首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We analyze the intensity modulation in the final, very broad peak of the main outburst of the neutron star low-mass X-ray binary KS 1731-260. We use ASM/RXTE observations for a time-series analysis of the long-term variations. We also investigate the X-ray color (hardness ratio) changes in the 1.5–12 keV band. The modulation with the mean cycle-length of 37 days is transient and is detected only in several time segments. It underwent significant variations of both the cycle-length and the amplitude. This cycle cannot be caused by transitions of the outer disk region between the hot and cool state that gave rise to the subsequent series of the echo outbursts. Because of its high X-ray luminosity (LX  0.1 of the Eddington luminosity), KS 1731-260 is a promising candidate for having its accretion disk tilted and warped. The properties of the modulation can therefore be explained as due to variable (multimodal), but still detectable superorbital periods caused by a disk precession with mode switching and unstable warps. We find that a variable LX is not the sole parameter that governs the presence of the cycle. Variable absorption of X-rays cannot be dominant in producing the modulation of the ASM flux during the cycle. Variations of the stream impact on the tilted and warped disk, hence affecting the mass flow in the inner disk region, consequently the emission components, are a promising mechanism for the observed cycle. In this scenario, the true cycle-length can be twice as long because of the double-wave profile.  相似文献   

2.
The results of observations of the transient X-ray burster KS 1731-260 with the ART-P telescope onboard the GRANAT observatory are presented. The observations were performed in 1990–1991 at the initial stage of the source’s 12-yr activity period when no studies were conducted by other X-ray observatories. The flux from KS 1731-260 is shown to have systematically decreased, forming a separate initial “minioutburst” of the source with a duration of ~2.5 yr. The decrease in flux was accompanied by an increase in the spectral hardness of KS 1731-260 and an enhancement of its burst activity; two X-ray bursts were detected in the last observing sessions when the flux decreased by 40–60%. Their analysis showed that they occurred in a medium with an appreciable hydrogen abundance; i.e., the enrichment efficiency of the material in the lower atmospheric layers of the neutron star during quasi-steady hydrogen burning was low. The BDLE model that was suggested by Grebenev et al. (2006) to describe the radiation spectra of weakly magnetized accreting neutron stars has been used for the first time to analyze the continuum radiation spectrum of the source. This model incorporates two spectral components associated with the radiation from the boundary layer formed at the place of contact between the accretion disk and the neutron star surface and with the radiation from the accretion disk proper. The model satisfactorily fits the observed radiation spectra of the source and allow such parameters of the binary system as the accretion disk inclination, the bolometric luminosity (accretion rate), and the temperature of the outer boundary layer to be estimated. The boundary layer radiation for KS 1731-260 is shown to have originated in an exponential atmosphere of moderate optical depth for Thomson scattering under conditions where comptonization had no time to form the Wien spectrum, but only modified the thermal plasma radiation spectrum.  相似文献   

3.
We investigate the relation between the optical (g-band) and X-ray (0.5–10 keV) luminosities of accreting nonmagnetic white dwarfs. According to the present-day counts of the populations of star systems in our Galaxy, these systems have the highest space density among the close binary systems with white dwarfs. We show that the dependence of the optical luminosity of accreting white dwarfs on their X-ray luminosity forms a fairly narrow one-parameter curve. The typical half-width of this curve does not exceed 0.2–0.3 dex in optical and X-ray luminosities, which is essentially consistent with the amplitude of the aperiodic flux variability for these objects. At X-ray luminosities L x ~ 1032 erg s?1 or lower, the optical g-band luminosity of the accretion flow is shown to be related to its X-ray luminosity by a factor ~2–3. At even lower X-ray luminosities (L x ? 1030 erg s?1), the contribution from the photosphere of the white dwarf begins to dominate in the optical spectrum of the binary system and its optical brightness does not drop below M g ~ 13–14. Using the latter fact, we show that in current and planned X-ray sky surveys, the family of accreting nonmagnetic white dwarfs can be completely identified to the distance determined by the sensitivity of an optical sky survey in this region. For the Sloan Digital Sky Survey (SDSS) with a limiting sensitivity m g ~ 22.5, this distance is ~400–600 pc.  相似文献   

