentide Ice Sheet. The ridges are between 1 and 4 m high, up to 1 km long, and spaced between 30 and 80 m apart. They are typically asymmetrical with a steep proximal (ice‐contact) slope and gentle distal slope. The ridges are composed primarily of subglacial till on their proximal sides and glacial debris‐flow sediment on the distal sides. In some ridges the till and debris‐flow sediment are underlain by sorted sediment that was deformed in the former direction of ice flow. We interpret the ridges to be recessional moraines that formed as the Wisconsin Valley Lobe wasted back from its maximum extent, with each ridge having formed by a sequence of (1) pushing of sorted ice‐marginal sediment, (2) partial overriding by the glacier and deposition of subglacial till on the proximal side of the ridge, and (3) deposition of debris‐flow sediment on the distal side of the ridge after the frozen till at the crest of the ridge melted. The moraines are similar to annual recessional moraines described at several modern glaciers, especially the northern margin of Myrdalsjokull, Iceland. Thus, we believe the ridges probably formed as a result of minor winter advances of the ice margin during deglaciation. Based on this assumption, we calculate the net rate of ice‐surface lowering of the Wisconsin Valley Lobe during the period when the moraines formed. Various estimates of ice‐surface slope and rates of ice‐margin retreat yield a wide range of values for ice‐surface lowering (1.7–14.5 m/yr). Given that ablation rates must exceed those of ice‐surface lowering, this range of values suggests relatively high summer temperatures along the margin of the Wisconsin Valley Lobe when it began retreating from its maximum extent. In addition, the formation of annual moraines indicates that the glacier toe was thin, the ice surface was clean, and the ice margin experienced relatively cold winters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号