首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 529 毫秒
1.
A fundamental tool in seismic risk assessment of transportation systems is the fragility curve, which describes the probability that a structure will reach or exceed a certain damage state for a given ground motion intensity. Fragility curves are usually represented by two‐parameter (median and log‐standard deviation) cumulative lognormal distributions. In this paper, a numerical approach, in the spirit of the IDA, is applied for the development of fragility curves for highways and railways on embankments and in cuts due to seismic shaking. The response of the geo‐construction to increasing levels of seismic intensity is evaluated using a 2D nonlinear finite element model, with an elasto‐plastic criterion to simulate the soil behavior. A calibration procedure is followed in order to account for the dependency of both the stiffness and the damping to the soil strain level. The effect of soil conditions and ground motion characteristics on the response of the embankment and cut is taken into account considering different typical soil profiles and seismic input motions. This study will provide input for the assessment of the vulnerability of the road/railway network regarding the performance of the embankments and cuts; therefore, the level of damage is described in terms of the permanent ground displacement in these structures. The fragility curves are estimated based on the evolution of damage with increasing earthquake intensity, which is described by PGA. The proposed approach allows the evaluation of new fragility curves considering the distinctive features of the element's geometry, the input motion, and the soil properties as well as the associated uncertainties. A relationship between the computed permanent ground displacement on the surface of the embankment and the PGA in the free field is also suggested based on the results of the numerical analyses. Finally, the proposed fragility curves are compared with existing empirical data and the limitations of their applicability are outlined. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Fragility curves are found to be useful tools for predicting the extent of probable damage. They show the probability of highway structure damage as a function of strong motion parameters, and they allow the estimation of a level of damage probability for a known ground motion index. In this study, an analytical approach was adopted to develop the fragility curves for highway bridges based on numerical simulation. Four typical RC bridge piers and two RC bridge structures were considered, of which one was a non‐isolated system and the other was an isolated system, and they were designed according to the seismic design code in Japan. From a total of 250 strong motion records, selected from Japan, the United States, and Taiwan, non‐linear time history analyses were performed, and the damage indices for the bridge structures were obtained. Using the damage indices and ground motion parameters, fragility curves for the four bridge piers and the two bridge structures were constructed assuming a lognormal distribution. It was found that there was a significant effect on the fragility curves due to the variation of structural parameters. The relationship between the fragility curve parameters and the over‐strength ratio of the structures was also obtained by performing a linear regression analysis. It was observed that the fragility curve parameters showed a strong correlation with the over‐strength ratio of the structures. Based on the observed correlation between the fragility curve parameters and the over‐strength ratio of the structures, a simplified method was developed to construct the fragility curves for highway bridges using 30 non‐isolated bridge models. The simplified method may be a very useful tool to construct the fragility curves for non‐isolated highway bridges in Japan, which fall within the same group and have similar characteristics. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

3.
While many cases of structural damage in past earthquakes have been attributed to strong vertical ground shaking, our understanding of vertical seismic load effects and their influence on collapse mechanisms of buildings is limited. This study quantifies ground motion parameters that are capable of predicting trends in building collapse because of vertical shaking, identifies the types of buildings that are most likely affected by strong vertical ground motions, and investigates the relationship between element level responses and structural collapse under multi‐directional shaking. To do so, two sets of incremental dynamic analyses (IDA) are run on five nonlinear building models of varying height, geometry, and design era. The first IDA is run using the horizontal component alone; the second IDA applies the vertical and horizontal motions simultaneously. When ground motion parameters are considered independently, acceleration‐based measures of the vertical shaking best predict trends in building collapse associated with vertical shaking. When multiple parameters are considered, Housner intensity (SI), computed as a ratio between vertical and horizontal components of a record (SIV/SIH), predicts the significance of vertical shaking for collapse. The building with extensive structural cantilevered members is the most influenced by vertical ground shaking, but all frame structures (with either flexural and shear critical columns) are impacted. In addition, the load effect from vertical ground motions is found to be significantly larger than the nominal value used in US building design. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
Fragility curves constitute an emerging tool for the seismic risk assessment of all constructions at risk. They describe the probability of a structure being damaged beyond a specific damage state for various levels of ground shaking. They are usually represented as two-parameter (median and log-standard deviation) cumulative lognormal distributions. In this paper a numerical approach is proposed for the construction of fragility curves for geotechnical constructions. The methodology is applied to cantilever bridge abutments on surface foundation often used in road and railway networks. The response of the abutment to increasing levels of seismic intensity is evaluated using a 2D nonlinear FE model, with an elasto-plastic criterion to simulate the soil behavior. A calibration procedure is followed in order to account for the dependency of both the stiffness and the damping on the soil strain level. The effect of soil conditions and ground motion characteristics on the global soil and structural response is taken into account considering different typical soil profiles and seismic input motions. The objective is to assess the vulnerability of the road network as regards the performance of the bridge abutments; therefore, the level of damage, is described in terms of the range of settlement that is observed on the backfill. The effect of backfill material to the overall response of the abutment wall is also examined. The fragility curves are estimated based on the evolution of damage with increasing earthquake intensity. The proposed approach allows the evaluation of new fragility curves considering the distinctive features of the structure geometry, the input motion and the soil properties as well as the associated uncertainties. The proposed fragility curves are verified based on observed damage during the 2007 Niigata-Chuetsu Oki earthquake.  相似文献   

