首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mariner 9 ultraviolet spectrometer observations show the Mars airglow consists principally of emissions that arise from the interaction of solar ultraviolet radiation with carbon dioxide, the principal constituent of the Mars atmosphere. Two minor constituents, atomic hydrogen and atomic oxygen, also produce airglow emissions. The airglow measurements show that ionized carbon dioxide is only a minor constituent of the ionosphere. Using the airglow measurements of atomic oxygen, it is possible to infer that the major ion is ionized molecular oxygen. The escape rate of atomic hydrogen measured by Mariner 9 is approximately the same as that measured two years earlier by Mariner 6 and 7. If the current escape rate has been operating for 4.5 billion years and if water vapor is the ultimate source, an amount of oxygen has been generated that is far in excess of that observed at present. Mariner 9 observations of Mars Lyman alpha emission over a period of 120 days show variations of 20%.  相似文献   

2.
This is a study of the kinetics and transport of hot oxygen atoms in the transition region (from the thermosphere to the exosphere) of the Martian upper atmosphere. It is assumed that the source of the hot oxygen atoms is the transfer of momentum and energy in elastic collisions between thermal atmospheric oxygen atoms and the high-energy protons and hydrogen atoms precipitating onto the Martian upper atmosphere from the solar-wind plasma. The distribution functions of suprathermal oxygen atoms by the kinetic energy are calculated. It is shown that the exosphere is populated by a large number of suprathermal oxygen atoms with kinetic energies up to the escape energy 2 eV; i.e., a hot oxygen corona is formed around Mars. The transfer of energy from the precipitating solar-wind plasma protons and hydrogen atoms to the thermal oxygen atoms leads to the formation of an additional nonthermal escape flux of atomic oxygen from the Martian atmosphere. The precipitation-induced escape flux of hot oxygen atoms may become dominant under the conditions of extreme solar events, such as solar flares and coronal mass ejections, as shown by recent observations onboard NASA’s MAVEN spacecraft (Jakosky et al., 2015).  相似文献   

3.
Long-term spectroscopic observations of the O2 dayglow at 1.27 μm result in a map of the latitudinal and seasonal behavior of the dayglow intensity for the full martian year. The O2 dayglow is a sensitive tracer of Mars' photochemistry, and this map reflects variations of Mars' photochemistry at low and middle latitudes. It may be used to test photochemical models. Long-term observations of the CO mixing ratio have been also combined into the seasonal-latitudinal map. Seasonal and latitudinal variations of the mixing ratios of CO and the other incondensable gases (N2, Ar, O2, and H2) discovered in our previous work are caused by condensation and sublimation of CO2 to and from the polar regions. They reflect dynamics of the atmosphere and polar processes. The observed map may be used to test global circulation models of the martian atmosphere. The observed global abundances of CO are in reasonable agreement with the predicted variations with the 11-year solar cycle. Despite the perfect observing conditions, methane has not been detected using the IRTF/CSHELL with a 3σ upper limit of 14 ppb. This upper limit does not rule out the value of 10 ppb observed using the Canada-France-Hawaii Telescope and the Mars Express Planetary Fourier Spectrometer.  相似文献   

4.
Density profiles for CO, O, and O2 in the Cytherean atmosphere above 90 km are plotted with eddy diffusion coefficient (K) as a parameter, subject to the constraint that the mixing ratios of CO and O2 approach their observed value or values under the observed upper limit at the lower boundary. It is then shown that the value of K puts upper limits on the amount of hydrogen (in the form of H2O, HCl, and H2) the atmosphere near 90km can contain. This value is a function of the density and temperature of hydrogen at the critical level and the magnitude of the total escape flux, where unspecified flux mechanisms other than thermal are postulated ad hoc. In general these constraints call for large values of K to accomodate the atomic hydrogen produced by measured mixing ratios of HCl and H2O. Hence they constrain thee amount of O in the upper atmosphere to values well under 1% at 130 km unless there are very large hydrogen escape fluxes, 107 cm?2sec?1 or larger. The freedom to assume arbitrary amounts of H2 in the atmosphere is also restricted. We suggest either very effective escape mechanisms—despite low exospheric hydrogen densities—or novel excitation mechanisms for O(33S) and O(35S) in the upper atmosphere.  相似文献   

