首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Samples of macrobenthic organisms were obtained at seven stations on a presumed pollution gradient from the head of Vancouver Harbour through to outer Howe Sound. Polychaetes (83 apparent species) and molluscs (43 apparent species) were the most abundant faunal groups numerically (44.8 and 47.9%, respectively). Molluscs accounted for most of the biomass (87.9%). The following univariate and multivariate methods were used to investigate structural changes in the benthic communities: ANOVA, Abundance-Biomass Comparisons and related statistics, cluster analysis, multidimensional scaling, and the BIOENV procedure. Most of the analyses divided the seven stations into three groups: Port Moody Arm (Inner Harbour): two stations; Inner and Outer Harbour: four stations, and Gibsons (Howe Sound): one station. Further cause-effect investigations are needed to determine the sensitivity to organic pollution of indicator species identified in the survey. However our data correlating benthic community changes to sediment chemistry suggest the inner harbour was dominated by pollution-tolerant species. Depth and sediment grain size were confounding factors for the interpretations.  相似文献   

2.
Insular marine biotas are often richer in faunal diversity than those from the open sea in the same geographical region. The existence of particular island effects were tested under polar conditions by comparing infaunal benthic assemblages on Peter I Island with those of similar latitudes in the open ocean at the Bellingshausen Sea and also from the coast of the Antarctic Peninsula. Sampling was carried out aboard the R/V Hespérides during the expedition named BENTART-2003 from 24 January to 3 March 2003. Benthic samples were collected at 18 stations ranging from 90 to 2 044 m depth, using an USNEL-type box corer (BC) dredge. Representatives of 32 higher taxa of invertebrates were found. Univariate and multivariate analyses revealed various patterns in the data. First, significant differences in polychaete abundance were detected between the stations located in the open sea and the remaining sites (island plus mainland sites). Bivalve abundances were also distinct between island and mainland sampling sites. Sediment columns taken from the island seafloor exhibited the highest rate of bioturbation by the infauna. These findings confirm the model that islands develop distinct assemblages characterized by the enhancement of the benthic communities even in cold waters. Several abiotic factors were measured simultaneously at the seafloor and along the water column to investigate faunal distribution patterns. Significant correlations were found between the benthic assemblages and a combination of two environmental variables: "island effect" (measured as a categorical variable) and the redox state of sediments. Richer and more complex benthic assemblages were found in Peter I Island’s sea bottom, whereas the more depauperate bottoms remained in the open sea.  相似文献   

3.
Contaminants derived from urban runoff have been shown to accumulate in estuarine sediments, reaching concentrations potentially capable of causing biological effects. Demonstration of effects, however, is difficult due to strong natural environmental gradients and the effects of past or present point-sources of contamination. We used multivariate methods to test two hypotheses relating to the effects of urban-derived contaminants on estuarine benthic communities. First, that patterns of distribution and abundance of benthic invertebrates in two urbanised estuaries would be different from those in two non-urbanised estuaries. Second, that the distributions of benthic invertebrates within and among the four estuaries would be related to those of urban-derived contaminants. Concentrations of contaminants were larger in estuaries with urbanised catchments and concentrations of Cu, Pb, Zn and DDT in some samples exceeded those at which biological effects may be expected to appear. Tests of differences in composition of benthic communities among estuaries showed that the two urban estuaries were not significantly different, but that they differed from both rural estuaries, which also differed from each other. Distributions of benthic invertebrates were significantly related to those of environmental variables, and were ordinated along axes that correlated with both natural environmental variables (nature of the sediment, position in estuary) and contaminants. Differences in faunas between the urban and non-urban estuaries were not, however, clear-cut and nor were relationships between faunal assemblages and environmental variables (including contaminants) consistent between two times of sampling.  相似文献   

