首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mean density models of the solar corona show evidence for two distinctive density regimes characterized by different density gradients. High density gradients are identified with regions of predominantly open magnetic lines of force and low density gradients are identified with regions of predominantly closed magnetic lines of force. Spectroscopic data yielding equivalent widths of forbidden lines of Fe x and Fe xiv strongly suggest that the coronal temperature for r > 2.5 R decreases considerably less rapidly in equatorial regions than r –2/7, which is the decrease predicted by conduction models with open field lines.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

2.
The analysis of a storm of type III solar radio bursts observed in August 1968 between 5 and 0.2 MHz by the RAE-1 satellite has yielded the storm morphology, a possible relation to meter and decameter storms, and an average exciter speed of 0.37 c between 10 and 40 R (Fainberg and Stone, 1970a, b). A continuation of the analysis, based on the apparent dependence of burst drift rate on heliographic longitude of the associated active region, now provides a distance scale between plasma levels in the streamer, an upper limit to the scale size of coronal streamer density inhomogeneities, and an estimate of the solar wind speed. By fixing one level the distance scale is utilized to determine the electron density distribution along the streamer between 10 and 40 R . The streamer density is found to be 16 times that expected for the solar minimum quiet solar wind. An upper limit to the scale size of streamer density inhomogeneities is estimated to be of the order of 1 or 2 solar radii over the same height range. From the progressive delay of the central meridian passage (CMP) of the lower frequency emission, a streamer curvature is inferred which in turn implies an average solar wind speed of 380 km/sec between 14 and 36 R within the streamer.  相似文献   

3.
R. R. Fisher 《Solar physics》1978,57(1):119-128
The Sacramento Peak Observatory's 40 cm coronagraph was used with an emission line photometer to observe the distribution of 5303 Fe XIV brightness as a function of position angle, height above the limb, and time. These data were used to construct models of the volume emissivity as a function of solar latitude and longitude. These models in turn yield estimates of the distribution of electron density in the lower solar corona as a function of latitude and longitude for several specific periods in 1973 and 1975. Three observational results are obtained. An upper limit for the inferred electron density in coronal hole regions is set at log N e = 7.4 for an altitude of 1.15R . Density models from late 1973 demonstrate an evolutionary trend toward a rather regular four-lobed appearance of coronal material; models from 1975 suggest that this characterization persisted for at least 27 solar rotations. A decrease in the total integrated 5303 intensity of a factor of 2.9 is inferred to have taken place between 1973 and 1975.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

4.
Storms of type III solar radio bursts observed from 5.4 ot 0.2 MHz consist of a quasi-continuous production of type III events observable for half a solar rotation but persisting in some cases for well over a complete rotation (Fainberg and Stone, 1970). The observed burst drift rates are a function of the heliographic longitude of the associated active region. This apparent drift rate dependence is a consequence of the radio emission propagation time from source to observer. Based on this dependence, a least squares analysis of 2500 drift rates between frequencies in the 2.8 to 0.7 MHz range yields an average exciter speed of 0.38 c for the height range from approximately 11 to 30 R . In conjunction with the available determinations of exciter speeds of 0.33 c close to the sun, i.e. less than 3 R , and with in situ measurements of 40 keV solar electrons by space probes, the present results suggest that the exciters are electron packets which propagate with little deceleration over distances of at least 1 AU.  相似文献   

5.
We present observations of the corona at 169 MHz with the Nançay Radioheliograph during the summer of 1984. We compare synoptic maps of the metric radio emission on the solar disk with synoptic charts of the K-corona as well as of the green and the red lines. Local sources of radio emission are not located near regions of enhanced green or red line emission which, in turn, are in general above chromospheric faculae. Thus the radio emissions located in the surroundings of faculae are apparently related to different loop systems, with lower density. The comparison of the radio data with the K-corona showed one radio source associated with enhanced emission both at 1.3 and at 1.7 R , apparently a streamer. Other radio sources did not show any clear associations, but were nevertheless located within the coronal plasma sheet, delineated by the large-scale K-corona emission. Moreover the large-scale structure of the corona at 169 MHz was quite similar to the coronal plasma sheet observed at 1.3 R above the limb. The extent of the radio emission in latitude is very similar to that of the K-corona, while the coronal line emission is more concentrated near the solar equator.  相似文献   

