首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A sampling program was initiated in 1986 in the Skidaway River estuary, a tidally dominated subtropical estuary in the southeastern USA. Hydrography, nutrients, particulate organic matter (POM), and microbial and plankton abundance and composition were measured at weekly intervals at high and low tide on the same day at a single site. Hydrographic and nutrient data during 1986–1996 were given in Verity (2002); particulate organic carbon (POC), nitrogen (PON) and chlorophylla (chla) are presented here; plankton data will be presented elsewhere. Chla was fractionated into <8 μm and >8 μm size classes. All classes of POM exhibited distinct seasonal patterns superimposed upon significant long-term increases during the study period. Total chla, <8 μm chla, and >8 μm chla increased 36%, 61%, and 18%, respectively, however the fraction of total biomass attributable to small phytoplankton (<8 μm) increased 25%. The annual amplitude between minimum and maximum stock sizes increased significantly, meaning that bloom events became larger. POC and PON also increased 16% over the decade and, as observed with patterns in chla, exhibited increases in annual amplitude. The C:N ratio was typically 6.4–6.6 (wt:wt) and did not change significantly, while the annual mean C:Chla ratio decreased 19% from 165 to 140. These characteristics indicated highly labile POM composed of significant amounts of detritus, but which became increasingly autotrophic with time. Averaged over the decade, temperature explained 45–50% of the variance in POM. Nutrients were even better predictors of POM, as 60–75% of the variance in chla, POC, and PON were explained by ambient concentrations of DIN, or PO4. Combined with significant increases in NO3, NH4, PO4, Si(OH)4, and DON during 1986–1996, these data strongly suggest that anthropogenic activities contributed to increased loading of dissolved nutrients, which became incorporated into living and nonliving particulate organic matter.  相似文献   

2.
The Skidaway River estuary, GA (USA), a tidally dominated subtropical system surrounded by extensive Spartina salt marshes, is experiencing steady increases in nutrients, chlorophyll, and particulate matter and decline in dissolved oxygen, associated with cultural eutrophication. A long-term study is documenting changes in these parameters: previous papers Verity (Estuaries 25:944–960, 2002a, Estuaries 25:961–975, b) reported on hydrography, nutrients, chlorophyll, and particulate matter during 1986–1996; plankton community responses are reported here. Phytoplankton, bacteria, heterotrophic nanoplankton and dinoflagellates, ciliates, and copepods exhibited strong seasonal cycles in abundance driven by temperature and resource availability, typically with summer maxima and winter minima. However, cultural eutrophication coincided with altered planktonic food webs as autotrophic and heterotrophic communities responded to increasing concentrations and changing ratios of inorganic and organic nutrients, potential prey, and predators. Small (<8 μm) photosynthetic nanoplankton increased in absolute concentration and also relative to larger cells. In contrast, diatoms did not show consistent increases in abundance, despite significant long-term increases in ambient silicate concentrations. Mean annual bacteria concentrations approximately doubled, and eukaryotic organisms in the microbial food web (heterotrophic and mixotrophic flagellates, dinoflagellates, ciliates, and metazoan zooplankton) also increased. All plankton groups except copepods showed trends of increasing annual amplitudes between seasonal high and low values, with higher peak concentrations each year. These observations suggest that the eutrophication signal was gradually becoming uncoupled from regulatory mechanisms. Theory and evidence from other more impacted waters suggest that, if these patterns continue, changes in the structure and function of higher trophic levels will ensue.  相似文献   

3.
Tillamook Bay, Oregon, is a drowned river estuary that receives freshwater input from 5 rivers and exchanges ocean water through a single channel. Similar to other western United States estuaries, the bay exhibits a strong seasonal change in river discharge in which there is a pronounced winter maximum and summer minimum in precipitation and runoff. The behavior of major inorganic nutrients (phosphorus, nitrogen, and silica) within the watershed is examined over seasonal cycles and under a range of river discharge conditions for October 1997–December 1999. Monthly and seasonal sampling stations include transects extending from the mouth of each river to the mouth of the estuary as well as 6–10 sites upstream along each of the 5 major rivers. Few studies have examined nutrient cycling in Pacific Northwest estuaries. This study evaluates the distributions of inorganic nutrients to understand the net processes occurring within this estuary. Based upon this approach, we hypothesize that nutrient behavior in the Tillamook Bay estuary can be explained by two dominant factors: freshwater flushing time and biological uptake and regeneration. Superimposed on these two processes is seasonal variability in nutrient concentrations of coastal waters via upwelling. Freshwater flushing time determines the amount of time for the uptake of nutrients by phytoplankton, for exchange with suspended particles, and for interaction with the sediments. Seasonal coastal upwelling controls the timing and extent of oceanic delivery of nutrients to the estuary. We suggest that benthic regeneration of nutrients is also an important process within the estuary occurring seasonally according to the flushing characteristics of the estuary. Silicic acid, nitrate, and NH4 + supply to the bay appears to be dominated by riverine input. PO4 −3 supply is dominated by river input during periods of high river flow (winter months) with oceanic input via upwelling and tidal exchange important during other times (spring, summer, and fall months). Departures from conservative mixing indicate that internal estuarine sources of dissolved inorganic phosphorus and nitrogen are also significant over an annual cycle.  相似文献   