4.
We present the observations of the X-ray burster KS 1731-260 from 1988 until 1999 with the Kvant/TTM telescope supplemented with published data from the ASM and PCA instruments of the RXTE observatory for 1996–2001. We constructed the light curve of the source and confirmed the dependence of spectral variations on its X-ray luminosity.  相似文献   

5.
We suggest that the mass of four compact stars SAX J1808.4-3658, KS 1731-260, SAX J1750.8-2900 and IGR J17191-2821 can be determined from the difference in the observed kiloHertz quasi periodic oscillations (kHz QPO-s) of these stars. The stellar radius is very close to the marginally stable orbit Rms as predicted by Einstein’s general relativity. It may be noted that the first of these stars was suggested to be a strange star more than a decade back by Li et al. (1999a) from the unique millisecond X-ray pulsations with an accurate determination of its rotation period. It showed kHz QPO-s eight years back and so far it is the only set that has been observed. This is the first time we give an estimate of the mass of the star and of three other compact stars in low-mass X-ray binaries using their observed kHz QPO-s.  相似文献   

6.
We analyze the statistical properties of normal galaxies to be detected in the all-sky survey by the eROSITA X-ray telescope of the Spectrum-X-Gamma observatory. With the current configuration and parameters of the eROSITA telescope, the sensitivity of a 4-year-long all-sky survey will be ≈10?14 erg s?1 in the 0.5–2 keV band. This will allow ~(1.5–2) × 104 normal galaxies with approximately the same contribution of star-forming and elliptical galaxies to be detected. All galaxies of the X-ray survey are expected to enter into the existing far-infrared (IRAS) or near-infrared (2MASS) catalogs; the sample of star-forming galaxies will be approximately equivalent in sensitivity to the sample of star-forming galaxies in the IRAS catalog of infrared sources. Thus, a large homogeneous sample of normal galaxies with measured X-ray, near-infrared, and far-infrared fluxes will be formed. About 90% of the galaxies in the survey are located within ~200–400 Mpc. A typical (most probable) galaxy will have a luminosity log L X ~ 40.5–41.0, will be located at a distance of ~70–90 Mpc, and will be either a star-forming galaxy with a star formation rate of ~20M yr?1 whose X-ray emission is produced by ultraluminous X-ray sources (ULXs) or an elliptical galaxy with amass log M * ~ 11.3 emitting through to a hot interstellar gas. The galaxies within 35 Mpc will collectively contain ~102 ULXs with luminosities log L X > 40, ~80% of whichwill be the only luminous source in the galaxy. Thus, although the angular resolution of the eROSITA telescope is too low for the luminosity function of compact sources in galaxies to be studied in detail, the survey data will allow one to investigate its bright end and, possibly, to impose constraints on the maximum luminosity of ULXs.  相似文献   

7.
The dependence of the spin frequency derivative \(\dot \nu \) of accreting neutron stars with a strongmagnetic field (X-ray pulsars) on the mass accretion rate (bolometric luminosity, Lbol) has been investigated for eight transient pulsars in binary systems with Be stars. Using data from the Fermi/GBM and Swift/BAT telescopes, we have shown that for seven of the eight systems the dependence \(\dot \nu \) (Lbol) can be fitted by the model of angular momentum transfer through an accretion disk, which predicts the relation \(\dot \nu \)L6/7bol. Hysteresis in the dependence \(\dot \nu \) (Lbol) has been confirmed in the system V 0332+53 and has been detected for the first time in the systems KS 1947+300, GRO J1008-57, and 1A 0535+26. Estimates for the radius of the neutron star magnetosphere in all of the investigated systems have been obtained. We show that this quantity varies from pulsar to pulsar and depends strongly on the analytical model and the estimates for the neutron star and binary system parameters.  相似文献   

