首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 598 毫秒
1.
This paper investigates the effect of introducing spatially varying rainfall fields to a hydrological model simulating runoff and erosion. Pairs of model simulations were run using either spatially uniform (i.e. spatially averaged) or spatially varying rainfall fields on a 500‐m grid. The hydrological model used was a simplified version of Thales which enabled runoff generation processes to be isolated from hillslope averaging processes. Both saturation excess and infiltration excess generation mechanisms were considered, as simplifications of actual hillslope processes. A 5‐year average recurrence interval synthetic rainfall event typical of temperate climates (Melbourne, Australia) was used. The erosion model was based on the WEPP interrill equation, modified to allow nonlinear terms relating the erosion rate to rainfall or runoff‐squared. The model results were extracted at different scales to investigate whether the effects of spatially varying rainfall were scale dependent. A series of statistical metrics were developed to assess the variability due to introducing the spatially varying rainfall field. At the catchment (approximately 150 km2) scale, it was found that particularly for saturation excess runoff, model predictions of runoff were insensitive to the spatial resolution of the rainfall data. Generally, erosion processes at smaller sub‐catchment scales, particularly when the sediment generation equation had non linearity, were more sensitive to spatial rainfall variability. Introducing runon infiltration reduced the total runoff and sediment yield at all scales, and this process was also most sensitive to the rainfall resolution. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
Few investigations link post‐fire changes to sediment sources and erosion processes with sediment yield response at the catchment scale. This linkage is essential if downstream impacts on sediment transport after fire are to be understood in the context of fire effects across different forest environments. In this study, we quantify changing source contributions to fine sediment (<63 µm) exported from a eucalypt forest catchment (136 ha) burnt by wildfire. The study catchment is one of a pair of research catchments located in the East Kiewa River valley in southeastern Australia that have been the subject of a research program investigating wildfire effects on runoff, erosion, and catchment sediment/nutrient exports. This previous research provided the opportunity to couple insights gained from a range of measurement techniques with the application of fallout radionuclides 137Cs and 210Pbex to trace sediment sources. It was found that hillslope surface erosion dominated exports throughout the 3·5‐year post‐fire measurement period. During this time there was a pronounced decline in the proportional surface contribution from close to 100% in the first six months to 58% in the fourth year after fire. Over the study period, hillslope surface sources accounted for 93% of the fine sediment yield from the burnt catchment. The largest decline in the hillslope contribution occurred between the first and second years after fire, which corresponded with the previously reported large decline in sediment yield, breakdown of water repellency in burnt soils, substantial reduction in hillslope erodibility, and rapid surface vegetation recovery. Coupling the information on sediment sources with hillslope process measurements indicated that only a small proportion of slopes contributed sediment to the catchment outlet, with material derived from near‐channel areas dominating the post‐fire catchment sediment yield response. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Post‐logging changes in catchment sediment yield have traditionally been attributed to increases in hillslope erosion and delivery rates as a result of forest harvesting activities. Linking hillslope erosion to catchment yield in forestry environments remains difficult, however, primarily because of the scarcity of data on the nature of hillslope sediment storage and delivery processes. A large rainfall simulator (350 m2) was used to apply rainstorms to a logged hillslope containing a snig track (skid trail) and a general logging or harvesting area (GHA) on 10 forest compartments in south‐eastern Australia. The experiments confirmed that the compacted, disturbed surfaces, such as roads and tracks, are the dominant sources of sediment in forestry areas. Sediment transport rates were limited by available sediment supply on both the snig track and the GHA, introducing important implications for the modelling of these surfaces using sediment transport capacity theories. Sediment delivery from the snig track to the adjacent GHA, via a cross‐bank (drainage diversion), was strongly influenced by the percentage fine fraction in the eroded sediment. Preferential deposition of coarse aggregates was measured at erosion control structures and on the adjacent GHA. Over 50% of fine‐grained material were deposited on the hillslope over a relatively short, flow path length of <5 m, highlighting the effectiveness of runoff diversion as a practice in reducing sediment flux. The transfer of water and sediment from disturbed to less disturbed parts of the landscape, and the associated potential for sediment storage, needs to be considered as part of any catchment impact assessment. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

4.