4.
In the shallow microtidal Patos Lagoon estuary, southern Brazil (32° 07′ S–52° 06′ W), chlorophyll a (Chl a) variability was studied at different time scales during the last 25 years (hourly–daily sampling in 1984/1985; weekly sampling in 1986 and from 1988 to 1990; monthly sampling from 1993 to 2008). Phytoplankton biomass variation seems to be most influenced by hydrology, which is primarily driven by meteorological factors like wind, rainfall, and evaporation. However, it was observed that the hydrological driving forces play different roles at different time scales. For instance, short-term Chl a variability is mainly controlled by winds, while long-term changes are related to the freshwater input by rainfall. Significant correlation was found between the total amount of rain in the year and the mean annual value of Chl a, though this relationship was linear until 1,500 mm of rain per year. After this threshold, mean annual Chl a values dropped significantly, probably due to a washout of the produced biomass from the estuary. Similarly, low rainfall levels and drought years lead to small phytoplankton biomass due to scarcity of nutrient, mainly silicate, or a possible inhibitory effect generated by high ammonium concentration. In this sense, large-scale Chl a variability would be related to the El Ni?o-Southern Oscillation climatic anomaly, which influences the rainfall levels in Southern Brazil, though sampling periodicity has also great influence on this relationship. No Chl a or nutrient enrichment was observed in the estuarine region along the last years, indicating that this estuary is not subject to an eutrophication process. In contrast, signals of an ongoing oligotrophication are observed, possibly a remote effect of the eutrophication in the Northern area of the lagoon where the phytoplankton nutrients uptake may act as a biological filter mechanism.  相似文献   

5.
We conducted a quantitative assessment of estuarine ecosystem responses to reduced phosphorus and nitrogen loading from sewage treatment facilities and to variability in freshwater flow and nonpoint nutrient inputs to the Patuxent River estuary. We analyzed a 19-year dataset of water quality conditions, nutrient loading, and climatic forcing for three estuarine regions and also computed monthly rates of net production of dissolved O2 and physical transport of dissolved inorganic nitrogen (DIN) and phosphorus (DIP) using a salt- and water-balance model. Point-source loading of DIN and DIP to the estuary declined by 40–60% following upgrades to sewage treatment plants and correlated with parallel decreases in DIN and DIP concentrations throughout the Patuxent. Reduced point-source nutrient loading and concentration resulted in declines in phytoplankton chlorophyll-a (chl-a) and light-saturated carbon fixation, as well as in bottom-layer O2 consumption for upper regions of the estuary. Despite significant reductions in seaward N transport from the middle to lower estuary, chl-a, turbidity, and surface-layer net O2 production increased in the lower estuary, especially during summer. This degradation of water quality in the lower estuary appears to be linked to a trend of increasing net inputs of DIN into the estuary from Chesapeake Bay and to above-average river flow during the mid-1990s. In addition, increased abundance of Mnemiopsis leidyi significantly reduced copepod abundance during summer from 1990 to 2002, which favored increases in chl-a and allowed a shift in total N partitioning from DIN to particulate organic nitrogen. These analyses illustrate (1) the value of long-term monitoring data, (2) the need for regional scale nutrient management that includes integrated estuarine systems, and (3) the potential water quality impacts of altered coastal food webs.  相似文献   