5.
Fragility curves express the probability of structural damage due to earthquakes as a function of ground motion indices, e.g., PGA, PGV. Based on the actual damage data of highway bridges from the 1995 Hyogoken‐Nanbu (Kobe) earthquake, a set of empirical fragility curves was constructed. However, the type of structure, structural performance (static and dynamic) and variation of input ground motion were not considered to construct the empirical fragility curves. In this study, an analytical approach was adopted to construct fragility curves for highway bridge piers of specific bridges. A typical bridge structure was considered and its piers were designed according to the seismic design codes in Japan. Using the strong motion records from Japan and the United States, non‐linear dynamic response analyses were performed, and the damage indices for the bridge piers were obtained. Using the damage indices and ground motion indices, fragility curves for the bridge piers were constructed assuming a lognormal distribution. The analytical fragility curves were compared with the empirical ones. The proposed approach may be used in constructing the fragility curves for highway bridge structures. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

6.
This paper evaluates the seismic vulnerability of different classes of typical bridges in California when subjected to seismic shaking or liquefaction-induced lateral spreading. The detailed structural configurations in terms of superstructure type, connection, continuity at support and foundation type, etc. render different damage resistant capability. Six classes of bridges are established based on their anticipated failure mechanisms under earthquake shaking. The numerical models that are capable of simulating the complex soil-structure interaction effects, nonlinear behavior of columns and connections are developed for each bridge class. The dynamic responses are obtained using nonlinear time history analyses for a suite of 250 earthquake motions with increasing intensity. An equivalent static analysis procedure is also implemented to evaluate the vulnerability of the bridges when subjected to liquefaction-induced lateral spreading. Fragility functions for each bridge class are derived and compared for both seismic shaking (based on nonlinear dynamic analyses) and lateral spreading (based on equivalent static analyses) for different performance states. The study finds that the fragility functions due to either ground shaking or lateral spreading show significant correlation with the structural characterizations, but differences emerge for ground shaking and lateral spreading conditions. Structural properties that will mostly affect the bridges' damage resistant capacity are also identified.  相似文献   

7.
The seismic fragility of a system is the probability that the system enters a damage state under seismic ground motions with specified characteristics. Plots of the seismic fragilities with respect to scalar ground motion intensity measures are called fragility curves. Recent studies show that fragility curves may not be satisfactory measures for structural seismic performance, since scalar intensity measures cannot comprehensively characterize site seismicity. The limitations of traditional seismic intensity measures, e.g., peak ground acceleration or pseudo-spectral acceleration, are shown and discussed in detail. A bivariate vector with coordinates moment magnitude m and source-to-site distance r is proposed as an alternative seismic intensity measure. Implicitly, fragility surfaces in the (mr)-space could be used as graphical representations of seismic fragility. Unlike fragility curves, which are functions of scalar intensity measures, fragility surfaces are characterized by two earthquake-hazard parameters, (mr). The calculation of fragility surfaces may be computationally expensive for complex systems. Thus, as solutions to this issue, a bi-variate log-normal parametric model and an efficient calculation method, based on stochastic-reduced-order models, for fragility surfaces are proposed.  相似文献   

8.
The 1995 Kobe earthquake caused unprecedented damage to buildings and civil infrastructures in the city of Kobe and its surrounding areas. In order to evaluate the structural damage in this area due to the earthquake, it is important to estimate the distribution of earthquake ground motion. However, since the number of strong ground motion records is not enough in the heavily damaged areas, it is necessary to estimate the distribution using other data sources. In this paper, the fragility curves for low‐rise residential buildings were constructed using the recorded motions and the building damage data from the intensive field survey by the AIJ and CPIJ group. The fragility curves obtained were then employed to estimate the strong motion distribution in the district level for Kobe and the surrounding areas during the earthquake. The results may be useful to investigate the various damages caused by the earthquake. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