5.
There is a significant progress in the observational data relevant to Mars photochemistry in the current decade. These data are not covered by and sometimes disagree with the published models. Therefore we consider three types of models for Mars photochemistry. A steady-state model for global-mean conditions is currently the only way to calculate the abundances of long living species (H2, O2, and CO). However, our model does not fit the observed CO abundance using gas-phase chemistry and reasonable values of heterogeneous loss of odd hydrogen on the water ice aerosol. The second type of the calculated models is steady-state models for local conditions. The MGS/TES data on temperature profiles, H2O, and dust are input parameters for these models. The calculations have been made for nine seasonal points spread over the martian year and for twelve latitudes with a step of 10° for each season. The only adopted heterogeneous reaction is a weak loss of H2O2 on water ice with probability of 5×10−4. The results are in good agreement with the recent observations of the O2 dayglow at 1.27 μm and the O3 and H2O2 abundances. Global maps of the seasonal and latitudinal behavior of these species have been made. The third type of models is a time-dependent model for local conditions. These models show that odd hydrogen quickly converts to H2O2 at the nighttime and the chemistry is switched off while the association of O, the heterogeneous loss of H2O2, and eddy diffusion continue. This requires significant changes in the global-mean and local steady-state models discussed above, and these changes have been properly done. The calculated diurnal variations of Mars photochemistry are discussed. The martian photochemistry at low and middle latitudes is significantly different in the aphelion period at LS=10°-130° from that in the remaining part of the year.  相似文献   

6.
The evolution of the martian atmosphere with regard to its H2O inventory is influenced by thermal loss processes of H, H2, nonthermal atmospheric loss processes of H+, H2+, O, O+, CO2, and O2+ into space, as well as by chemical weathering of the surface soil. The evolution of thermal and nonthermal escape processes depend on the history of the intensity of the solar XUV radiation and the solar wind density. Thus, we use actual data from the observation of solar proxies with different ages from the Sun in Time program for reconstructing the Sun's radiation and particle environment from the present to 3.5 Gyr ago. The correlation between mass loss and X-ray surface flux of solar proxies follows a power law relationship, which indicates a solar wind density up to 1000 times higher at the beginning of the Sun's main sequence lifetime. For the study of various atmospheric escape processes we used a gas dynamic test particle model for the estimation of the pick up ion loss rates and considered pick up ion sputtering, as well as dissociative recombination. The loss of H2O from Mars over the last 3.5 Gyr was estimated to be equivalent to a global martian H2O ocean with a depth of about 12 m, which is smaller than the values reported by previous studies. If ion momentum transport, a process studied in detail by Mars Express is significant on Mars, the water loss may be enhanced by a factor of about 2. In our investigation we found that the sum of thermal and nonthermal atmospheric loss rates of H and all nonthermal escape processes of O to space are not compatible with a ratio of 2:1, and is currently close to about 20:1. Escape to space cannot therefore be the only sink for oxygen on Mars. Our results suggest that the missing oxygen (needed for the validation of the 2:1 ratio between H and O) can be explained by the incorporation into the martian surface by chemical weathering processes since the onset of intense oxidation about 2 Gyr ago. Based on the evolution of the atmosphere-surface-interaction on Mars, an overall global surface sink of about 2×1042 oxygen particles in the regolith can be expected. Because of the intense oxidation of inorganic matter, this process may have led to the formation of considerable amounts of sulfates and ferric oxides on Mars. To model this effect we consider several factors: (1) the amount of incorporated oxygen, (2) the inorganic composition of the martian soil and (3) meteoritic gardening. We show that the oxygen incorporation has also implications for the oxidant extinction depth, which is an important parameter to determine required sampling depths on Mars aimed at finding putative organic material. We found that the oxidant extinction depth is expected to lie in a range between 2 and 5 m for global mean values.  相似文献   

7.
The processes of kinetics and transport of hot oxygen and hydrogen atoms in the transition (from the thermosphere to the exosphere) region of the upper Martian atmosphere are studied. The reaction of dissociative recombination of the principal ionospheric ion O 2 + with thermal electrons in the ionosphere of Mars served as the source of hot oxygen atoms. The process of momentum and energy transfer in elastic collisions between hot oxygen atoms and atmospheric hydrogen atoms with thermal energies was regarded as the source of hot hydrogen atoms. The kinetic energy distribution functions are determined for suprathermal oxygen and hydrogen atoms. It is shown that the exosphere is populated with a significant number of suprathermal oxygen atoms with kinetic energies ranging up to the escape energy of 2 eV (i.e., the hot oxygen Martian corona is formed). The transfer of energy from hot oxygen atoms to thermal hydrogen atoms creates an additional nonthermal flux of atomic hydrogen escaping from the Martian atmosphere.  相似文献   