8.
We present the results of our optical identifications of a set of X-ray sources from the INTEGRAL and SWIFT all-sky surveys. The optical data have been obtained with the 1.5-m Russian-Turkish Telescope (RTT-150). Nine X-ray sources have been identified with active galactic nuclei (AGNs). Two of them are located in the nearby spiral galaxies MCG-01-05-047 and NGC 973 seen almost edge-on. One source, IGR J16562-3301, is probably a BL Lac object (blazar). The remaining AGNs are observed as the starlike nuclei of spiral galaxies whose spectra exhibit broad emission lines. The relation between the hard X-ray (17–60 keV) luminosity and the [O III] 5007 line luminosity, log L x/L [O III] ≈ 2.1, holds good for most of the AGNs detected in hard X rays. However, the luminosities of some AGNs deviate from this relation. The fraction of such objects can reach ~20%. In particular, the [O III] line flux is lower for two nearby edge-on spiral galaxies. This can be explained by the effect of absorption in the galactic disks.  相似文献   

9.
We present the results of measurements of the total X-ray flux from the Andromeda galaxy (M31) in the 3-100 keV band based on data from the RXTE/PCA, INTEGRAL/ISGRI, and SWIFT/BAT space experiments. We show that the total emission from the galaxy has a multicomponent spectrum whose main characteristics are specified by binaries emitting in the optically thick and optically thin regimes. The galaxy’s luminosity at energies 20–100 keV gives about 6% of its total luminosity in the 3–100 keV band. The emissivity of the stellar population in M31 is L 2–20 keV ~ 1.1 × 1029 erg s?1 M ?1 in the 2–20 keV band and L 20–100 keV ~ 8 × 1027 erg s?1 M ?1 in the 20–100 keV band. Since low-mass X-ray binaries at high luminosities pass into a soft state with a small fraction of hard X-ray emission, the detection of individual hard X-ray sources in M31 requires a sensitivity that is tens of times better (up to 10?13 erg s?1 cm?2) than is needed to detect the total hard X-ray emission from the entire galaxy. Allowance for the contribution from the hard spectral component of the galaxy changes the galaxy’s effective Compton temperature approximately by a factor of 2, from ~1.1 to ~2.1 keV.  相似文献   

10.
We present a detailed investigation of X-ray source contents of eight young open clusters with ages between 4 to 46 Myr using archival X-ray data from XMM-Newton. The probable cluster memberships of the X-ray sources have been established on the basis of multi-wavelength archival data, and samples of 152 pre-main sequence (PMS) low mass (<2M ), 36 intermediate mass (2–10M ) and 16 massive (>10M ) stars have been generated. X-ray spectral analyses of high mass stars reveal the presence of high temperature plasma with temperature <2 keV, and mean L X/L bol of 10???6.9. In the case of PMS low mass stars, the plasma temperatures have been found to be in the range of 0.2 keV to 3 keV with a median value of ~1.3 keV, with no significant difference in plasma temperatures during their evolution from 4 to 46 Myr. The X-ray luminosity distributions of the PMS low mass stars have been found to be similar in the young star clusters under study. This may suggest a nearly uniform X-ray activity in the PMS low mass stars of ages ~4–14 Myr. These observed values of L X/L bol are found to have a mean value of 10??3.6±0.4, which is below the X-ray saturation level. The L X/L bol values for the PMS low mass stars are well correlated with their bolometric luminosities, that implies its dependence on the internal structure of the low mass stars. The difference between the X-ray luminosity distributions of the intermediate mass stars and the PMS low mass stars has not been found to be statistically significant. Their L X/L bol values, however have been found to be significantly different from each other with a confidence level greater than 99.999% and the strength of X-ray activity in the intermediate mass stars is found to be lower compared to the low mass stars. However, the possibility of X-ray emission from the intermediate mass stars due to a low mass star in close proximity of the intermediate mass star can not be ruled out.  相似文献   

