首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In order to assess the geological environment impact of a city landfill by the Yangtze River, soils from different depths in the dumpsite were sampled and analyzed. It was found that pollutants content at the site was distinctly higher than that in nearby environments. The content of heavy metals, such as Cd, Hg, As, Pb and Cu, reduces as depth increases; the content of elements F, Cl and N is the contrary. Pollutants migration driven by underground water flow was analyzed, considering the hydro-geological conditions of the site. It is believed that, due to leaching after rainfall infiltration, pollutants in the garbage layer migrates deeper, the cohesive soil in the underlying surface prevents them from spreading to the deeper aquifer; additionally, the high pressure tolerance of the deep groundwater is a key factor in preventing pollutants from entering the aquifer. Furthermore, human control has reduced the annual fluctuation range of water level in nearby rivers, weakening the hydrodynamic relations with phreatic water, and thus reducing the spreading of pollutants to nearby surface waters.  相似文献   

2.
The spatial and temporal distribution of redox zones in an aquifer is important when designing groundwater supply systems. Redox zonation can have direct or indirect control of the biological and chemical reactions and mobility of pollutants. In this study, redox conditions are characterized by interpreting the hydrogeological conditions and water chemistry in groundwater during bank infiltration at a site in Shenyang, northeast China. The relevant redox processes and zonal differences in a shallow flow path and deeper flow path at the field scale were revealed by monitoring the redox parameters and chemistry of groundwater near the Liao River. The results show obvious horizontal and vertical components of redox zones during bank filtration. Variations in the horizontal extent of the redox zone were controlled by the different permeabilities of the riverbed sediments and aquifer with depth. Horizontally, the redox zone was situated within 17 m of the riverbank for the shallow flow path and within 200 m for the deep flow path. The vertical extent of the redox zone was affected by precipitation and seasonal river floods and extended to 10 m below the surface. During bank filtration, iron and manganese oxides or hydroxides were reductively dissolved, and arsenic that was adsorbed onto the medium surface or coprecipitated is released into the groundwater. This leads to increased arsenic content in groundwater, which poses a serious threat to water supply security.  相似文献   

3.
The continuous and large-scale abstraction of groundwater has created a groundwater depletion problem in several parts of the Punjab state including Bist Doab, the interfluve region of Beas and Satluj rivers. In the present study, a few important parameters, viz. water level, stable isotope, EC, temperature, groundwater age, that can be used to fingerprint the over-exploitation of groundwater have been examined. It has been observed that with the increase in over-exploitation, the yield of shallow aquifer is progressively getting reduced and as a result forcing the farmers to sink their wells to deeper depths. With abstraction of deeper aquifer, the storage of old groundwater at the deeper aquifer is declining and getting replaced by induced accelerated inflow of young water from the recharge zone and the overlying shallow aquifer. The signatures of the modern water have been observed in the data analyzed for isotopic, hydro-chemical facies, electrical conductivity and temperature of water from deeper aquifer. The study has identified the usefulness of these parameters for identifying groundwater over-exploitation in the region. Depleting water resource may stagnate the economic progress of the region. The paper provides suitable water resource management strategies to be adopted to improve the sustainability of water resources and economic growth in the region.  相似文献   

4.

Springs are commonly used as low-cost monitoring locations to assess groundwater quality and long-term trends. However, spring waters in many settings are a mixture of groundwater sources that range in physical properties and water chemistry. The objective of this work was to determine water sources of springs emerging from the North American midcontinent Cambrian-Ordovician aquifer system at a fish hatchery near Lanesboro, Minnesota (USA), and compare and contrast the sources to shallower and deeper sources. The hydrology of the Lanesboro State Fish Hatchery has been studied for decades using a combination of dye tracing, thermal monitoring, geochemical sampling, and nearby borehole and outcrop observations. Previous studies are integrated with recently collected dye tracing results and geochemical data to develop a comprehensive conceptual model of groundwater flow. Dye trace findings and geochemistry indicate well-developed karst and bedrock fractures in shallowly buried unconfined carbonate formations are important transport pathways to convey anthropogenically influenced waters from the land surface to the hatchery springs. However, borehole dye traces, thermal monitoring, continuous nitrate monitoring, and mixing calculations show that a deeper confined siliciclastic aquifer is responsible for delivering relatively pristine water that accounts for about half of hatchery spring flux. Characterization of the hatchery’s groundwater systems provides fishery managers with information to protect this vital resource and improved context to interpret water-quality-monitoring data that track agricultural contaminants. The methods and results of this study may be widely applicable across a large extent of the Cambrian-Ordovician aquifer system, and to multiaquifer sedimentary bedrock systems elsewhere.