8.
A comparison of global models for the solar wind interaction with Mars   总被引:1,自引:1,他引:0  
We present initial results from the first community-wide effort to compare global plasma interaction model results for Mars. Seven modeling groups participated in this activity, using MHD, multi-fluid, and hybrid assumptions in their simulations. Moderate solar wind and solar EUV conditions were chosen, and the conditions were implemented in the models and run to steady state. Model output was compared in three ways to determine how pressure was partitioned and conserved in each model, the location and asymmetry of plasma boundaries and pathways for planetary ion escape, and the total escape flux of planetary oxygen ions. The two participating MHD models provided similar results, while the five sets of multi-fluid and hybrid results were different in many ways. All hybrid results, however, showed two main channels for oxygen ion escape (a pickup ion ‘plume’ in the hemisphere toward which the solar wind convection electric field is directed, and a channel in the opposite hemisphere of the central magnetotail), while the MHD models showed one (a roughly symmetric channel in the central magnetotail). Most models showed a transition from an upstream region dominated by plasma dynamic pressure to a magnetosheath region dominated by thermal pressure to a low altitude region dominated by magnetic pressure. However, calculated escape rates for a single ion species varied by roughly an order of magnitude for similar input conditions, suggesting that the uncertainties in both the current and integrated escape over martian history as determined by models are large. These uncertainties are in addition to those associated with the evolution of the Sun, the martian dynamo, and the early atmosphere, highlighting the challenges we face in constructing Mars’ past using models.  相似文献   

9.
Current theoretical models do not satisfactorily explain observed variations of the global exospheric atomic hydrogen density distribution. Differences between the mesospheric upward flux and the Jeans escape mechanism indicate that other escape fluxes affect hydrogen density. Observations of latitudinal depletions and an early morning trough in the exosphere can be attributed to the influence of additional escape mechanisms. These variations of the exospheric hydrogen density distribution seem to be correlated with other observed variations in the atmosphere; however, no straightforward explanation has been proposed to date.  相似文献   

10.
The following problems related to the origin of methane on Mars have been considered. (1) Laboratory simulations of the impact phenomena confirm effective heterogeneous chemistry between the products of the fireball. This chemistry lowers the fireball freezing temperature from 2000 to 750 K for methane and to 1100 K for CO/CO2. Production of methane on Mars by cometary impacts is 0.8% of the total production. A probability that the observed methane on Mars came from impact of a single comet is 0.0011. (2) The PFS observations of variations of methane on Mars require a very effective heterogeneous loss of methane. Heterogeneous effect of dust is half that of the surface rocks. Thermochemical equilibrium requires production, not loss, of methane. Existing kinetic data show a very low efficiency of heterogeneous reactions of methane. Highly reactive superoxide ions generated by the solar UV photons on the martian rocks cannot remove methane. The required efficiency of heterogeneous loss of methane on Mars is higher than that on Earth by a factor of ?1000, although the expected efficiency on Earth is stronger than that on Mars because of the liquid ocean and the abundant oxygen. All these inconsistencies may be removed if variations of the rock reflectivity contribute to the PFS observations of methane on Mars. The PFS data on H2CO, HCl, HF, and HBr also raise doubts. (3) Although geologic sources of methane are possible, the lack of current volcanism, hydrothermal activity, hot spots, and very low seepage of gases from the interior are not favorable for geologic methane. Any proposed geological source of methane on Mars should address these problems. Some weak points in the suggested geologic sources are discussed. (4) Measurements of 13C/12C and D/H in methane would be difficult because of the low methane abundance. These ratios are mostly sensitive to a temperature of methane formation and cannot distinguish between biogenic and low-temperature geologic sources. Their analysis requires the carbon isotope ratio in CO2 on Mars, which is known with the insufficient accuracy, and D/H in water, which is different in the atmosphere, polar caps, regolith and interior. Therefore, the stable isotope ratios may not give a unique answer on the origin of methane. (5) Ethane and propane react with OH much faster than methane. If their production relative to methane is similar to that on Earth, then their expected abundances on Mars are of a few parts per trillion. (6) Loss of SO2 in the reaction with peroxide on ice is smaller than its gas-phase loss by an order of magnitude. The overall results strengthen the biogenic origin of martian methane and its low variability.  相似文献   