11.
Having analyzed the 1999 scanning observations of the Galactic-center region with the PCA spectrometer onboard the RXTE observatory, we obtained upper limits on the flux from the microlensing black hole OGLE-1999-BUL-32 in 1999–2000. We show that the X-ray luminosity of this black hole did not exceed L x ? 3 × 1033(d/1kpc)2 erg s?1. Near the maximum amplification of the background star (on June 6, 1999), the upper limit was L x ? 7 × 1033(d/1kpc)2 erg s?1.  相似文献   

12.
The evolution of the family of binaries with a low-mass star and a compact neutron star companion (low-mass X-ray binaries (LMXBs) with neutron stars) ismodeled by the method of population synthesis. Continuous Roche-lobe filling by the optical star in LMXBs is assumed to be maintained by the removal of orbital angular momentum from the binary by a magnetic stellar wind from the optical star and the radiation of gravitational waves by the binary. The developed model of LMXB evolution has the following significant distinctions: (1) allowance for the effect of the rotational evolution of a magnetized compact remnant on themass transfer scenario in the binary, (2) amore accurate allowance for the response of the donor star to mass loss at the Roche-lobe filling stage. The results of theoretical calculations are shown to be in good agreement with the observed orbital period-X-ray luminosity diagrams for persistent Galactic LMXBs and their X-ray luminosity function. This suggests that the main elements of binary evolution, on the whole, are correctly reflected in the developed code. It is shown that most of the Galactic bulge LMXBs at luminosities L x > 1037 erg s?1 should have a post-main-sequence Roche-lobe-filling secondary component (low-mass giants). Almost all of the models considered predict a deficit of LMXBs at X-ray luminosities near ~1036.5 erg s?1 due to the transition of the binary from the regime of angular momentum removal by a magnetic stellar wind to the regime of gravitational waves (analogous to the widely known period gap in cataclysmic variables, accreting white dwarfs). At low luminosities, the shape of the model luminosity function for LMXBs is affected significantly by their transient behavior-the accretion rate onto the compact companion is not always equal to the mass transfer rate due to instabilities in the accretion disk around the compact object. The best agreement with observed binaries is achieved in the models suggesting that heavy neutron stars with masses 1.4–1.9M can be born.  相似文献   

13.
Using IRAS measurements, we find positive correlations between both the infrared to optical flux ratio (L FIR/L B) and infrared colour temperature (L 60/L 100) with optical surface brightness. These correlations can be understood by high surface brightness galaxies having (i) a high star formation rate, or (ii) a high-space density of stars and dust.In an attempt to interpret (ii) above, we have produced radiative transfer models for the dust absorption in a galactic disc. These models indicate that the highest surface brightness galaxies may be the most dust obscured (i.e., optically thick) and that the total luminosity (and, hence, mass) of these galaxies may be considerably underestimated.  相似文献   

14.
With the multi-wavelength data from UV to sub-millimeter in the region of H-ATLAS (Herschel Astrophysical Terahertz Large Area Survey) Science Demonstration Phase (SDP), in combination with the population synthesis model and dust model, the total infrared luminosities of the galaxies were calculated. On this basis, for respectively the strong and weak star-forming galaxies, we studied the differences in the star formation rates calculated by the UV luminosity, infrared luminosity and Hα line, as well as the intrinsic physical origin of such differences. It was found that for the galaxies of strong star-formation activity, the 3 kinds of star formation rate indicators give the basically consistent results with a small dispersion. But at the end of high star formation rate, the star formation rate calculated by the UV luminosity is slightly smaller than that calculated by the Hα-line flux; at the end of low star formation rate, the UV indicator tends to be greater than the Hα indicator; and at both ends, the infrared indicator and Hα indicator have no significant difference. For the weak star-forming galaxies, significant differences exist among the 3 kinds of indicators, and there is a rather large dispersion. The dispersions and systematic difference of the star formation rates calculated by the UV luminosity and Hα line increase with the galactic age and mass. The main cause for the increased systematic difference is that when the extinction of an weak star-forming galaxy is calibrated by its UV continuum spectral slope β, the UV extinction of the galaxy is overestimated, it makes the UV luminosity tends to be large after the extinction correction. In addition, the star formation rates (Hα) of weak starforming galaxies in the MPA/JHU (Max Planck Institute for Astrophysics/Johns Hopkins University) database are generally less than the real values.  相似文献   