6.
The source positions of solar radio bursts of spectral types I, III(U) and III(J) and V observed by the Culgoora radioheliograph are found to lie almost radially above soft X-ray loops on pictures taken by the S-056 telescope aboard Skylab. The radio source positions and the X-ray loops occur near magnetic loops on computed potential field maps. However, the magnetic induction required to explain the radio observations is much greater than the computed potential field value at that height. Dense current-carrying magnetic flux tubes emanating from active regions on the Sun and extending to 1.5R above the photosphere provide a satisfactory model for the radio bursts.  相似文献   

7.
J. Roosen 《Solar physics》1969,7(3):448-462
The quiet component of the 9.1-cm solar radio emission is studied from the Stanford radioheliograms covering the period April–October 1964. The distribution of the brightness temperature in heliographic coordinates is not entirely uniform, but positive and negative departures from the average value appear at a number of stable locations. The most important negative departure crosses the central meridian 4 days before the maximum of the recurrent geomagnetic activity. Two out of three less important brightness depressions are connected with geomagnetic disturbances in the same manner. It is suggested that the brightness depressions are identical with M-regions.The result is confirmed by the construction of polytrope models for the solar wind, for various values of the parameters (the polytrope index) and T (the temperature in the inner corona). The velocities near the earth's orbit and in the inner corona are computed as functions of the model parameters, the density results from the observed proton flux at 1 AU. For quiet conditions the model with T = 1.26 × 106 K and = 1.10 is appropriate. The corresponding density and temperature in the corona lead to a value of 4000 K for the contribution of the corona to the 9-cm brightness. For disturbed conditions the suitable model has the parameters T 2.0 × 106 K, a 1.04. It being given that the proton flux at 1 AU is relatively constant, the equation of continuity leads to a low coronal density because of the high solar-wind velocity. The corresponding coronal contribution to the 9-cm brightness is of the order of 10 K. This confirms that the brightness temperature is considerably reduced in the regions where the enhanced solar wind originates. We suggest the name coronal depression for such regions.Papers II and III will appear in forthcoming issues of this journal.  相似文献   

8.
We compute a new grid of plage models to determine the difference in temperature versus mass column density structure T(m) between plage regions and the quiet solar chromosphere, and to test whether the solar chromosphere is geometrically thinner in plages. We compare partial redistribution calculations of Mg ii h and k and Ca ii K to NRL Skylab observations of Mg ii h and k in six active regions and Ca ii K intensities obtained from spectroheliograms taken at approximately the same time as the Mg ii observations. We find that the plage observations are better matched by models with linear (in log m) temperature distributions and larger values of m 0 (the mass column density at the 8000 K layer in the chromosphere), than by models with larger low chromosphere temperature gradients but values of m 0 similar to the quiet Sun. Our derived temperature structures are in agreement with the grid originally proposed by Shine and Linsky, but our analysis is in contrast to the study by Kelch which implies that stellar chromospheric geometrical thickness is not affected by chromospheric activity. We conclude that either the stellar Mg ii observations upon which the Kelch study was based are of poorer quality than had been assumed, or that the spatial averaging of inhomogeneous structures, which is inherent in the stellar data, does not lead to a best fit one-component model similar in detail to that of a stellar or a solar plage.Visiting Astronomer at Kitt Peak National Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.Staff member, Quantum Physics Division, National Bureau of Standards.  相似文献   