11.
Loss of water from Venus. I. Hydrodynamic escape of hydrogen   总被引:1,自引:0,他引:1  
A one-dimensional photochemical-dynamic model is used to study hydrodynamic loss of hydrogen from a primitive, water-rich atmosphere on Venus. The escape flux is calculated as a function of the H2O mixing ratio at the atmospheric cold trap. The cold-trap mixing ratio is then related in an approximate fashion to the H2O concentration in the lower atmosphere. Hydrodynamic escape should have been the dominant loss process for hydrogen when the H2O mass mixing ratio in the lower atmosphere exceeded ~0.1. The escape rate would have depended upon the magnitude of the solar ultraviolet flux and the atmospheric euv heating efficiency and, to a lesser extent, on the O2 content of the atmosphere. The time required for Venus to have lost the bulk of a terrestrial ocean of water is on the order of a billion years. Deutrium would have been swept away along with hydrogen if the escape rate was high enough, but some D/H enrichment should have occurred as the escape rate slowed down.  相似文献   

12.
Noble gas 40Ar may be used as a tracer of the past evolution of volatiles in Mars’ crust, mantle and atmosphere. 40Ar is formed by the radioactive decay of 40K in the mantle and in the crust and is released from the mantle to the atmosphere due to volcanism and from the crust by erosion such as eolian and hydrothermal erosion. Furthermore, 40Ar can escape from the atmosphere into space via atmospheric escape mechanisms. The evolution of the atmospheric abundance of 40Ar thus depends on these three processes whose efficiencies vary with time.In the present study we reconsider atmospheric escape mechanism efficiencies and describe various possible scenarios of the evolution of 40Ar with a model describing the three main reservoirs of 40Ar, the mantle, crust and atmosphere. First, we show that atmospheric escape, which is stronger in the early evolution, does not significantly influence the present abundance of the atmospheric 40Ar. In the early evolution the atmospheric concentration of 40Ar is very low as the outgassing of 40Ar from the mantle occurs relatively late in the martian evolution. Thus, the atmospheric 40Ar concentration is essentially a tracer of Mars’ outgassing history and not of the escape processes. Second, using the results of the most recent published crustal formation models, the calculated present 40Ar atmospheric abundance is smaller than its observed value. This discrepancy may be explained by a significant 40Ar supply from the crust by erosion (16–30% of the 40Ar content of the upper first 10 km of crust). The knowledge of the fraction of crustal 40Ar outgassed to the atmosphere is an important constraint for any future global modelling of past Mars’ hydrothermal activity aiming at better characterizing the role of subsurface aqueous alteration processes in Mars climate evolution. One of the main sources of the uncertainty of these results is the present uncertainty in the measured atmospheric 40Ar value (±20%). More precise measurements of 40Ar and 36Ar in the martian atmosphere are therefore required to better constrain the model.  相似文献   

13.
Oxygen and carbon isotope ratios in the martian CO2 are key values to study evolution of volatiles on Mars. The major problems in spectroscopic determinations of these ratios on Mars are uncertainties associated with: (1) equivalent widths of the observed absorption lines, (2) line strengths in spectroscopic databases, and (3) thermal structure of the martian atmosphere during the observation. We have made special efforts to reduce all these uncertainties. We observed Mars using the Fourier Transform Spectrometer at the Canada–France–Hawaii Telescope. While the oxygen and carbon isotope ratios on Mars were byproducts in the previous observations, our observation was specifically aimed at these isotope ratios. We covered a range of 6022 to 6308 cm−1 with the highest resolving power of ν/δν=3.5×105 and a signal-to-noise ratio of 180 in the middle of the spectrum. The chosen spectral range involves 475 lines of the main isotope, 184 lines of 13CO2, 181 lines of CO18O, and 119 lines of CO17O. (Lines with strengths exceeding 10−27 cm at 218 K are considered here.) Due to the high spectral resolution, most of the lines are not blended. Uncertainties of retrieved isotope abundances are in inverse proportion to resolving power, signal-to-noise ratio, and square root of the number of lines. Laboratory studies of the CO2 isotope spectra in the range of our observation achieved an accuracy of 1% in the line strengths. Detailed observations of temperature profiles using MGS/TES and data on temperature variations with local time from two GCMs are used to simulate each absorption line at various heights in each part of the instrument field of view and then sum up the results. Thermal radiation of Mars' surface and atmosphere is negligible in the chosen spectral range, and this reduces errors associated with uncertainties in the thermal structure on Mars. Using a combination of all these factors, the highest accuracy has been achieved in measuring the CO2 isotope ratios: 13C/12C = 0.978 ± 0.020 and 18O/16O = 1.018 ± 0.018 times the terrestrial standards. Heavy isotopes in the atmosphere are enriched by nonthermal escape and sputtering, and depleted by fractionation with solid-phase reservoirs. The retrieved ratios show that isotope fractionation between CO2 and oxygen and carbon reservoirs in the solid phase is almost balanced by nonthermal escape and sputtering of O and C from Mars.  相似文献   