The Amazon basin covers an area of roughly 7 × 106 km2 and encompasses diverse soil – landscape types with potentially differing hydrological behaviour. This study was conducted in the Ultisol landscape of the western Amazon basin in Peru. Processes of stormflow generation were investigated on an event basis in a first‐order rainforest catchment to establish a causal link between soil physical and precipitation characteristics, hillslope flowpaths and stormflow hydrograph attributes. A sharp decrease in soil hydraulic conductivity with depth and high rainfall intensity and frequency favour rapid near‐surface flowpaths, mainly in the form of saturation‐excess overland flow and return flow. The latter results in an almost random occurrence of overland flow, with no obvious topographic control. Hillslope flowpaths do not vary much with respect to the hydrograph attributes time of rise, response time, lag time and centroid lag time. They have the same response time as streamflow, but a somewhat lower time of rise and significantly shorter lag times. The recession constant for hillslope hydrographs is about 10 min, in contrast to the streamflow recession constants of 28, 75 and 149 min. Stormflow generation in this Ultisol rainforest catchment differs strongly from that reported for Oxisol rainforest catchments. These two soilscapes may define a spectrum of possible catchment hydrological behaviour in the Amazon basin. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

5.
Drainage network extension in semi‐arid rangelands has contributed to a large increase in the amount of fine sediment delivered to the coastal lagoon of the Great Barrier Reef, but gully erosion rates and dynamics are poorly understood. This study monitored annual erosion, deposition and vegetation cover in six gullies for 13 years, in granite‐derived soils of the tropical Burdekin River basin. We also monitored a further 11 gullies in three nearby catchments for 4 years to investigate the effects of grazing intensity. Under livestock grazing, the long‐term fine sediment yield from the planform area of gullies was 6.1 t ha‐1 yr‐1. This was 7.3 times the catchment sediment yield, indicating that gullies were erosion hotspots within the catchment. It was estimated that gully erosion supplied between 29 and 44% of catchment sediment yield from 4.5% of catchment area, of which 85% was derived from gully wall erosion. Under long‐term livestock exclusion gully sediment yields were 77% lower than those of grazed gullies due to smaller gully extent, and lower erosion rates especially on gully walls. Gully wall erosion will continue to be a major landscape sediment source that is sensitive to grazing pressure, long after gully length and depth have stabilised. Wall erosion was generally lower at higher levels of wall vegetation cover, suggesting that yield could be reduced by increasing cover. Annual variations in gully head erosion and net sediment yield were strongly dependent on annual rainfall and runoff, suggesting that sediment yield would also be reduced if surface runoff could be reduced. Deposition occurred in the downstream valley segments of most gullies. This study concludes that reducing livestock grazing pressure within and around gullies in hillslope drainage lines is a primary method of gully erosion control, which could deliver substantial reductions in sediment yield. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

6.
Decoupling the impacts of climate and tectonics on hillslope erosion rates is a challenging problem. Hillslope erosion rates are well known to respond to changes in hillslope boundary conditions (e.g. channel incision rates) through their dependence on soil thickness, and precipitation is an important control on soil formation. Surprisingly though, compilations of hillslope denudation rates suggest little precipitation sensitivity. To isolate the effects of precipitation and boundary condition, we measured rates of soil production from bedrock and described soils on hillslopes along a semi‐arid to hyperarid precipitation gradient in northern Chile. In each climate zone, hillslopes with contrasting boundary conditions (actively incising channels versus non‐eroding landforms) were studied. Channel incision rates, which ultimately drive hillslope erosion, varied with precipitation rather than tectonic setting throughout the study area. These precipitation‐dependent incision rates are mirrored on the hillslopes, where erosion shifts from relatively fast and biologically‐driven to extremely slow and salt‐driven as precipitation decreases. Contrary to studies in humid regions, bedrock erosion rates increase with precipitation following a power law, from ~1 m Ma?1 in the hyperarid region to ~40 m Ma?1 in the semi‐arid region. The effect of boundary condition on soil thickness was observed in all climate zones (thicker soils on hillslopes with stable boundaries compared to hillslopes bounded by active channels), but the difference in bedrock erosion rates between the hillslopes within a climate region (slower erosion rates on hillslopes with stable boundaries) decreased as precipitation decreased. The biotic‐abiotic threshold also marks the precipitation rate below which bedrock erosion rates are no longer a function of soil thickness. Our work shows that hillslope processes become sensitive to precipitation as life disappears and the ability of the landscape to respond to tectonics decreases. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
Different hydraulic gradients, especially due to seepage or drainage, at different locations on a hillslope profile may have a profound effect on the dominant erosion processes. A laboratory study was designed to simulate hillslope processes and quantify effects of surface hydraulic gradients on erosion for a Glynwood clay loam soil (fine, illitic, mesic Aquic Hapludalf). A 5 m long, 1·2 m wide soil pan was used at 5 and 10 per cent slopes with an external watering tube to vary the soil bed's hydrological conditions. Different combinations of slope steepness with seepage or drainage gradients were used to simulate the hydrologic conditions on a 5 m segment of a hillslope profile. Runoff samples were taken during rainfall-only and rainfall with added inflow. Results showed that, under drainage conditions, interrill processes dominated and rilling was limited. The surface contained scattered crescent-shaped pits after the run. Under seepage conditions, rilling processes dominated and the inflow introduced at the top of the soil pan further accelerated the headward erosion of the rills. Erosion rates increased by as much as 60 times under seepage conditions representative of the lower backslope when compared to drainage conditions that generally occur at the upper backslope. This indicated that rills and gullies on backslopes and footslopes may be catalysed or enhanced by seepage conditions rather than form from flow hydraulic shear stress alone. An understanding of spatial and temporal changes that affect both hillslope hydrology and erosional processes is needed to develop accurate process-based erosion prediction models. This knowledge may lead to different management practices on landscape positions where seepage occurs. © 1998 John Wiley & Sons, Ltd.  相似文献   

8.