  相似文献   

5.
A study of tritium content and some physicochemical parameters has been performed in order to investigate interconnection between surface and atmospheric waters and underground waters in Belgrade area. Samples of the precipitation at Zeleno Brdo-Belgrade meteorological station, the Danube and the Sava river water, and underground water (Ranney wells and piezometers) have been analyzed. The3H content, the content of dissolved ions, total hardness, and electrical conductivity have been measured. The tritium data show existence of two water strata in the aquifer. The upper stratum (about 16 m thick) contains older water (mean monthly3H concentration of 17 TU) and has weak interaction with the river and the precipitation. Below this stratum lies the principal water bearing stratum, strongly connected with the river with the3H concentration similar to that of surface water (mean monthly3H concentration of 50 TU) and spreading out through the entire aquifer. The contribution of the Sava river water and the two water layers at the Ranney well are calculated starting with the hydrological aquifer model, which supposes that three water components are mixed in the pumped Ranney well water. According to calculation results using the3H concentration and physicochemical characteristics as parameters, more than 70 percent of the water pumped by the Ranney well (in 1983) comes from the Sava with a time delay of less that 15 days.Properties of tritium distribution in precipitation, river waters, and underground water in the Belgrade region are established from the results of measurements of3H concentrations in the period 1976–1983.  相似文献   

6.
Azraq Oasis in the eastern Jordanian desert is an important freshwater resource of the country. Shallow groundwater reserves are heavily exploited since the 1980s and in consequence the groundwater table dropped significantly. Furthermore, some wells of the major well field drilled into the shallow aquifer show an increasing mineralization over the past 20 years. A previous study using conventional tracers did not result in a satisfactory explanation, from where the salt originates and why only a few wells are affected. In this study, the application of dissolved noble gases in combination with other tracer methods reveals a complex mixing pattern leading to the very localized salinization within the well field. It is found that primarily the wells affected by salinization 1) contain distinctly more radiogenic 4He than the other wells, indicating higher groundwater age, and 2) exhibit 3He/4He ratios that argue for an imprint of deep fluids from the Earth's mantle.However, the saline middle aquifer below is virtually free of mantle helium, which infers an upstream from an even deeper source through a nearby conductive fault. The local restriction of the salinization process is explained by the wide range of permeabilities of the involved geologic units. As the wells abstract water from the whole depth profile, they initially pump water mainly from the well conductive top rock layer. As the groundwater table dropped, this layer fell progressively dry and, depending on the local conductivity profile, some wells began to incorporate more water from the deeper part of the shallow aquifer into the discharge. These are the wells affected by salinization, because according to the presented scheme the deep part of the shallow aquifer is enriched in both salt and mantle fluids.  相似文献   

7.
Increased groundwater withdrawals for the growing population in the Rio Grande Valley and likely alteration of recharge to local aquifers with climate change necessitates an understanding of the groundwater connection between the Jornada del Muerto Basin and the adjoining and more heavily used aquifer in the Mesilla Basin. Separating the Jornada and Mesilla aquifers is a buried bedrock high from Tertiary intrusions. This bedrock high or divide restricts and/or retards interbasin flow from the Jornada aquifer into the Mesilla aquifer. The potentiometric surface of the southern Jornada aquifer near part of the bedrock high indicates a flow direction away from the divide because of a previously identified damming effect, but a groundwater outlet from the southern Jornada aquifer is necessary to balance inputs from the overall Jornada aquifer. Differences in geochemical constituents (major ions, δD, δ18O, δ34S, and 87Sr/86Sr) indicate a deeper connection between the two aquifers through the Tertiary intrusions where Jornada water is geochemically altered because of a geothermal influence. Jornada groundwater likely is migrating through the bedrock high in deeper pathways formed by faults of the Jornada Fault Zone, in addition to Jornada water that overtops the bedrock high as previously identified as the only connection between the two aquifers. Increased groundwater withdrawals and lowering of the potentiometric surface of the Jornada aquifer may alter this contribution ratio with less overtopping of the bedrock high and a continued deeper flowpath contribution that could potentially increase salinity values in the Mesilla Basin near the divide.  相似文献   