14.
Photoelectron peaks in the atmosphere of Mars caused by the ionization of carbon dioxide and atomic oxygen by solar 30.4 nm photons have been observed by the Electron Spectrometer (ELS), a component of the Mars Express (MEx) Analyzer of Space Plasmas and Energetic Atoms (ASPERA-3) experiment. Ionization mostly occurs at the Mars exobase with the majority of the photoionized electron flux trapped in the remanent and induced magnetic field, with a portion of that flux escaping the planet down its tail. Since Mars is overall charge neutral, the number of electrons must be identical to the number of ion charges which escape the planet. An estimate of the fraction of the total number of escaping electrons is obtained for the year 2004, specifically those produced by the ionization of carbon dioxide and atomic oxygen by solar 30.4 nm photons. In achieving this process, an illustrative example pass is used to show how the electron spectrum is adjusted for the potential on the spacecraft; then the region of the electron spectrum which shows photoelectron peaks is integrated over energy, yielding a flux of 5.74 × 106 electrons/(cm2 s sr). This technique is then applied to a subset of 22 sample averaged spectra from the 2004 data (5 January 2004 through 25 January 2005), yielding an average result of 4.15 × 106 electrons/(cm2 s sr) for the 22 cases. The observation cone of 33.75° is used to integrate over solid angle (assuming the flux is constant), giving 4.39 × 106 electrons/(cm2 s). This average value was taken as representative of the full data interval. Frequency of occurrence statistics showing about a 6.2% occurrence rate for the 2004 data is applied to give an average escape flux from Mars of 2.72 × 105 electrons/(cm2 s) during 2004. By estimating the outflow area as 1.16 × 1018 cm2 at X = −1.5 RMars the electron escape rate of 3.14 × 1023 electrons/s is obtained. Thus about 9.92 × 1030 electrons or 16.5 Mmole of electrons escaped Mars during 2004 due to the ionization of carbon dioxide and atomic oxygen by the He 30.4 nm line. Due to the caveats of the analysis, these derived escape rates should be considered lower limits on the total electron escape rate from Mars.  相似文献   

15.
High-resolution spectra of Venus and Mars at the NO fundamental band at 5.3 μm with resolving power ν/δν=76,000 were acquired using the TEXES spectrograph at NASA IRTF on Mauna Kea, Hawaii. The observed spectrum of Venus covered three NO lines of the P-branch. One of the lines is strongly contaminated, and the other two lines reveal NO in the lower atmosphere at a detection level of 9 sigma. A simple photochemical model for NO and N at 50-112 km was coupled with a radiative transfer code to simulate the observed equivalent widths of the NO and some CO2 lines. The derived NO mixing ratio is 5.5±1.5 ppb below 60 km and its flux is . Predissociation of NO at the (0-0) 191 nm and (1-0) 183 nm bands of the δ-system and the reaction with N are the only important loss processes for NO in the lower atmosphere of Venus. The photochemical impact of the measured NO abundance is significant and should be taken into account in photochemical modeling of the Venus atmosphere. Lightning is the only known source of NO in the lower atmosphere of Venus, and the detection of NO is a convincing and independent proof of lightning on Venus. The required flux of NO is corrected for the production of NO and N by the cosmic ray ionization and corresponds to the lightning energy deposition of . For a flash energy on Venus similar to that on the Earth (∼109 J), the global flashing rate is ∼90 s−1 and ∼6 km−2 y−1 which is in reasonable agreement with the existing optical observations. The observed spectrum of Mars covered three NO lines of the R-branch. Two of these lines are contaminated by CO2 lines, and the line at 1900.076 cm−1 is clean and shows some excess over the continuum. Some photochemical reactions may result in a significant excitation of NO (v=1) in the lowest 20 km on Mars. However, quenching of NO (v=1) by CO2 is very effective below 40 km. Excitation of NO (v=1) in the collisions with atomic oxygen is weak because of the low temperature in the martian atmosphere, and we do not see any explanation of a possible emission of NO at 5.3 μm. Therefore the data are treated as the lack of absorption with a 2 sigma upper limit of 1.7 ppb to the NO abundance in the lower atmosphere of Mars. This limit is above the predictions of photochemical models by a factor of 3.  相似文献   