6.
Deep Bay is a semienclosed bay that receives sewage from Shenzhen, a fast-growing city in China. NH4 is the main N component of the sewage (>50% of total N) in the inner bay, and a twofold increase in NH4 and PO4 concentrations is attributed to increased sewage loading over the 21-year period (1986–2006). During this time series, the maximum annual average NH4 and PO4 concentrations exceeded 500 and 39 μM, respectively. The inner bay (Stns DM1 and DM2) has a long residence time and very high nutrient loads and yet much lower phytoplankton biomass (chlorophyll (Chl) <10 μg L−1 except for Jan, July, and Aug) and few severe long-term hypoxic events (dissolved oxygen (DO) generally >2 mg L−1) than expected. Because it is shallow (~2 m), phytoplankton growth is likely limited by light due to mixing and suspended sediments, as well as by ammonium toxicity, and biomass accumulation is reduced by grazing, which may reduce the occurrence of hypoxia. Since nutrients were not limiting in the inner bay, the significant long-term increase in Chl a (0.52–0.57 μg L−1 year−1) was attributed to climatic effects in which the significant increase in rainfall (11 mm year−1) decreased salinity, increased stratification, and improved water stability. The outer bay (DM3 to DM5) has a high flushing rate (0.2 day−1), is deeper (3 to 5 m), and has summer stratification, yet there are few large algal blooms and hypoxic events since dilution by the Pearl River discharge in summer, and the invasion of coastal water in winter is likely greater than the phytoplankton growth rate. A significant long-term increase in NO3 (0.45–0.94 μM year−1) occurred in the outer bay, but no increasing trend was observed for SiO4 or PO4, and these long-term trends in NO3, PO4, and SiO4 in the outer bay agreed with those long-term trends in the Pearl River discharge. Dissolved inorganic nitrogen (DIN) has approximately doubled from 35–62 to 68–107 μM in the outer bay during the last two decades, and consequently DIN to PO4 molar ratios have also increased over twofold since there was no change in PO4. The rapid increase in salinity and DO and the decrease in nutrients and suspended solids from the inner to the outer bay suggest that the sewage effluent from the inner bay is rapidly diluted and appears to have a limited effect on the phytoplankton of the adjacent waters beyond Deep Bay. Therefore, physical processes play a key role in reducing the risk of algal blooms and hypoxic events in Deep Bay.  相似文献   

7.
The Pomeranian Bay is a coastal region fed by the Oder River, one of the seven largest Baltic rivers, whose waters flow through a large and complex estuarine system before entering the bay. Nutrients (NO3 , NO2 , NH4 +, Ntot, PO4 3−, Ptot, DSi), chlorophylla concentrations, oxygen content, salinity, and temperature were measured in the Pomeranian Bay in nine seasonally distributed cruises during 1993–1997. Strong spatial and temporal patterns were observed and they were governed by: the seasonally variable riverine water-nutrient discharges, the seasonally variable uptake of nutrients and their cycling in the river estuary and the Bay, the character of water exchange between the Pomeranian Bay and the Szczecin Lagoon, and the water flow patterns in the Bay that are dominated by wind-driven circulation. Easterly winds resulted in water and nutrient transport along the German coastline, while westerly winds confined the nutrient rich riverine waters to the Polish coast and transported them eastward beyond the study area. Two water masses, coastal and open, characterized by different chemical and physical parameters and chla content were found in the Bay independently of the season. The role of the Oder estuary in nutrient transformation, as well as the role of temperature in transformation processes is stressed in the paper. The DIN:DIP:DSi ratio indicated that phosphorus most probably played a limiting role in phytoplankton production in the Bay in spring, while nitrogen did the same in summer. During the spring bloom, predominated by diatoms, the DSi:DIN ratio dropped to 0.1 in the coastal waters and to 0.6 in the open bay waters, pointing to silicon limitation of diatom growth, similar to what is being observed in other Baltic regions.  相似文献   

8.
A long-term study (monthly sampling, 1992 to 2007) was conducted in the surf zone of Cassino Beach, Southern Brazil, in order to detect possible natural and/or anthropogenic disturbances. Surface water temperature (6–29°C) was the only parameter with predictable seasonal variation; salinity (14–38) was inversely related to rainfall (3.1–485.2 mm month−1) and low values followed extreme precipitation periods in 1997/1998 and 2002/2003 (El Ni?o years). Asterionellopsis glacialis and chlorophyll a presented high concentrations and peak frequency until 1998, when an intense mud deposition occurred with concomitant extreme rainfall. It affected the surf zone and beach, changing the hydrology and dissolved inorganic nutrient availability. Six phytoplankton species groups were recognized with distinct responses to this mud deposition. We conclude that large-scale climatic changes, like El Ni?o Southern Oscillation, in conjunction with human activities significantly altered the phytoplankton ecology of the highly dynamic Cassino Beach surf zone.  相似文献   