The SIBERIA landscape evolution model was used to simulate the geomorphic development of the Tin Camp Creek natural catchment over geological time. Measured hydrology, erosion and geomorphic data were used to calibrate the SIBERIA model, which was then used to make independent predictions of the landform geomorphology of the study site. The catchment, located in the Northern Territory, Australia is relatively untouched by Europeans so the hydrological and erosion processes that shaped the area can be assumed to be the same today as they have been in the past, subject to the caveats regarding long‐term climate fluctuation. A qualitative, or visual comparison between the natural and simulated catchments indicates that SIBERIA can match hillslope length and hillslope profile of the natural catchments. A comparison of geomorphic and hydrological statistics such as the hypsometric curve, width function, cumulative area distribution and area–slope relationship indicates that SIBERIA can model the geomorphology of the selected Tin Camp Creek catchments. Copyright 2002 © Environmental Research Institute of the Supervising Scientist, Commonwealth of Australia.  相似文献   

9.
After wildfire, hillslope and channel erosion produce large amounts of sediment and can contribute significantly to long-term erosion rates. However, pre-erosion high-resolution topographic data (e.g. lidar) is often not available and determining specific contributions from post-fire hillslope and channel erosion is challenging. The impact of post-fire erosion on landscape evolution is demonstrated with Structure from Motion (SfM) Multi-View Stereo (MVS) photogrammetry in a 1 km2 Idaho Batholith catchment burned in the 2016 Pioneer Fire. We use SfM-MVS to quantify post-fire erosion without detailed pre-erosion topography and hillslope transects to improve estimates of rill erosion at adequate spatial scales. Widespread rilling and channel erosion produced a runoff-generated debris-flow following modest precipitation in October 2016. We implemented unmanned aerial vehicle (UAV)-based SfM-MVS to derive a 5 cm resolution digital elevation model (DEM) of the channel scoured by debris-flow. In the absence of cm-resolution pre-erosion topography, a synthetic surface was defined by the debris-flow scour's geomorphic signature and we used a DEM of Difference (DoD) to map and quantify channel erosion. We found 3467 ± 422 m3 was eroded by debris-flow scour. Rill dimensions along hillslope transects and Monte Carlo simulation show rilling eroded ~1100 m3 of sediment and define a volume uncertainty of 29%. The total eroded volume (4600 ± 740 m3) we measured in our study catchment is partitioned into 75% channel erosion and 25% rill erosion, reinforcing the importance of catchment size on erosion process-dominance. The deposit volume from the 2016 event was 5700 ± 1140 m3, indicating ~60% contribution from post-fire channel erosion. Dating of charcoal fragments preserved in stratigraphy at the catchment outlet, and reconstructions of prior deposit volumes provide a record of Holocene fire-related debris-flows at this site; results suggest that episodic wildfire-driven erosion (~6 mm/year) dominate millennial-scale erosion (~5 mm/Ka) at this site. © 2019 John Wiley & Sons, Ltd. © 2019 John Wiley & Sons, Ltd.  相似文献   

10.
11.