16.
17.
S.C. Liu  T.M. Donahue 《Icarus》1976,28(2):231-246
It is shown that under present conditions the Jeans escape flux of hydrogen from Mars in the form of H and H2 is constrained to be the same as twice the non-thermal (McElroy, 1972) escape of O atoms. The mediation of the chemical chain that recombines CO2 plays an essential role in regulating the escape of hydrogen to match that of oxygen, confirming a mechanism postulated by McElroy and Donahue (1972). It is also shown that if the oxygen flux changes, a change in the O2 mixing ratio results and the consequence is to induce a large change in the odd hydrogen concentration, and consequently in H2 production and hydrogen escape. The effect is to stabilize the hydrogen escape flux at twice the O flux. It is shown that surface chemistry should not change the operation of this mechanism but has consequences for the eddy coefficient variation at low altitudes. There is a strong correlation between low humidity, large solar zenith angles and large O3 abundances. The effect of argon in a mixing ratio as large as 0.3 on these results is also investigated.  相似文献   

18.
T.Y. Kong  M.B. McElroy 《Icarus》1977,32(2):168-189
A variety of models are explored to study the photochemistry of CO2 in the Martian atmosphere with emphasis on reactions involving compounds of carbon, hydrogen, and oxygen. Acceptable models are constrained to account for measured concentrations of CO and O above 90 km, with an additional requirement that they should be in accord with observations of CO, O2, and O3 in the lower atmosphere. Dynamical mixing must be exceedingly rapid at altitudes above 90 km, with effective eddy diffusion coefficients in excess of 107 cm2 sec?1. If recombination of CO2 is to occur mainly by gas phase chemistry, catalyzed by trace quantities of H, OH, and HO2, mixing must be rapid over the altitude interval 30 to 40 km. The value implied for the diffusion coefficient in this region is a function of assumptions made regarding the rates for reaction of OH with HO2 to form H2O and of the rate for reaction of HO2 with itself to form H2O2. If rates for these reactions are taken to have values similar to rates used in current models for the Earth's stratosphere, the eddy diffusion coefficient at 40 km on Mars should be about 5 × 107 cm2 sec?1, consistent with Zurek's (1976) estimate for this parameter inferred from tidal theory. Surface chemistry could have an influence on the abundances of atmospheric CO and O2, but a major effect would imply sluggish mixing at all altitudes below 50 km and in addition would carry implications for the magnitude of the rates for reaction of OH with HO2 and HO2 with itself.  相似文献   

19.
108 +/- 11 photons of the martian He 584-angstroms airglow detected by the Extreme Ultraviolet Explorer satellite during a 2-day exposure (January 22-23, 1993) correspond to the effective disk average intensity of 43 +/- 10 Rayleigh. Radiative transfer calculations, using a model atmosphere appropriate to the conditions of the observation and having an exospheric temperature of 210 +/- 20 K, result in a He mixing ratio of 1.1 +/- 0.4 ppm in the lower atmosphere. Nonthermal escape of helium is due to electron impact ionization and pickup of He+ by the solar wind, to collisions with hot oxygen atoms, and to charge exchange with molecular species with corresponding column loss rates of 1.4 x 10(5), 3 x 10(4), and 7 x 10(3) cm-2 sec-1, respectively. The lifetime of helium on Mars is 5 x 10(4) years. The He outgassing rate, coupled with the 40Ar atmospheric abundance and with the K:U:Th ratio measured in the surface rocks, is used as input to a single two-reservoir degassing model which is applied to Mars and then to Venus. A similar model with known abundances of K, U, and Th is applied to Earth. The models for Earth and Mars presume loss of all argon accumulated in the atmospheres during the first billion years by large-scale meteorite and planetesimal impacts. The models show that the degassing coefficients for all three planets may be approximated by function delta = delta (0)(t(0)/t)1/2 with delta (0) = 0/1, 0.04, and 0.0125 Byr-1 for Earth, Venus, and Mars, respectively. After a R2 correction this means that outgassing processes on Venus and Mars are weaker than on Earth by factors of 3 and 30, respectively. Mass ratios of U and Th are almost the same for all three planets, while potassium is depleted by a factor of 2 in Venus and Mars. Mass ratios of helium and argon are close to 5 x 10(-9) and 2 x 10(-8) g/g in the interiors of all three planets. The implications of these results are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号