9.
以某典型的20层钢筋混凝土框架剪力墙结构作为研究对象,研究基于性能的RC框架剪力墙结构易损性分析方法。首先选择合适的地震动记录,以0.2g为步长进行调幅后,建立300个结构-地震动样本空间,并确定结构损伤指标和性能参数;然后应用增量动力分析方法计算结构的地震动力响应,选择基本周期加速度反应谱为地震动参数,以研究结构反应的不确定性,并深入分析地震动参数与结构地震需求参数的关系;在此基础上,建立该结构基于加速度反应谱的易损性曲线进行结构易损性分析与评估。结果表明:随着地震动强度的增大,IDA曲线由单调增加变为非单调增加,分位曲线(16%,50%和84%)可以准确地衡量结构的性能;框剪结构在地震作用下的抗震性能表现良好,随着地震强度的增长,各性能超越概率大小的增长速度是不同的。  相似文献   

10.
A catastrophic M w9.0 earthquake and subsequent giant tsunami struck the Tōhoku and Kanto regions of Japan on 11th March 2011, causing tremendous casualties, massive damage to structures and infrastructure, and huge economic loss. This event has revealed weakness and vulnerability of urban cities and modern society in Japan, which were thought to be one of the most earthquake-prepared nations in the world. Nevertheless, recorded ground motion data from this event offer invaluable information and opportunity; their unique features include very strong short-period spectral content, long duration, and effects due to local asperities as well as direction of rupture/wave propagation. Aiming at gaining useful experience from this tragic event, Earthquake Engineering Field Investigation Team (EEFIT) organised and dispatched a team to the Tōhoku region of Japan. During the EEFIT mission, ground shaking damage surveys were conducted in Sendai, Shirakawa, and Sukagawa, where the Japan Meteorological Agency intensity of 6+ was observed and instrumentally recorded ground motion data were available. The damage survey results identify the key factors for severe shaking damage, such as insufficient lateral reinforcement and detailing in structural columns from structural capacity viewpoint and rich spectral content of ground shaking in the intermediate vibration period range from seismic demand viewpoint. Importantly, inclusion of several ground motion parameters, such as nonlinear structural response, in shaking damage surveys, can improve the correlation of observed ground motion with shaking damage and therefore enhance existing indicators of potential damage.  相似文献   

11.
The scope of this study is to investigate the effect of the direction of seismic excitation on the fragility of an already constructed, 99‐m‐long, three‐span highway overpass. First, the investigation is performed at a component level, quantifying the sensitivity of local damage modes of individual bridge components (namely, piers, bearings, abutments, and footings) to the direction of earthquake excitation. The global vulnerability at the system level is then assessed for a given angle of incidence of the earthquake ground motion to provide a single‐angle, multi‐damage probabilistic estimate of the bridge overall performance. A multi‐angle, multi‐damage, vulnerability assessment methodology is then followed, assuming uniform distribution for the angle of incidence of seismic waves with respect to the bridge axis. The above three levels of investigation highlight that the directivity of ground motion excitation may have a significant impact on the fragility of the individual bridge components, which shall not be a priori neglected. Most importantly, depending on the assumptions made for the component to the system level transition, this local sensitivity is often suppressed. It may be therefore necessary, based on the ultimate purpose of the vulnerability or the life cycle analysis, to obtain a comprehensive insight on the multiple damage potential of all individual structural and foundation components under multi‐angle excitation, to quantify the statistical correlation among the distinct damage modes and to identify the components that are both most critical and sensitive to the direction of ground motion and carefully define their limit states which control the predicted bridge fragility. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
以美国西部地区某斜交公路连续刚构桥为研究对象,研究其不等高墩易损性差异以及斜交角的改变对桥墩地震易损性的影响。考虑桥梁结构参数和地震动的不确定性,选取100条地震动,沿纵桥向输入,生成"结构-地震动"样本库,以地震动峰值加速度(PGA)为强度指标(IM),利用OpenSees软件对结构进行非线性时程分析得到桥墩动力响应,而后以桥墩曲率延性比衡量桥梁破坏状态,在确定桥墩损伤指标的基础上,采用可靠度理论得到各桥墩的地震易损性曲线,判断桥墩的损伤模式、损伤特点。在此基础上,改变桥梁斜交角度进行易损性分析,得到斜交角变化对桥墩地震易损性的影响。研究表明:该桥最矮墩发生损伤的概率大于其他桥墩,桥墩最先进入塑性的是墩顶和墩底区域;不同斜交角对桥墩的地震响应影响显著,各墩损伤破坏排序与斜交桥结构构造特点有关,同一排架墩的两侧墩柱易损性呈现与角度变化趋势相反的排列,损伤越严重,趋势越明显;对于此不等高的斜交刚构桥,最矮墩为其抗震薄弱环节,斜交角越大,越应该关注钝角处矮墩的损伤情况,并提高其设计标准,在进行斜交刚构桥抗震设计中应予以重视。  相似文献   