Fine grained (80 µm) magnetite was introduced onto a semi‐arid grassland hillslope in 1992, as part of a set of rainfall‐simulation experiments. Using measurements of magnetic susceptibility, the median distance travelled by these magnetite grains during subsequent natural runoff events in the 16‐year period up to 2008 was estimated. Coupling this estimate to direct measurements of sediment flux obtained during the rainfall‐simulation experiments has enabled estimation of the erosion rate over this period. The estimated average erosion rate of between 2·61 × 10?2 and 4·36 × 10?2 kg m?1 year?1, is equivalent to a rate of ground lowering between 0·020 and 0·033 mm year?1. This estimate is consistent with (in the sense of being less than) an estimate of total sediment detachment over the same period. The rate of erosion measured using this travel‐distance approach is an order of magnitude less that obtained from a study based on 137Cs in a nearby catchment, and compatible with the longevity of continents. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
In August 2009, the typhoon Morakot, characterized by a cumulative rainfall up to 2884 mm in about three days, triggered thousands of landslides in Taiwan. The availability of LiDAR surveys before (2005) and after (2010) this event offers a unique opportunity to investigate the topographic signatures of a major typhoon. The analysis considers the comparison of slope–area relationships derived by LiDAR digital terrain models (DTMs). This approach has been successfully used to distinguish hillslope from channelized processes, as a basis to develop landscape evolution models and theories, and understand the linkages between landscape morphology and tectonics, climate, and geology. We considered six catchments affected by a different degree of erosion: three affected by shallow and deep‐seated landslides, and three not affected by erosion. For each of these catchments, 2 m DTMs were derived from LiDAR data. The scaling regimes of local slope versus drainage area suggested that for the catchments affected by landslides: (i) the hillslope‐to‐valley transitions morphology, for a given value of drainage area, is shifted towards higher value of slopes, thus indicating a likely migration of the channelized processes and erosion toward the catchment boundary (the catchment head becomes steeper because of erosion); (ii) the topographic gradient along valley profiles tends to decrease progressively (the valley profile becomes gentler because of sediment deposition after the typhoon). The catchments without any landslides present a statistically indistinguishable slope–area scaling regime. These results are interesting since for the first time, using multi‐temporal high‐resolution topography derived by LiDAR, we demonstrated that a single climate event is able to cause significant major geomorphic changes on the landscape, detectable using slope–area scaling analysis. This provides new insights about landscape evolution under major climate forcing. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
Wildfires raise concerns over the risk of accelerated erosion as a result of increased overland flow and decreased protection of the soil by litter and ground vegetation cover. We investigated these issues following the 1994 fires that burnt large areas of native Eucalyptus forest surrounding Sydney, Australia. A review of previous studies identifies the fire and rainfall conditions that are likely to lead to increased runoff and accelerated erosion. We then compare runoff and erosion between burnt and unburnt sites for 10 months after the 1994 fires. At the scale of hillslope plots, the 1994 fire increased runoff by enhancing soil hydrophobicity, and greatly increased sediment transport, mainly through the reduced ground cover, which lowered substantially the threshold for initial sediment movement. However, both runoff and sediment transport were very localized, resulting in little runoff or sediment yield after the fire at the hillslope catchment scale. We identify that after moderately intense fires, rainfall events of greater than one year recurrence interval are required to generate substantial runoff and sediment yield. Such events did not occur during the monitoring period. Past work shows that mild burns have little effect on erosion, and it is only after the most extreme fires that erosion is produced from small, frequent storms. © 1998 John Wiley & Sons, Ltd.  相似文献   

14.