15.
The infrared photometric observations of V4334 Sgr in 1996–1999 are presented. Together with optical data, they have allowed us to accurately estimate the bolometric flux from this star and to investigate the structure of its dust envelope over the above period. The star is shown to have passed through four well-defined stages in these four years as it moved backward along the post-AGB track, and it now appears to have started moving forward after a halt. At the first stage (1996), there was no dust in the star’s envelope. Its visual brightness slightly increased, and it reddened in the entire observed spectral range. The bolometric flux also gradually rose. At the second stage (1997), an optically thick dust envelope condensed around the star, which, however, essentially did not manifest itself at optical wavelengths. The bolometric flux continued to rise through an increase in the star’s infrared brightness alone; the rate of its rise also increased. At the third stage (1998–March 1999), V4334 Sgr entered the R CrB phase. First two shallow minima and then two deep minima were observed at optical wavelengths. The star appreciably reddened during the deep minima. The bolometric flux ceased to rise and began to gradually fall in the second half of 1998. At the fourth stage (since March 1999 up until now), V4334 Sgr has been at a protracted deep minimum, which is atypical of the R CrB stars. The bolometric flux between March and October underwent no significant variations. We describe the structure of the dust envelope around V4334 Sgr since its formation. From June 1997 until July 1998, the optical depth of the dust shell, its inner and outer radii, and its mass increased by factors of ~2.2, ~2.0, 2.3, and ~10, respectively. In July 1998, τ(V)≈2.3, R d, in≈7.4×1014 cm, R d, in/R d, out≈0.7(R d, in/R *≈47), and M dust≈1.6×10?7 M .  相似文献   

16.
Long-term photometric and spectroscopic observations of the yellow symbiotic star LT Del are analyzed. UBV light curves are presented. Based on the observations of 20 cycles, we have refined the orbital period of the star, P = 476 · d 0 ± 1 · d 0. The brightness has been found to be unstable at some orbital phases with an amplitude up to 0 · m 3. We have measured the fluxes in hydrogen and helium emission lines and in continuum and investigated their relationship to the orbital period. The fluxes in hydrogen and HeI lines follow the UBV light curves in phase; the He II 4686 Å flux does not depend on the phase and is constant within the accuracy of our measurements. The intensity ratio of the 4686 Å andHβ lines changes from 0.2 to 0.9 over the period. We interpret the spectroscopic observations based on the hypothesis of heating and ionization of the stellar wind from a cool component by high-frequency radiation from a hot star with a temperature of 105 K. We have estimated the spectral type of the cool star from our photometry and its continuum energy distribution as a bright K2–4 red giant branch halo star. The bolometric luminosity and mass loss rate have been estimated for the K component to be L bol ~ 700L and \(\dot{M}\) ~ 10?8 M yr?1, respectively.  相似文献   