9.
A detailed study of arsenic cycling in the Huon estuary, south-east Tasmania, was undertaken October 1996–September 1998. Arsenic species data were obtained during eight 3-monthly spatial surveys, and a time-series study at a single site in the estuary over a 7-mo period. The data have been correlated with other chemical measurements, including nutrients, salinity, and dissolved oxygen, and also with biological information about the microalgal species present. In the Huon estuary, arsenic cycling is almost entirely biologically influenced. The seasonal cycle of reduced, methylated, and hydride refractory arsenic species was similar to that found in other temperate estuaries of the Northern hemisphere, with greatest production occurring during summer months. Inorganic arsenic concentrations in the Huon River were very low [As(V+III): 0.023–0.057 μg l−1], even when compared with other pristine systems. Concentrations at the seaward end of the estuary were typical of those found in unpolluted coastal seawater. The behavior of As(V+III) in the estuary was nearly conservative in all surveys except those conducted during summer (February), when significant depletion was observed at higher salinity. During these surveys, up to 60% of inorganic arsenic was apparently depleted from the water column with only a small proportion (20–25%) recycled as methylated and UV-labile arsenic species. This was particularly the case in a high salinity side-arm of the estuary, Port Cygnet. The extent of inorganic arsenic depletion correlated with cell numbers of the phytoplanktonPseudo-nitzschia. The fate of the missing inorganic arsenic is unclear, but the co-existence ofPseudo-nitzschia blooms with commercial mussel leases in Port Cygnet could provide one explanation for the loss.  相似文献   

10.
We quantified the effects of nutrient loading following precipitation events (≥ 1.25 cm) in 2 tidal creeks varying in size and anthropogenic input during the winter and summer seasons of 1996. Several water quality parameters were repeatedly measured in the water column every 3 h for several days after each event (4–5 per season). Total nitrogen (TN) and total phosphorus (TP) behaved nonconservatively with salinity and appeared as pulsed additions, occasionally doubling within 1 to 2 tidal cycles following significant rain events. Average values for TN, TP, and chlorophylla were 10–15 μM, <4 μM, and <7 μg l−1, respectively for winter events and 30–35 μM, >4 μM, and ≥ 7 μg l−1, respectively for summer events. However, response times were variable, depending on the magnitude and duration of the event as well as temperature. Chlorophylla biomass often increased after nutrient additions, especially in the summer when increased nutrient loading took place. Dissolved silica (DSi) behaved conservatively with salinity; low values were observed at high tide and vice versa. Average DSi ranges for winter and summer events were 5–45 μM and 10–85 μM, respectively. DSi range values increased proportionally with the amount of freshwater loaded into the system. Recovery times for salinity were usually greater than the recovery times for nutrients. Dissolved oxygen displayed a diel pattern, increasing after daytime productivity and decreasing during nighttime. In conclusion, each rainfall event was unique and responses were variable depending upon rainfall history, seasonality, and the duration and intensity of the rainfall event. Several other variables, such as water viscosity, percolation rates, and evapotranspiration rates which were not quantified in this study, could have also explained parameter responses.  相似文献   

11.
Quarterly field sampling was conducted to characterize variations in water column and sediment nutrients in a eutrophic southern California estuary with a history of frequent macroalgal blooms. Water column and sediment nutrient measures demonstrated that Upper Newport Bay (UNB) is a highly enriched estuary. High nitrate (NO3 ) loads from the river entered the estuary at all sampling times with a rainy season (winter) maximum estimated at 2,419 mol h−1. This resulted in water NO3 concentration in the estuary near the river mouth at least one order of magnitude above all other sampling locations during every seasons; maximum mean water NO3 concentration was 800 μM during springer 1997. Phosphorus (P)-loading was high year round (5.7–90.4 mol h−1) with no seasonal pattern. Sediment nitrogen (N)-content showed a seasonal pattern with a spring maximum declining through fall. sediment and water nutrients, as well as percent cover of three dominant macroalgae, varied between the main channel and tidal creeks. During all seasons, water column NO3 concentrations were higher in the main channel than in tidal creeks while tidal creeks had higher levels of sediment total Kjeldhal nitrogen (TKN) and P. During each of the four sampling periods, percent cover ofEntermorpha intestinalis andCeramium spp. was higher in tidal creeks than in the main channel, while percent cover ofUlva expansa was always higher in the main channel. Decreases in sediment N in both creek and channel habitats were concurrent with increases in macroalgal cover, possibly reflecting use of stored sediment TKN by macroalgae. Our data suggest a shift in primary nutrient sources for macroalgae in UNB from riverine input during winter and spring to recycling from sediments duirng summer and fall.  相似文献   