9.
To locate two-dimensional positions of the solar decametric radio bursts a heliograph was developed on the basis of the UTR-2 radiotelescope (Khar'kov) operated in the range 10–26 MHz. The beamwidth of the heliograph rapid-scanning pencil-beam is 25 arc min at 25 MHz, and its field of view is about 3.5° (E-W) × 2.0° (N-S). The instrument yields rapidly forty records of the radio brightness of all (8 × 5) elementary parts (each 25 arc min in diameter) of the investigated sky area during every period of 1/4 s. Both coordinates of a burst center are measured with an accuracy 5 arc min. The bandwidth of the receiving system is 10 kHz. The heliograph operates in conjunction with a radiospectrograph connected to the output of a N-S arm of the UTR-2 array. The data observations with the UTR-2 correspond only to one linear polarized component.The ionospheric distortion of the test records of the radio source Cassiopeia-A that occurred sometimes is illustrated.First results of 25 MHz observations of the solar radio storm in August, 1976 with the heliograph are presented here. This storm is accompanied by the compact sunspot group travelling all over the optical disk. The type III and stria bursts were predominant during the storm. On the given day the scattering regions of their apparent centers were overlapped and the sizes of these regions were usually not more than 5 arc min. On some days there occurred additional burst sources displaced in position from the persistent storm region. It was found out that, as a rule, 25 MHz stria-bursts from the type IIIb chain coincided in position with the following type III burst at the same frequency. The difference of the daily averaged coordinates of both stria and type III bursts was considerably smaller than the mean diameter of their sources.The radial distance of the 25 MHz storm region from the solar center was calculated by using the three methods. The storm height was estimated as 1.8R from the rotation rate close to the central meridian of the storm center. Definite association of the spots with the storm near the limb allowed to determine the average value 2.1R for the height. The limb measurements give the mean height of 2.3R .The center-to-limb variation of the storm source height is a known fact in the meter-wavelength range. This is the evidence of the propagation effects in the solar corona being essential to interpret the results of the radio source location.  相似文献   

10.
Inferences about the formation of primordial matter in our solar system rest on analysis of the earliest preserved materials in meteorites, of the structure of the solar system today, and of matter in evolving stellar systems elsewhere.The isotope distribution in meteorites suggests that molecular excitation processes similar to those observed today in circumstellar regions and dark interstellar clouds were operating in the early solar nebula. Laboratory model experiments together with these observations give evidence on the thermal state of the source medium from which refractory meteoritic dust formed. They indicate that resonance excitation of the broad isotopic bands of molecules such as12C16O, MgO, O2, AlO, and OH by strong UV line sources such as H-L, MgII, H, and CaII may induce selective reactions resulting in the anomalous isotopic composition of oxygen and possibly other elements in refractory oxide condensates in meteorites.  相似文献   

11.
An analysis of the spectral distribution of intensity of the Hei recombination continuum is probably the only direct method for determination of the electron temperature of helium emission regions on the Sun. On the basis of data on the Hei Lyman continuum, obtained by Dupree and Reeves from OSO-4, the electron temperature of undisturbed helium regions is determined: T e = = 12500 K. Such a low T e value is a serious argument in favour of the predominant role of UV coronal radiation in the helium ionization on the Sun. Comparison of the Hei Lyman continuum data with results of observations of the 10830 line showed that the visible helium lines and Hei Lyman continuum are produced within the same regions of the undisturbed solar atmosphere at T e = 12500 K.  相似文献   