4.
A manipulative caging experiment was carried out to evaluate the role of wild fish and motile epibenthic invertebrates on the benthic system influenced by an open water fish farm. Chemical and biological parameters of the sediment were measured as indicators of the ecological benthic status. The combination of wild fish and currents notably lowered aquaculture waste sedimentation below the fish farm. The limited waste sedimentation rate could have limited the scavenger and predation activity of wild fish on the benthos, whose role may be taken over by motile epibenthic invertebrates. The interaction of these motile epibenthic invertebrates with the sediment differed from that observed with fish. The motile epibenthic invertebrates led to more reduced conditions with lower redox values, significantly decreased the number of species of macrofaunal benthic assemblages and significantly modified macrofaunal benthic assemblages. Therefore, epibenthic invertebrates do not seem to have an ameliorative effect on the benthic status produced by fish farming. Since the effects of epibenthic species on the benthic system can greatly vary according to their identity, further experiments should be performed to better understand the drivers that influence the epibenthic species identity that modulate the benthic system affected by fish farming.  相似文献   

5.
Estuarine tidal flats are both ecologically and economically important, hence developing methods to reliably measure ecosystem health is essential. Because benthic fauna play a central role in the food web of tidal flats, in this study we set out to quantitatively describe the intertidal zonation of macro-invertebrates and their associations with specific environmental parameters along three transects in the Saemangeum tidal flat, Korea. The abundance and biomass of intertidal fauna with respect to five environmental parameters (i.e., shore level, mud content, coarse sand content, water content, and organic content) were measured, to identify environmental factors that influence macrofaunal distribution in intertidal soft bottom habitats. A total of 75 species were identified, with dominant species showing distinct zones of distribution along all transects. The number of species recorded in each transect was found to be dependent on sediment characteristics and salinity. Cluster analysis classified the entire study area into three faunal assemblages (i.e., location groups), which were delineated by characteristic species, including (A) ‘Periserrula–Macrophthalmus’, (B) ‘Umbonium–Meretrix’, and (C) ‘Prionospio–Potamocorbula’. Four environmental variables (i.e., shore level, water content, mud content, and organic content) appeared to determine factors that distinguished the three faunal assemblages, based on the discriminant analysis. The faunal assemblage types of the sampled locations were accurately predicted from environmental variables in two discriminant functions, with a prediction accuracy of 98%. It should be noted that the zonation of benthos in the lower section (C) of Sandong had been affected by the construction of a nearby dike, while this parameter had remained essentially unchanged at the other two location groups (A–B). Overall, the zonation of benthos from the Saemangeum tidal flat was explained adequately by the measured environmental variables, implying that faunal assemblages are closely associated with certain combinations of abiotic factors. The identification of such reliable associations may facilitate the development of statistical models to predict faunal distributions based on environmental variables at both local and regional scales. The entire study area was embanked in 2006 (one year after this study), and an integrated plan was set into force to develop claimed land into industrial, residential and agricultural districts, which also included a partial restoration program of the tidal flats located near to the study area.  相似文献   

6.
The structure of the benthic macrofaunal assemblages of the estuarine portion of Paraguaçu River, NE, Brazil, and its relationship with surface sediment characteristics (trace metals, PAHs, nutrients and grain size) and physical variables were investigated at ten stations on two contrasting occasions, summer (dry season) and winter (rainy season). A total of 1258 individuals (632 in winter and 626 in summer) and 62 taxa representing polychaetes, crustaceans, bivalves, echinoderms, bryozoans, sponges, cnidarians and cephalochordates were collected. Benthic assemblages in the upper estuary were unlike those in the lower estuary and a clear substitution of benthic taxa along the estuary was observed. Macrofaunal invertebrates in the low salinity region, composed of coarse sediments, were dominated by tellinids, venerids (bivalves), cirolanids (isopods), cyclopoids (copepods), and nereidids (polychaetes). While the high salinity region, composed of fine sediments, were dominated by nuculids (bivalves), cirratulids (polychaetes), and by amphiurids (ophiuroids). The Paraguaçu estuarine system is not severely affected by anthropogenic activities. In the great majority of the study sites, concentrations of trace metals and PAHs in the sediments were near background values. Nutrients values were also low. We formulated new models of taxon distribution and suggested detailed studies on the effects of salinity variation and studies using functional approaches to better understand the processes causing the spatial patterns in tropical estuarine benthic assemblages.  相似文献   