12.
Understanding of the role of oceanic input in nutrient loadings is important for understanding nutrient and phytoplankton dynamics in estuaries adjacent to coastal upwelling regions as well as determining the natural background conditions. We examined the nitrogen sources to Yaquina Estuary (Oregon, USA) as well as the relationships between physical forcing and gross oceanic input of nutrients and phytoplankton. The ocean is the dominant source of dissolved inorganic nitrogen (DIN) and phosphate to the lower portion of Yaquina Bay during the dry season (May through October). During this time interval, high levels of dissolved inorganic nitrogen (primarily in the form of nitrate) and phosphate entering the estuary lag upwelling favorable winds by 2 days. The nitrate and phosphate levels entering the bay associated with coastal upwelling are correlated with the wind stress integrated over times scales of 4–6 days. In addition, there is a significant import of chlorophyll a to the bay from the coastal ocean region, particularly during July and August. Variations in flood-tide chlorophyll a lag upwelling favorable winds by 6 days, suggesting that it takes this amount of time for phytoplankton to utilize the recently upwelled nitrogen and be transported across the shelf into the estuary. Variations in water properties determined by ocean conditions propagate approximately 11–13 km into the estuary. Comparison of nitrogen sources to Yaquina Bay shows that the ocean is the dominant source during the dry season (May to October) and the river is the dominant source during the wet season with watershed nitrogen inputs primarily associated with nitrogen fixation on forest lands.  相似文献   

13.
 Eh, pH, salinity, total alkalinity, dissolved O2, NO2 , PO4 –3, SiO2 and NH4 + of waters from a mangrove forest, an estuary and a creek connecting the mangrove forest and the estuary have been measured. Further, the chemistry of interstitial waters of surficial and core sediments from the mangrove forest have been analyzed for the above parameters, except dissolved oxygen. To understand the flux of nutrients from the mangrove forest to the adjoining estuary, creek waters were monitored during tidal phases. PO4 –3, SiO2 and NH4 + were found to be at elevated levels in mangrove waters whereas NO2 shows no variation compared to the estuary. Dissolved O2 is low in mangrove waters. PO4 –3, NH4 + and SiO2 are several times higher in interstitial waters than in overlying waters. Several fold enrichment of PO4 –3, NH4 + and, to some extent, SiO2 were measured in creek waters during ebbing relative to flooding, indicating that mangroves act as a perennial source for the above nutrients. Received: 26 May 1998 · Accepted: 21 July 1998  相似文献   

14.
The temporal and spatial distributions of salinity, dissolved oxygen, suspended particulate material (SPM), and dissolved nutrients were determined during 1983 in the Choptank River, an estuarine tributary of Chesapeake Bay. During winter and spring freshets, the middle estuary was strongly stratified with changes in salinity of up to 5‰ occurring over 1 m depth intervals. Periodically, the lower estuary was stratified due to the intrusion of higher salinity water from the main channel of Chesapeake Bay. During summer this intrusion caused minimum oxygen and maximum NH4 + concentrations at the mouth of the Choptank River estuary. Highest concentrations of SPM, particulate carbon (PC), particulate nitrogen (PN), total nitrogen (TN), total phosphorous (TP) and dissolved inorganic nitrogen (DIN) occurred in the upper estuary during the early spring freshet. In contrast, minimum soluble reactive phosphate (SRP) concentrations were highest in the upper estuary in summer when freshwater discharge was low. In spring, PC:PN ratios were >13, indicating a strong influence by allochthonous plant detritus on PC and PN concentrations. However, high concentrations of PC and PN in fall coincided with maximum chlorophyll a concentrations and PC:PN ratios were <8, indicating in situ productivity controlled PC and PN levels. During late spring and summer, DIN concentrations decreased from >100 to <10 μg-at l?1, resulting mainly from the nonconservative behavior of NO3 ?, which dominated the DIN pool. Atomic ratios of both the inorganic and total forms of N and P exceeded 100 in spring, but by summer, ratios decreased to <5 and <15, respectively. The seasonal and spatial changes in both absolute concentrations and ratios of N and P reflect the strong influence of allochthonous inputs on nutrient distributions in spring, followed by the effects of internal processes in summer and fall.  相似文献   