8.
Agricultural contamination of groundwater in northwestern Mississippi, USA, has not been studied extensively, and subsurface fluxes of agricultural chemicals have been presumed minimal. To determine the factors controlling transport of nitrate-N into the Mississippi River Valley alluvial aquifer, a study was conducted from 2006 to 2008 to estimate fluxes of water and solutes for a site in the Bogue Phalia basin (1,250 km2). Water-quality data were collected from a shallow water-table well, a vertical profile of temporary sampling points, and a nearby irrigation well. Nitrate was detected within 4.4 m of the water table but was absent in deeper waters with evidence of reducing conditions and denitrification. Recharge estimates from 6.2 to 10.9 cm/year were quantified using water-table fluctuations, a Cl tracer method, and atmospheric age-tracers. A mathematical advection-reaction model predicted similar recharge to the aquifer, and also predicted that 15% of applied nitrogen is leached into the saturated zone. With current denitrification and application rates, the nitrate-N front is expected to remain in shallow groundwater, less than 6–9 m deep. Increasing application rates resulting from intensifying agricultural demands may advance the nitrate-N front to 16–23 m, within the zone of groundwater pumping.  相似文献   

9.
Many cities and towns in South and Southeast Asia are unsewered, and urban wastewaters are often discharged either directly to the ground or to surface-water canals and channels. This practice can result in widespread contamination of the shallow groundwater. In Hat Yai, southern Thailand, seepage of urban wastewaters has produced substantial deterioration in the quality of the shallow groundwater directly beneath the city. For this reason, the majority of the potable water supply is obtained from groundwater in deeper semi-confined aquifers 30–50 m below the surface. However, downward leakage of shallow groundwater from beneath the city is a significant component of recharge to the deeper aquifer, which has long-term implications for water quality. Results from cored boreholes and shallow nested piezometers are presented. The combination of high organic content of the urban recharge and the shallow depth to the water table has produced strongly reducing conditions in the upper layer and the mobilisation of arsenic. A simple analytical model shows that time scales for downward leakage, from the surface through the upper aquitard to the semi-confined aquifer, are of the order of several decades. Electronic Publication  相似文献   

10.
《Applied Geochemistry》2003,18(7):1043-1063
The Memphis aquifer in southwestern Tennessee is confined to a semi-confined unconsolidated sand aquifer and is the primary municipal water source in the Memphis metropolitan area. Past studies have identified regions in the metropolitan area in which the overlying upper Claiborne confining unit lacks significant clay and provides a hydraulic connection between the shallow aquifer and the Memphis aquifer. In this study, major solute chemistry, 3H, and 3H/3He groundwater dating are used to investigate the extent and chemical effects of leakage through the confining unit to the Memphis aquifer in the vicinity of a municipal well field. The 3H/3He dates and geochemical modeling of the chemical data are used to constrain mixing fractions and the timing of modern recharge. Tritium activities of as much as 2.8 TU are observed in shallow production wells, but deeper production wells have 3H activities that approach the detection limit. Trends in water chemistry indicate vertical mixing in the aquifer of shallow Na–SO4–Cl-rich water and deeper Ca–Mg–HCO3-rich water. Water chemistry does not vary consistently with seasonal pumping, but 3H activity generally decreases during low use periods. Stable O and H isotopes show little variation and are not useful groundwater tracers for this study. The 3H-bearing, Na–SO4–Cl-rich water is interpreted to reflect recharge of modern water through the upper Claiborne confining unit. The 3H/3He dates from 5 production wells indicate modern recharge, that infiltrated 15–20 a ago, is present in the shallow production wells. Geologic data and hydrologic boundary conditions suggest that the most likely source for continued leakage is a nearby stream, Nonconnah Creek. Geochemical reaction modeling using the NETPATH computer code suggests that proportions of shallow aquifer water leaking into the Memphis aquifer range from 6 to 32%. The 3H/3He dating and NETPATH modeling results correlate well, suggesting that these complementary analytical tools provide an effective means to evaluate proportions of modern water leaking into semi-confined aquifers. These results also indicate a need to carefully consider connections between surface water and semi-confined groundwater resources in wellhead protection programs.  相似文献   