13.
The Wenchuan Earthquake with a magnitude of Ms 8.0 struck the Sichuan province of China on May 12, 2008, where it mainly affected the area along the Longmenshan fault. In total, 420 three-component acceleration records were obtained by the China Strong Motion Networks Centre during this seismic event, among which over 50 records exceeded 100 gal. In the present study, we collected 48 near-fault acceleration records to derive strong ground motion parameters in terms of the peak ground acceleration, peak ground velocity, peak spectrum acceleration (5% of the damping ratio) and spectrum intensity (5% of damping ratio). We determined the building collapse ratios (CRs) for 20 targeted districts based on data acquired from both the China Earthquake Administration and the Chinese Academy of Sciences, where the CRs combined the data for all building types. Fragility curves were established between the CRs and the corresponding ground motion parameters, based on which the damage criteria were proposed. In particular, we derived the fragility curves for brick-concrete structures and frame-structures. These curves indicate how different structural types can determine the damage sustained. In addition, we developed a method for estimating building damage classifications. If we assume that buildings are built according to the improved Seismic Fortification Criterion in the revised “Code for Seismic Design of Buildings”, the predicted CRs for the 20 targeted districts would be significantly lower compared with the actual damage they sustained, which illustrates the validity of both the method and the revised code.  相似文献   

14.
In this study, signal processing approaches and nonlinear identification are used to measure seismic responses of reinforced concrete (RC) structures using the shaking table test. To analyze structural nonlinearity, an equivalent linear system with time‐varying model parameters, singular spectrum analysis to elucidate residual deformation, and wavelet packet transformation analysis to yield the energy distribution among components are adopted to detect the nonlinearity. Then, damage feature extraction is conducted using both the Holder exponent and the Level‐1 detail of the discrete wavelet component. Finally, the modified Bouc‐Wen hysteretic model and the system identification process are employed to the shaking table test data to evaluate the physical parameters, including the stiffness degradation, the strength deterioration and the pinching hysteresis. Finally, the identified stiffness and strength degradation functions from the test data of RC frames in relation to the degree of ground shaking, damage index and the identified nonlinear features are discussed. Based on the proposed method, both signal‐based and model‐based identifications, the relationship between the damage occurrence and severity of structural damage can be identified. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Best estimate seismic analysis are generally based on time‐domain simulations of structural responses. The seismic load is then modeled by a stochastic process representing ground motion. For this purpose, the analyst can use recorded accelerograms or work with synthetically generated ones. The number of ground motion time‐histories available for a given scenario and site condition is limited and generally not sufficient for carrying out more advanced probabilistic structural response analysis. It is then necessary to have at our disposal methods that allow for generating synthetic accelerograms that realistically characterize earthquake ground motions. However, most of the methods proposed in literature for generating synthetic accelerograms do not accurately reproduce the natural variability of ground motion parameters (such as PGA, cumulative absolute velocity, and Arias intensity) observed for recorded time histories. In this paper, we introduce a new method for generating synthetic ground motion, based on Karhunen‐Loève decomposition and a non‐Gaussian stochastic model. The proposed method enables the structural analyst to simulate ground motion time histories featuring the properties mentioned above. To demonstrate its capability, we study the influence of the simulation method on different ground motion parameters and on soil response spectra. We finally compute fragility curves to illustrate the practical application of the proposed method. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
A probabilistic representation of the entire ground‐motion time history can be constructed based on a stochastic model that depends on seismic source parameters. An advanced stochastic simulation scheme known as Subset Simulation can then be used to efficiently compute the small failure probabilities corresponding to structural limit states. Alternatively, the uncertainty in the ground motion can be represented by adopting a parameter (or a vector of parameters) known as the intensity measure (IM) that captures the dominant features of the ground shaking. Structural performance assessment based on this representation can be broken down into two parts, namely, the structure‐specific part requiring performance assessment for a given value of the IM, and the site‐specific part requiring estimation of the likelihood that ground shaking with a given value of the IM takes place. The effect of these two alternative representations of ground‐motion uncertainty on probabilistic structural response is investigated for two hazard cases. In the first case, these two approaches are compared for a scenario earthquake event with a given magnitude and distance. In the second case, they are compared using a probabilistic seismic hazard analysis to take into account the potential of the surrounding faults to produce events with a range of possible magnitudes and distances. The two approaches are compared on the basis of the probabilistic response of an existing reinforced‐concrete frame structure, which is known to have suffered shear failure in its columns during the 1994 Northridge Earthquake in Los Angeles, California. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
This paper focuses on seismic vulnerability assessment of restrained block‐type non‐structural components under sliding response on the basis of seismic inputs specified by current seismic codes. The general representation of restrained equipment considered in this study consists of a rigid block restrained by four post‐tensioned, symmetrically arranged cables. Two sliding‐related failure modes are considered: restraint breakage and excessive absolute acceleration. Fragility analysis is proposed as an appropriate tool to evaluate these failure modes. Sample fragility curves developed through Monte‐Carlo simulations show that the restraint breakage limit state is sensitive to the parameters of the equation of motion. For instance, fragility estimates obtained without taking into account vertical base accelerations can be significantly unconservative for relatively large values of the coefficient of friction. In contrast, the excessive absolute acceleration limit state exhibits little sensitivity to the parameters of the equation of motion. Peak absolute acceleration response is almost always equal to or greater than the horizontal peak base acceleration. Representative results suggest that reasonable response estimates for blocks located at stories other than the ground in multistorey buildings can in general be obtained by simply scaling the ground acceleration to the peak acceleration at the corresponding storey. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