Information on the main drivers of subsurface flow generation on hillslopes of alpine headwater catchments is still missing. Therefore, the dominant factors controlling the water table response to precipitation at the hillslope scale in the alpine Bridge Creek Catchment, Northern Italy, were investigated. Two steep hillslopes of similar size, soil properties and vegetation cover but contrasting topography were instrumented with 24 piezometric wells. Sixty‐three (63) rainfall‐runoff events were selected over three years in the snow‐free months to analyse the influence of rainfall depth, antecedent moisture conditions, hillslope topographic characteristics and soil depth on shallow water table dynamics. Piezometric response, expressed as percentage of well activation and water peak magnitude, was strongly correlated with soil moisture status, as described by an index combining antecedent soil moisture and rainfall depth. Hillslope topography was found to be a dominant control only for the convex‐divergent hillslope and during wet conditions. Timing of water table response depended primarily on soil depth and topographic position, with piezometric peak response occurring later and showing a greater temporal variability at the hillslope bottom, characterized by thicker soil. The relationship between mean hillslope water table level and standard deviation for all wells reflected the timing of the water table response at the different locations along the hillslopes. The outcomes of this research contribute to a better understanding of the controls on piezometric response at the hillslope scale in steep terrain and its role on the hydrological functioning of the study catchment and of other sites with similar physiographic characteristics. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
The processes of hillslope runoff and erosion are typically represented at coarse spatial resolution in catchment‐scale models due to computational limitations. Such representation typically fails to incorporate the important effects of topographic heterogeneity on runoff generation, overland flow, and soil erosion. These limitations currently undermine the application of distributed catchment models to understand the importance of thresholds and connectivity on hillslope and catchment‐scale runoff and erosion, particularly in semi‐arid environments. This paper presents a method for incorporating high‐resolution topographic data to improve sub‐grid scale parameterization of hillslope overland flow and erosion models. Results derived from simulations conducted using a kinematic wave overland flow model at 0.5 m spatial resolution are used to parameterize the depth–discharge relationship in the overland flow model when applied at 16 m resolution. The high‐resolution simulations are also used to derive a more realistic parameterization of excess flow shear stress for use in the 16 m resolution erosion model. Incorporating the sub‐grid scale parameterization in the coarse‐resolution model (16 m) leads to improved predictions of overland flow and erosion when evaluated using results derived from high‐resolution (0.5 m) model simulations. The improvement in performance is observed for a range of event magnitudes and is most notable for erosion estimates due to the non‐linear dependency between the rates of erosion and overland flow. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
The variability of hillslope form and function is examined experimentally using a simple model catchment in which most landscape development parameters are either known or controlled. It is demonstrated that there is considerable variability in sediment output from similar catchments, subjected to the same hydrological processes, and for which the initial hillslope profiles are the same. The results demonstrate that, in the case of catchments with a linear initial hillslope profile, the sediment output is initially high but reduces through time, whereas for a concave initial profile the sediment output was smaller and relatively constant. Concave hillslope profiles also displayed reduced sediment output when compared with linear slopes with the same overall slope. Using this experimental model catchment data, the SIBERIA landscape evolution model was tested for its ability to predict temporal sediment transport. When calibrated for the rainfall and erodible material, SIBERIA is able to simulate mean temporal sediment output for the experimental catchment over a range of hillslope profiles and rainfall intensities. SIBERIA is also able to match the hillslope profile of the experimental catchments. The results of the study provide confidence in the ability of SIBERIA to predict temporal sediment output. The experimental and modelling data also demonstrate that, even with all geomorphic and hydrological variables being known and/or controlled, there is still a need for long‐term stream gauging to obtain reliable assessments of field catchment hydrology and sediment transport. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
Landscape evolution models provide a way to determine erosion rates and landscape stability over times scales from tens to thousands of years. The SIBERIA and CAESAR landscape evolution models both have the capability to simulate catchment–wide erosion and deposition over these time scales. They are both cellular, operate over a digital elevation model of the landscape, and represent fluvial and slope processes. However, they were initially developed to solve research questions at different time and space scales and subsequently the perspective, detail and process representation vary considerably between the models. Notably, CAESAR simulates individual events with a greater emphasis on fluvial processes whereas SIBERIA averages erosion rates across annual time scales. This paper describes how both models are applied to Tin Camp Creek, Northern Territory, Australia, where soil erosion rates have been closely monitored over the last 10 years. Results simulating 10 000 years of erosion are similar, yet also pick up subtle differences that indicate the relative strengths and weaknesses of the two models. The results from both the SIBERIA and CAESAR models compare well with independent field data determined for the site over different time scales. Representative hillslope cross‐sections are very similar between the models. Geomorphologically there was little difference between the modelled catchments after 1000 years but significant differences were revealed at longer simulation times. Importantly, both models show that they are sensitive to input parameters and that hydrology and erosion parameter derivation has long‐term implications for sediment transport prediction. Therefore selection of input parameters is critical. This study also provides a good example of how different models may be better suited to different applications or research questions. Copyright © 2010 John Wiley & Sons, Ltd and Commonwealth of Australia  相似文献   

18.