11.
The deeper groundwater (depending on definition) of the Bengal basin (Ganges-Brahmaputra delta) has long been considered as an alternate, safe drinking-water source in areas with As-enrichment in near-surface groundwater. The present study provides the first collective discussion on extent and controls of elevated As in deeper groundwater of a regional study area in the western part of the Bengal basin. Deeper groundwater is defined here as non-brackish, potable (Cl ? 250 mg/L) groundwater available at the maximum accessed depth (∼80-300 m). The extent of elevated As in deeper groundwater in the study area seems to be largely controlled by the aquifer-aquitard framework. Arsenic-enriched deeper groundwater is mostly encountered north of 22.75°N latitude, where an unconfined to semi-confined aquifer consisting of Holocene- to early Neogene-age gray sand dominates the hydrostratigraphy to 300 m depth below land surface. Aquifer sediments are not abnormally enriched in As at any depth, but sediment and water chemistry are conducive to As mobilization in both shallow and deeper parts of the aquifer(s). The biogeochemical triggers are influenced by complex redox disequilibria. Results of numerical modeling and profiles of environmental tracers at a local-scale study site suggest that deeper groundwater abstraction can draw As-enriched water to 150 m depth within a few decades, synchronous with the advent of wide-scale irrigational pumping in West Bengal (India).  相似文献   

12.
扬-泰-靖地区地下水系统水力联系与硫酸盐污染特征   总被引:2,自引:0,他引:2  
本文对长江三角洲扬-泰-靖地区第四系松散层地下水中环境同位素(D、18O、34S)的分布特征进行了分析,旨在揭示大气降水、长江水、潜水及承压水之间的水力联系,辨别地下水中硫酸盐的来源及其污染状况。研究结果表明潜水含水层接受大气降水及长江水的补给,硫酸盐主要为农业污染来源或与海源硫酸盐的混合。承压含水层主要接受大气降水的补给,与潜水含水层及长江之间的水力联系较差,硫酸盐来源不同。在研究区顶部和沿江地段的浅层孔隙承压水中,硫酸盐来源于硫化物的氧化;在东部的深层孔隙承压水中,硫酸盐主要来源于硫酸盐岩的溶解或海源硫酸盐的滞留,基本未受到潜水或地表水中硫酸盐的污染。  相似文献   

13.
This study evaluates the nature and origin of particulate organic carbon and organic coatings on aquifer sands upgradient from a fuel spill site near the Sleeping Bear Dunes National Lakeshore in Michigan. The distribution of carbon was found to be highly complex due to the occurrence of high organic carbon horizons, bounded above and below by high carbonate sediments. The organic coatings on the sands were examined using white light and fluorescence microscopy and by scanning electron microscopy. Core samples were analyzed for organic and inorganic carbon, solution pH, humic/fulvic acid ratios, and insoluble organic matter content (that is, humin) as a function of depth from the ground surface. The organic geochemistry of the soil profile at this site was found to be significantly influenced by the carbonates producing a sharp boundary of precipitated organic matter. This boundary was followed by coatings of predominantly fulvic acid salts on mineral grains deeper in the soil column. The coatings extended into the aquifer. The existence of native organic films on sand grains is well documented in the soils literature. The study reported here was greatly aided by this information and provides the framework for future studies concerning the influence of carbon distribution, chemical identity, and morphology on contaminant fate and transport processes.  相似文献   