12.
V. A. Krat 《Solar physics》1967,1(2):191-203
A new model is proposed for the solar chromosphere, which is assumed to be an instable inhomogeneous formation, consisting of numerous elements (filaments), each with different temperature and density. Fluctuations of the magnetic field may give rise to chromospheric turbulence and may also cause the chromospheric inhomogeneities.The chromosphere is suggested to consist of four discrete groups of filaments: (1) metallic filaments where the conditions for the emission of lines of neutral metals are optimal, (2) hydrogenic elements, with optimum conditions for the emission of the Balmer series of hydrogen, (3) helium filaments, with optimum conditions for the appearence of the neutral helium lines, (4) the subcoronal filaments, representing a transition from chromospheric to coronal formations.The metallic filaments may be further subdivided, first into filaments where the emission arises from scattering of photospheric radiation - these emit lines of neutral metals and of some metallic ions (CaII, SrII, and others), and further into filaments where the emission is farther from LTE conditions; the latter filaments are characterized by a somewhat higher electron temperature and by an electron density at least exceeding that of the other elements by an order of 10. Computations of the optimum conditions for the emission of the neutral helium lines were made with the aid of new tables of Sobolev. The helium filaments in the low chromosphere have lower temperatures and are denser than those in the upper chromosphere; for a part they may also be considered as hydrogen filaments. The derivation of the physical parameters of the subcoronal filaments was based on data on the Heii4686 chromospheric line emission and also on rocket observations of the ultraviolet solar spectrum. In order to evaluate the relative distribution of the various filaments between heights of 0 and 5000 km, data on the radio emission of the Sun at 8 mm are also used. Characteristics of the proposed model of the chromosphere are given in Table III and Figure 1.  相似文献   

13.
The variation of spectral index 1.4 5 with luminosity (P 1.4) was investigated for Fanaroff and Riley type II galaxies and also for type I and type I/II galaxies. To reduce the effect of the redshift dependence of luminosity, samples which did not have widely different median redshifts were used and the data was binned into redshift ranges.By a comparison of the median spectral indices in different redshift bins for FRII galaxies, no dependence of spectral index was formed on redshift. However, an increase in spectral index with increasing luminosity was found. The results for FRI and FRI/II galaxies were similar to those for the FRII galaxies.  相似文献   

14.
Wavelengths of solar spectrum lines should be shifted toward the red by the Sun's gravitational field as predicted by metric theories of gravity according to the principle of equivalence. Photographic wavelengths of 738 solar Fe i lines and their corresponding laboratory wavelengths have been studied. The measured solar wavelength minus the laboratory wavelength (observed) averaged for the strong lines agrees well with the theoretically predicted shift (theoretical). Studies show that the departures depend on line strength. No dependence of the departures on wavelength was found within the existing data.By studying strong lines over a wide spectral range, velocity shifts caused by the complex motions in the solar atmosphere seem to affect the results in a minimal fashion.  相似文献   

15.
In the present paper we consider the frequency spectrum, time variations and polarization of the flux of synchrotron radio emission from a source which consists of two components flying apart in opposite directions with relativistic velocities at the same time expanding. A comparison of the calculations with unusual double-humped spectra of some radio sources suggests the existence in their nuclei of such double components which are at an early stage of relativistic ejection. In particular the double-humped spectra of 3C 84 and 4C 50.11/NRAO-150 can be interpreted in the proposed model (see Figures 6, 7, 12 and Equations (22), (32)). In this model the ratio of maximum frequenciesv 1m/v 2m should be larger than that of the maximum fluxesF v1m (1)/F v2m (2).The linear polarization of the double-humped spectrum is analysed. It is found under rather specific conditions that at the low-frequency maximum of the spectrum of the type given in Figures 6 and 7 a lower degree of linear polarization is expected than at the high-frequency maximum. In addition, it is natural to expect the appearance of circular polarization in sources with internal largescale relativistic motions. The time variations of the radio flux of some QSS, N-galaxies, and nuclei of Seyfert galaxies can also be interpreted in the suggested model of two clouds of relativistic electrons flying apart in different directions with relativistic velocities while simultaneously expanding. For example, Figure 11 shows the flux variations at 3 frequencies whose ratio is 16:4:1. This picture is similar to the observations of 3C 279 at 3.4 mm, 2 cm and 6 cm, and several other sources (Kellermann andPauliny-Toth, 1968).There have been a number of attempts to explain the flux variations of radio sources in the model of successive, but unrelated outbursts of clouds of relativistic electrons caused by supernova explosions. This model meets many difficulties and seems improbable. In this paper we suggest experimental tests to make a final choice between the model of double components flying apart relativistically and the model of two successive, but unrelated, outbursts from supernovae.If the suggested model of explosions in radio sources is correct, then the processes of variable energy output in such different populations as QSS, N-galaxies, radio-galaxies and the nuclei of normal galaxies have a similar nature, differing only in quantity.Translated by D. F. Smith.  相似文献   