European settlement of the Poverty Bay Region resulted in deforestation and conversion of > 90% of the landscape to pastureland. The resulting loss of vegetation triggered a rapid increase in hillslope erosion as widespread landslide complexes and gully systems developed on weak lithologic units in the Waipaoa Basin. To quantify the rate and volume of historic hillslope degradation, we used a 1956–2010 sequence of aerial photographs for a ~16 km2 catchment to map temporal changes in the spatial extent of active landslides. Then we created a ‘turf index’ based on the extent and style of pastoral ground disruption, which correlates with downslope velocity. Based on the movement of trees and other features, we assigned average velocities to the turf classes as follows: (1) minimal disrupted ground: 0.6 m/yr, (2) a mix of disrupted ground and intact blocks: 3.4 m/yr, and (3) no intact blocks or vegetation: > 6 m/yr. We then calculated the average annual sediment flux using these turf‐derived velocities, the width of the landslide‐channel intersection, and an average toe depth of 4.4 ± 1.3 m (mean ± standard deviation [SD]) from 37 field measurements. The resulting catchment averaged erosion rates are (mean ± SD): 29.9 ± 12.9 mm/yr (1956), 28.8 ± 13.7 mm/yr (1969), 13.4 ± 4.9 mm/yr (1979), 17.0 ± 6.2 mm/yr (1988), and 9.9 ± 3.6 mm/yr (2010). Compared with long‐term (post‐18 ka) erosion rates (1.6 mm/yr) and the long‐term uplift rate (~1 mm/yr) for this site, the 50‐year anthropogenically‐driven rate is an order of magnitude larger (~20 mm/yr). Previously, we measured an increase in erosion over the past 3.4 kyr (2.2 mm/yr), and here, we demonstrate this increase could be primarily due to human land‐use change – showing that a century of rapid erosion superimposed on the background geologic rate can profoundly skew the interpretation of erosion rates. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
We investigated the role of different hillslope units with different topographic characteristics on runoff generation processes based on field observations at two types of hillslopes (0·1 ha): a valley‐head (a convergent hillslope) and a side slope (a planar hillslope), as well as at three small catchments having two types of slopes with different drainage areas ranging from 1·9 to 49·7 ha in the Tanakami Mountains, central Japan. We found that the contribution of the hillslope unit type to small catchment runoff varied with the magnitude of rainfall. When the total amount of rainfall for a single storm event was < 35 mm, runoff in the small catchment was predominantly generated from the side slope. As the amount of rainfall increased (>35 mm), the valley‐head also began to contribute to the catchment runoff, adding to runoff from the side slope. Although the direct runoff from the valley‐head was greater than that from the side slope, the contribution from the side slope was quantitatively greater than that from the valley‐head due to the proportionally larger area occupied by the side slope in the small catchment. The storm runoff responses of the small catchments reflected the change in the runoff components of each hillslope unit as the amount of rainfall increased and rainfall patterns changed. However, similar runoff responses were found for the small catchments with different areas. The similarity of the runoff responses is attributable to overlay effects of different hillslope units and the similar composition ratios of the valley‐head and side slope in the catchments. This study suggests that the relative roles of the valley‐head and side slope are important in runoff generation and solute transport as the catchment size increases from a hillslope/headwater to a small catchment. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
On hillslopes and agricultural fields, discrete areas of intense, localized soil erosion commonly take place in the form of migrating headcuts. These erosional features significantly increase soil loss and landscape degradation, yet the unsteady, transient, and migratory habits of headcuts complicate their phenomenological and erosional characterization. Here a unique experimental facility was constructed to examine actively migrating headcuts typical of upland concentrated flows. Essential components of the facility include a deep soil cavity with external drainage, rainfall simulator, capacity for overland flow, and a video recording technique for data collection. Results from these experiments show that: (1) after a short period of adjustment, headcut migration attained a steady-state condition, where the rate of migration, scour hole geometry, and sediment discharge remain constant with time; (2) boundary conditions of higher rates of overland flow, steeper bed slopes, and larger initial headcut heights produced systematically larger scour holes with higher rates of soil erosion; and (3) during migration, the turbulent flow structure within the scour hole remained unchanged, consisting of an overfall nappe at the brink transitioning into a reattached wall jet with two recirculation eddies within the plunge pool. The systematic behavior of headcut development and migration enabled the application of modified jet impingement theory to predict with good success the characteristics of the impinging jet, the depth of maximum scour, the rate of headcut migration, and the rate of sediment erosion. These laboratory data and the analytical formulation can be used in conjunction with soil erosion prediction technology to improve the management of agricultural areas impacted by headcut development and ephemeral gully erosion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号