14.
Stable isotope data, a dissolved gas tracer study, groundwater age dating, and geochemical modeling were used to identify and characterize the effects of introducing low-TDS recharge water in a shallow aerobic aquifer affected by a managed aquifer recharge project in California’s San Joaquin Valley. The data all consistently point to a substantial degree of mixing of recharge water from surface ponds with ambient groundwater in a number of nearby wells screened at depths above 60 m below ground surface. Groundwater age data indicate that the wells near the recharge ponds sample recently recharged water, as delineated by stable O and C isotope data as well as total dissolved solids, in addition to much older groundwater in various mixing proportions. Where the recharge water signature is present, the specific geochemical interactions between the recharge water and the aquifer material appear to include ion exchange reactions (comparative enrichment of affected groundwater with Na and K at the expense of Ca and Mg) and the desorption of oxyanion-forming trace elements (As, V, and Mo), possibly in response to the elevated pH of the recharge water.  相似文献   

15.
The convective transfer of 137Cs and 90Sr by groundwater on the territory of the Russian Research Centre Kurchatov Institute (RRCKI) was modeled. Geological data on the RRCKI site and possible sources of radionuclides show that the uppermost aquifer, composed of Quaternary sediments, is the most probable region of spreading of radioactive contamination. Since the lateral migration of radionuclides is predominant, a 2D horizontal model was used for the forecasting of spreading of radioactive contaminants in the subsurface medium. Transient or long-term repositories of radioactive materials at the RRCKI site (concentrated sources) and aquifer rocks contaminated in the course of removal of radionuclides from these repositories (distributed source) are responsible for groundwater pollution. The initial 137Cs and 90Sr distributions used in the forecasting of radionuclide migration were determined from their contents in core samples taken from wells drilled in contaminated areas of the RRCKI site. The zone of radionuclide migration is limited by poorly permeable moraine loam from below and by the water table from above. To determine the upper and lower boundaries, these surfaces were mapped in plan view. The data of meteorological observations over a long period were used to map the intensity of precipitation in the studied territory. The density of rocks in the uppermost aquifer and partition coefficients of radionuclides between rocks and groundwater were estimated from the data of laboratory examination of the core samples. The available data on the permeability of rock samples and the results of test pumping out of some wells were involved in the consideration. The results obtained and the data on the water table allowed us to define a gauge problem for determining the distribution of the filtration coefficient in the uppermost aquifer. This problem was solved taking the intensity of precipitation into account. The properties of the uppermost aquifer and the initial radionuclide distribution therein were used as initial data for modeling 137Cs and 90Sr migration on the territory of the RRCKI over 50 years.  相似文献   

16.
A simplified model is proposed to estimate the leaching constituents from waste granular pavement base to adjacent groundwater. The model considers pollutants leaching from a longitudinally infinite waste granular base. The leaching of the base is deemed to obey the diffusion model. After leaving the pavement layers, the leachate is subjected to retardation and dilution during its transport to the nearby aquifer. The retardation is estimated from the breakthrough curve of steady-water flow through a homogeneous soil profile. The model is available for any waste granular base that contains any type of leachable pollutants. But parameterization of the model is different substantially for different pollutants; therefore how to parameterize the mode is discussed. Recycled glass is exemplified as the granular base materials, and the transport of Cadmium to the local aquifer is demonstrated. A sensitivity study is conducted to demonstrate the influences of field conditions and waste-leaching characteristics on the pore concentration of the pollutants in the target well.  相似文献   

17.
Many rivers worldwide are undergoing severe man-induced alterations which are reflected also in changes of the degree of connectivity between surface waters and groundwater. Pollution, irrigation withdrawal, alteration of freshwater flows, road construction, surface water diversion, soil erosion in agriculture, deforestation and dam building have led to some irreversible species losses and severe changes in community composition of freshwater ecosystems. Taking into account the impact of damming and flow diversion on natural river discharge, the present study is aimed at (i) evaluating the effects of anthropogenic changes on groundwater/surface water interactions; (ii) analyzing the fate of nitrogenous pollutants at the floodplain scale; and (iii) describing the overall response of invertebrate assemblages to such changes. Hydrogeological, geochemical and isotopic data revealed short- and long-term changes in hydrology, allowing the assessment of the hydrogeological setting and the evaluation of potential contamination by nitrogen compounds. Water isotopes allowed distinguishing a shallow aquifer locally fed by zenithal recharge and river losses, and a deeper aquifer/aquitard system fed by surrounding carbonate aquifers. This system was found to retain ammonium and, through the shallow aquifer, release it in surface running waters via the hyporheic zone of the riverbed. All these factors influence river ecosystem health. As many environmental drivers entered in action offering a multiple-component artificial environment, a clear relationship between river flow alteration and benthic and hyporheic invertebrate diversity was not found, being species response driven by the combination of three main stressors: ammonium pollution, man-induced changes in river morphology and altered discharge regime.  相似文献   