17.
We study the relation between high-mass X-ray binary (HMXB) population and recent star formation history (SFH) for the Small Magellanic Cloud (SMC). Using archival optical SMC observations, we have approximated the color-magnitude diagrams of the stellar population by model stellar populations and, in this way, reconstructed the spatially resolved SFH of the galaxy over the past 100 Myr. We analyze the errors and stability of this method for determining the recent SFH and show that uncertainties in the models of massive stars at late evolutionary stages are the main factor that limits its accuracy. By combining the SFH with the spatial distribution of HMXBs obtained from XMM-Newton observations, we have derived the dependence of the HMXB number on the time elapsed since the star formation event. The number of young systems with ages ? 10 Myr is shown to be smaller than the prediction based on the type-II supernova rate. The HMXB number reaches its maximum ~20–50 Myr after the star formation event. This may be attributable, at least partly, to a low luminosity threshold in the population of X-ray sources studied, L min ~ 1034 erg s?1. Be/X systems make a dominant contribution to this population, while the contribution from HMXBs with black holes is relatively small.  相似文献   

18.
An intense outburst of hard radiation (with a peak flux of ~50 mCrab) was detected from the X-ray transient AX J1749.1-2733 by the IBIS/ISGRI gamma-ray telescope onboard the INTEGRAL observatory when the Galactic center field was monitored on September 8–10, 2003. Previously, this source had never been observed in a bright X-ray state. During the outburst, the source’s radiation spectrum was gently sloping and hard (extended to ~100 keV), followed a power law in the standard X-ray energy range, and had an exponential cutoff above 40–50 keV. The spectral hardness decreased with increasing flux. These and other properties described here and the shortness of the outburst (<2 days) allow the source to be attributed to the group of fast X-ray transients many representatives of which have an early O-B supergiant as their optical counterpart. Possible causes of the outbursts of fast transients are discussed. We show that accretion from the supergiant’s stellar wind should have led to intense persistent radiation from transients. The absence of radiation can be explained by the ejection of accreting matter from the system (propeller effect) during its contact with the magnetosphere of a rapidly rotating neutron star. Transient outbursts could originate in sources of this type if the spin period of their neutron star P s differed only slightly from the critical period P s * ? 3 s at which the propeller effect is still possible. The outburst is triggered by an insignificant rise in the local stellar wind density, by a factor of (P s * /P s)7/3. The entire outburst profile cannot be explained by an individual inhomogeneity in the wind, but is the reflection of a long-term (~2 days for AX J1749.1-2733) change in the rate of wind outflow from the supergiant’s surface facing the compact source. The rate of wind outflow could be enhanced through X-ray heating of the supergiant’s surface.  相似文献   

19.
We investigate the variation in coronal activity of late-type stars with age. We determine the age of the star from the colour-colour diagram (U-B vsB-V). We show that the ratio of X-ray luminosity (L x) to bolometric luminosity (L bol) is well correlated with age over several orders of magnitude variations. We find thatL x/L bol) decreases with age with a power of –1.55. This is consistant with the expected results from the studies of the variation of the corona with chromosphere and the dependence of chromosophere on age.  相似文献   

20.
We aim at understanding the statistical properties of luminous sub-millimeter (submm) galaxies (SMGs) in the context of cosmological structure formation. By utilizing a cosmological N-body simulation to calculate the distribution of dark halos in the Universe, we consider the dust enrichment in individual halos by Type II supernovae (SNe II). The SN II rate is estimated under a star formation activity which is assumed to occur on a dynamical timescale in the dark matter potential. Our simple framework successfully explains the luminosity function, the typical star formation rate, and the typical dust mass of an observational SMG sample at z~3. We also examine the clustering properties of SMGs, since a positive cross correlation between SMGs and Lyα emitters (LAEs) is indeed observed by a recent observation. In the simulation, we select SMGs by FIR dust luminosity >1012 L , while LAEs are chosen such that the age and the virial mass are consistent with the observed LAE properties. The SMGs and LAEs selected in this way show a spatial cross correlation whose strength is consistent with the observation. This confirms that the SMGs really trace the most clustered regions at z~3 and that their luminosities can be explained by the dust accumulation as a result of their star formation activities. We extend our prediction to higher redshifts, finding that a statistical sample of submm galaxies at z≥6 can be obtained by ALMA with a 100 arcmin2 survey. With the same survey, a few submm galaxies at z~10 may be detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号