15.
Dissolved inorganic nutrient elements were analyzed from the samples collected in the South Passage of the Changjiang (Yangtze River) Estuary in March 2003, including NH4 , NO3-, NO2- and PO43-. The water samples were collected with a Niskin sampler hourly at the near-surface, middle and near-bottom depths at the three stations -A1, A2 and A3-during two complete tidal cycles of neap tide and spring tide. Results showed that 1) the concentrations of NH4 , NO3- and NO2- were a little higher respectively during the neap tide than those during the spring tide, while PO43- showed an opposite trend, and each was higher in the ebb tide than in the flood tide, either for the neap tidal cycle or the spring tidal cycle; 2) higher stratification of the nutrients existed obviously in this area, with the concentrations of which increased from the bottom to the surface, especially for NH4 and NO3-; 3) the coefficient of variation (C.V.) values of all dissolved inorganic nutrients varied from 4.06% to 36.8% beyond different influences of the tidal current and Changjiang runoff; 4) with increasing suspended matter in the water column, the concentrations of PO43- became lower in the filtered water; and 5) the total transport of each tidal cycle was much more in the spring tide than in the neap tide, and the positive values indicated that the nutrients had been exported to the East China Sea. Studies on the variations and net transport of dissolved inorganic nutrients in the South Passage of the Changjiang Estuary will provide the scientific basis for the study of the mechanism of red tide in the East China Sea.  相似文献   

16.
Three sequential hurricanes made landfall over the South Florida peninsula in August and September 2004. The storm systems passed north of the Everglades wetlands and northeastern Florida Bay, but indirect storm effects associated with changes in freshwater discharge during an otherwise drought year occurred across the wetland–estuary transition area. To assess the impacts of the 2004 hurricane series on hydrology, nutrients, and microbial communities in the Everglades wetlands to Florida Bay transition area, results are presented in the context of a seasonal cycle without hurricane activity (2003). Tropical activity in 2004 increased rainfall over South Florida and the study area, thereby temporarily relieving drought conditions. Not so much actual rainfall levels at the study site but more so water management practices in preparation of the hurricane threats, which include draining of an extensive freshwater canal system into the coastal ocean to mitigate inland flooding, rapidly reversed hypersalinity in the wetlands-estuary study area. Although annual discharge was comparable in both years, freshwater discharge in 2004 occurred predominantly during the late wet season, whereas discharge was distributed evenly over the 2003 wet season. Total organic carbon (TOC), ammonium ( \operatornameNH + 4 \operatorname{NH} ^{ + }_{4} ), and soluble reactive phosphorus (SRP) concentrations increased during the hurricane series to concentrations two to five times higher than long-term median concentrations in eastern Florida Bay. Spatiotemporal patterns in these resource enrichments suggest that TOC and SRP originated from the Everglades mangrove ecotone, while \operatornameNH + 4 \operatorname{NH} ^{ + }_{4} originated from the bay. Phytoplankton biomass in the bay increased significantly during storm-related freshwater discharge, but declined at the same time in the wetland mangrove ecotone from bloom conditions during the preceding drought. In the bay, these changes were associated with increased nanophytoplankton and decreased picophytoplankton biomass. Heterotrophic bacterial production increased in response to freshwater discharge, whereas bacterial abundance decreased. Hydrochemical and microbial changes were short-lived, and the wetland–bay transition area reverted to more typical oligotrophic conditions within 3 months after the hurricanes. These results suggest that changes in freshwater discharge after drought conditions and during the hurricane series forced the productivity and P-enriched characteristics of the wetland’s mangrove ecotone, although only briefly, to the south into Florida Bay.  相似文献   