16.
Calculations of electron temperature (T e) and density (N e) sensitive line ratios in Sixi involving transitions in the 358–604 wavelength range are presented. These are shown in the form of ratio-ratio diagrams, which should in principle allow bothN e andT e to be deduced for the Sixi line-emitting region of a plasma. However a comparison of these with observational data for two solar flares, obtained with the Naval Research Laboratory's S082A spectrograph on boardSkylab, reveals that the experimental ratios are much larger than expected from theory, which is probably due to the Sixi lines in the S082A spectra being blended with transitions from species including Nev, Fexi, and Fexii. Possible future applications of the Sixi results to spectral data from the Coronal Diagnostic Spectrometer on the Solar and Heliospheric Observatory are briefly discussed.  相似文献   

17.
41 galactic clusters containing stars with spectral types from O5 to B9 have been observed at frequencies of 1.4 GHz and 2.7 GHz. Only clusters with spectral types earlier than B1 show thermal radio emission. Emission measure, mean electron density, and mass ofHii gas have been computed from the observed data, and a comparison between the radio flux and H- and H-flux densities has been made. The ratio of hydrogen mass and total stellar mass of the clusters and the gas to dust ratio are given.  相似文献   

18.
Spectrographic observations of the flash spectrum were made by the Kwasan Observatory at the total solar eclipse on 7 March, 1970. The integrated intensities of Fexiv 5303, Fex 6374, and the continuum were measured on the spectrograms as a function of height above the Sun's limb. It was found that a large amount of emission in the coronal lines originates in the interspicular regions of the chromosphere. Analysis of the data yielded that the interspicular regions consist of coronal material of T e = 1.6 × 106–1.2 × 106 and log N e = 8.5–9.5, and that a decrease in T e and an increase in N e occur with decreasing height.  相似文献   

19.
The various physical parameters of a SNR can easily be worked out from graphs established on the basis of the recalibrated relation between the radio surface brightness , and the linear diameterD of a SNR (Ilovaisky and Lequeux, 1972). These graphs lead to the estimation of the distancer (kpc), linear diameterD (pc), monochromatic power at 1 GHz,P 1 GHz (W Hz–1); and total powerP tot (a) (erg. s–1) of a SNR, given its mean angular diameter <> (arc min), flux density at 1 GHz, S1 GHz (f.u.) and spectral indexa. Three SNR (W28A1, Monoceros SNR, W49B) are used to illustrate the case. The radio spectrum of one of these (W49B), curved at low frequencies, is explained in terms of absorption by the diffuse interstellar medium. Various cases are discussed and some physical parameters of the absorbing matter are established.  相似文献   

20.
Data obtained by the OSO-7 spectroheliograph on strong XUV lines of five, different Fe ions from the outer equatorial corona are presented. Interpretation of the data with a spherically symmetric model atmosphere gives average ion abundances for lines of sight at 0.3R from the limb. Fe xvi is usually more abundant than Fe xv, xiv, xii and ix, but there are times when Fe xii is more abundant than the other ions. The deviation of measured relative abundances of Fe xii, xiv, and xvi from predictions of ionization equilibrium at one temperature seems to indicate that there are appreciable temperature variations along lines of sight. Element abundances are very uncertain since they appear to depend so heavily on likely but unknown density irregularities along lines of sight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号