18.
The paper analyses the seismic fragility of precast reinforced concrete buildings using observational damage data gathered after the 2012 Emilia earthquakes that struck Northern Italy. The damage level in 1890 buildings was collected, classified and examined. Damage matrices were then evaluated, and finally, empirical fragility curves were fitted using Bayesian regression. Building damage was classified using a six‐level scale derived from EMS‐98. The completeness of the database and the spatial distribution of the buildings investigated were analysed using cadastral data as a reference. The intensity of the ground motion was quantified by the maximum horizontal peak ground acceleration, which was obtained from ShakeMaps. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

19.
This paper presents the results of an experimental investigation carried out to investigate the seismic performance of a two storey brick masonry house with one room in each floor. A half‐scale building constructed using single wythe clay brick masonry laid in cement sand mortar and a conventional timber floor and timber roof clad with clay tiles was tested under earthquake ground motions on a shaking table, first in the longitudinal direction and then in the transverse direction. In each direction, the building was subjected to different ground motions with gradually increasing intensity. Dynamic properties of the system were assessed through white‐noise tests after each ground motion. The building suffered increasing levels of damage as the excitations became more severe. The damage ranged from cracking to global/local rocking of different piers and partial out‐of‐plane failure of the walls. Nevertheless, the building did not collapse under base excitations with peak ground acceleration up to 0.8g. General behaviour of the tested building model during the tests is discussed, and fragility curves are developed for unreinforced masonry buildings based on the experimental results. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
A performance‐based earthquake engineering approach is developed for the seismic risk assessment of fixed‐roof atmospheric steel liquid storage tanks. The proposed method is based on a surrogate single‐mass model that consists of elastic beam‐column elements and nonlinear springs. Appropriate component and system‐level damage states are defined, following the identification of commonly observed modes of failure that may occur during an earthquake. Incremental dynamic analysis and simplified cloud are offered as potential approaches to derive the distribution of response parameters given the seismic intensity. A parametric investigation that engages the aforementioned analysis methods is conducted on 3 tanks of varying geometry, considering both anchored and unanchored support conditions. Special attention is paid to the elephant's foot buckling formation, by offering extensive information on its capacity and demand representation within the seismic risk assessment process. Seismic fragility curves are initially extracted for the component‐level damage states, to compare the effect of each analysis approach on the estimated performance. The subsequent generation of system‐level fragility curves reveals the issue of nonsequential damage states, whereby significant damage may abruptly appear without precursory lighter damage states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号