18.
Irrigation in low-lying coastal plains may enhance the formation of fresh groundwater lenses, which counteract salinization of groundwater and soil. This study presents seasonal dynamics of such a freshwater lens and discusses its influence on the salinity distribution of the unconfined aquifer in the coastal plain of Ravenna, Italy, combining field observations with numerical modeling (SEAWAT). The lens originates from an irrigation ditch used as a water reservoir for spray irrigation. The geometry of the freshwater lens shows seasonal differences because of freshwater infiltration during the irrigation season and upconing of deeper saltwater for the remainder of the year. The extent of the freshwater lens is controlled by the presence of nearby drainage ditches. Irrigation also results in a temperature anomaly in the aquifer because of the infiltration of warm water during the irrigation season. The surficial zone in the vicinity of the irrigation ditch is increased considerably in thickness. Finally, different irrigation alternatives and the influence of sea-level rise are simulated. This shows that it is necessary to integrate irrigation planning into the water management strategy of the coastal zone to have maximum benefits for freshening of the aquifer and to make optimal use of the existing infrastructure.  相似文献   

19.
煤层隐伏火烧区上覆基岩复合含水层(包括风化基岩和烧变岩含水层)是煤层开采的主要威胁之一, 明确隐伏火烧区的富水性对矿井水害防治具有重要意义。基于此, 以发生过较大突水事故的柠条塔煤矿为研究对象, 利用地面核磁共振(SNMR)技术开展隐伏火烧区含水层富水性探测并对其进行分析和验证。结果表明, 隐伏火烧区共有2个含水层位, 分别为第四系松散砂层含水层和1-2 上煤上覆基岩含水层; 第四系砂层含水层富水性受地表地形及其下隔水层顶部起伏形态影响水平变化较大; 1-2 上煤上覆基岩含水层富水性总体西南较低、北东较高, 该含水层厚度9~30 m, 局部相对较厚, 推测为1-2 上煤火烧区风化基岩和烧变岩含水层的叠加反映; 研究区内1-2 上煤上覆基岩含水层总体呈现出西部及中部偏东南区域富水性相对较大, 其余区域富水性相对较小。利用SNMR得到的含水层富水程度与探放水孔及水文孔的涌水量结果大致相同, 表明该方法的勘探结果相对可靠, 可用于隐伏火烧区富水性的探测。   相似文献   

20.
Door County, Wisconsin, is a region of karst topography underlain by Silurian dolomite bedrock. Numerous sinkholes intercept much of the surface runoff and act as sites for direct groundwater recharge. The clay-rich and impermeable Upper Ordovician Maquoketa formation separates the dolomite aquifer from the deeper aquifers and appears to be a factor in groundwater circulation and karst formation Thin glacial drift and Quaternary materials overlie the dolomite and are hydrologically connected with it The interactions of surface and groundwater, and the role of solution features in water interchange were studied in a small drainage basin. This basin contains several large sinkholes and a nearby spring complex Mapping identified many additional sinks and swallets in surface drainage routes Water flowing into two sinks was traced and found to have a residence time of several hours. Water flowing into sinkholes and from the spring was sampled to identify the quality and seasonal trends in composition of the shallow groundwater Water quality parameters monitored include magnesium, sodium, potassium, chloride, phosphorous, nitrate and ammonia, nitrogen, alkalinity, pH, turbidity, and specific conductance. Nitrate levels were found to increase 5 to 6 times during periods when there was zero input through sinkhole recharge sites. Nitrate levels approached the 10 mg/l NO3 -N limit set by the U.S. Public Health Service for drinking water In this basin sandy soils are most susceptible to sink development, whereas clay-rich soils have a lesser number of sinks. It appears, however, that a network of bedrock solution features exists under all soils The loss of soil into sinkholes has impacted groundwater quality and reduced agricultural productivity through a reduction in tillable acreage and water retention capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号