17.
We investigated the role of sandy beaches in nearshore nutrient cycling by quantifying macrophyte wrack inputs and examining relationships between wrack accumulation and pore water nutrients during the summer dry season. Macrophyte inputs, primarily giant kelp Macrocystis pyrifera, exceeded 2.3 kg m−1 day−1. Mean wrack biomass varied 100-fold among beaches (range = 0.41 to 46.43 kg m−1). Mean concentrations of dissolved inorganic nitrogen (DIN), primarily NOx-N, and dissolved organic nitrogen (DON) in intertidal pore water varied significantly among beaches (ranges = 1 to 6,553 μM and 7 to 2,006 μM, respectively). Intertidal DIN and DON concentrations were significantly correlated with wrack biomass. Surf zone concentrations of DIN were also strongly correlated with wrack biomass and with intertidal DIN, suggesting export of nutrients from re-mineralized wrack. Our results suggest beach ecosystems can process and re-mineralize substantial organic inputs and accumulate dissolved nutrients, which are subsequently available to nearshore waters and primary producers.  相似文献   

18.
Seasonal phosphorus limitation occurs on the Louisiana continental shelf as a result of high nitrogen loads in the spring and early summer. Prior studies have assessed such nutrient limitation by laborious and time-consuming nutrient analyses, enzyme assays, and nutrient addition bioassays. We undertook surface (0.5–1 m) mapping of fast repetition rate fluorescence (FRRF) parameters to assess nutrient limitation in real time on the Louisiana continental shelf and Mississippi River plume from 29 June to 08 July, 2002 in an effort to further understand phytoplankton productivity in this region, as well as to better inform effective nutrient management strategies. Surface nutrient concentrations (NO3, NO2, NH4+, PO43−), chlorophyll a biomass, alkaline phosphatase (AP) activity, and four FRRF parameters: the maximum quantum yield of photochemistry (F v /F m ), the functional absorption cross section for PSII, the time constant for Q A reoxidation, and the connectivity factor, were measured during continuous underway mapping. Results from traditional methods to assess phytoplankton nutrient stress indicated widespread phosphorus limitation from the Mississippi River plume to the Atchafalaya River, manifested as high inorganic N/P ratios and elevated AP activities associated with phytoplankton biomass. The FRRF data indicated complex patterns of phytoplankton physiology that were likely driven by the rapidly changing conditions in local surface waters and heterogeneous phytoplankton community structure. Correlations of nutrient data and enzyme assays with FRRF parameters were significant but low, potentially due to differences in the manner and time scale with which nutrient limitation affects the different techniques used, indicating that further work is needed to interpret FRRF parameters in large, heterogeneous environments such as estuaries and continental shelves.  相似文献   

19.
Nitrogen dynamics in large shallow eutrophic Lake Chaohu,China   总被引:4,自引:0,他引:4  
Temporal and spatial dynamics of nitrogen in lake and interstitial water were studied monthly in a large shallow, eutrophic lake in subtropical China from October 2002 to September 2003. The distribution of nitrogen was consistent with the idea that high nitrogen concentrations in the western part of the lake resulted from high levels of the nutrients from the surrounding cities through sewage–drainage systems. Nitrate was the predominant form of nitrogen in the overlying water, while ammonium was predominant in the interstitial water, indicating that strong oxidative nutrient regeneration occurred near the sediment–water interface. Nitrate could be an important dissolved inorganic matter source for phytoplankton, which in turn influenced the seasonal variations of nitrate concentrations in lake water. Significant positive correlation between ammonium fluxes and water temperature was observed and could probably be attributed to the intensified ammonification and nitrate reduction with increased temperature. Positive correlation between ammonium fluxes and algae biomass and Chl a concentrations may indicate that phytoplankton was an important factor driving ammonium fluxes in our study lake, and vice versa that higher fluxes of ammonium supported a higher biomass of the phytoplankton.  相似文献   

20.
The present study reports on perturbations of the water column by large rainfall at Lake Alchichica, a saline lake in Central Mexico. Alchichica is located in the “Llanos de San Juan,” a high-altitude plateau with a minimum elevation of 2,300 m above sea level. The climate is arid with annual precipitation less than 400 mm and annual evaporation of 500–600 mm. A single day large rainfall event delivered 1,810,000 m3 of water to the basin, raising the lake’s water level by about 1 m. Temperature and salinity profiles showed an atypical temperature inversion up to 1°C in the upper layer accompanied by salinity decrease up to 0.5 g l−1. Transparency and pH were slightly altered, but dissolved oxygen, nutrients and chlorophyll a concentrations were not changed. In spite of the heavy rainfall and associated wind, the effects of the event were limited to the upper half of the epilimnion. After 2 days, the lake water level returned to its original level. The rapid leakage of the runoff minimized any long-term effects of the large rainfall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号