7.
Assemblages of living deep-sea benthic foraminifera, their densities, vertical distribution pattern, and diversity, were investigated in the intermonsoon period after the northeast monsoon in the Arabian Sea in spring 1997. Foraminiferal numbers show a distinct gradient from north to south, with a maximum of 623 foraminifera in 50 cm3 at the northern site. High percentages of small foraminifera were found in the western and northern part of the Arabian Sea. Most stations show a typical vertical distribution with a maximum in the first centimeter and decreasing numbers with increasing sediment depths. But at the central station, high densities can be found even in deeper sediment layers. Diversity is very high at the northern and western sites, but reduced at the central and southern stations. Data and faunal assemblages were compared with studies carried out in 1995. A principal component analysis of intermonsoon assemblages shows that the living benthic foraminifera can be characterized by five principal component communities. Dominant communities influencing each site differ strongly between the two years. In spring 1997, stations in the north, west and central Arabian Sea were dominated by opportunistic species, indicating the influence of fresh sedimentation pulses or enhanced organic carbon fluxes after the northeast monsoon.  相似文献   

8.
Analysis of sediment traps located either side of the Subtropical Front east of New Zealand reveals a strong association between water masses and foraminiferal assemblages. The composition and timing of foraminiferal productivity is distinct between waters north and south of the front, and these differences are also reflected in the assemblages of nearby core-tops. The sediment trap data indicate highly seasonal flux patterns in this region, so sedimentary records may represent flux during a particular season, rather than throughout the annual cycle. This pronounced seasonality has implications for our estimates of the annual temperature range based on faunal assemblages. This study shows that despite strong flux seasonality the annual sea-surface temperature (SST) range is reliably estimated from the sediment trap foraminiferal assemblages by the modern analog technique. The successful estimation of the annual SST range also indicates that the annual flux obtained from these sediment traps is representative of the longer term flux preserved in surface sediments. Core-top assemblages from this region can therefore be directly related to modern sea-surface conditions, providing an analogue for interpreting past environmental change from fossil assemblages.  相似文献   

9.
This 3-year study provides a large-scale perspective of fish assemblage structure across an ocean–estuarine ecotone, given range of salinity encountered (0.1–32) based on sampling at 12 stations along 40 km from the Mullica River (river), Great Bay (bay), and the adjacent inner continental shelf (ocean) in southern New Jersey. Otter trawl (4.9 m, 6 mm mesh) collections were dominated by young-of-the-year of most of the 49 species encountered. Species richness and abundance appeared greatest in the ocean, decreased (with an increase in inter-station variability) in the bay, and appeared to increase again towards the uppermost river stations. The same areas contained three non-discrete, but identifiable, fish assemblages based on Detrended Correspondence Analysis. Members of the Triglidae and Stromateidae characterized the ocean and bay, whereas representatives of the Percichthyidae and Ictaluridae characterized the river. Several species, including Anchoa mitchilli and Cynoscion regalis, exhibited a ubiquitous distribution across the sampling area. Further analyses with Canonical Correspondence Analysis identified salinity and geographic distance, among the variables examined, as the most important determinants in shaping the assemblages. Other contributors included habitat heterogeneity and water depth. In summary, these observations indicate that large-scale patterns in the structure of this estuarine fish assemblage are primarily a result of individual species' responses to dominate environmental gradients, as well as ontogenetic migrations, whereas smaller-scale patterns appear to be the result of habitat associations that are most likely driven by foraging, competition, and/or predator avoidance.  相似文献   

10.
Benthic faunal assemblages were analysed from 47 stations in the central and southern parts of the Barents Sea, together with sedimentary and water column parameters, daily ice records and modelled integrated primary productivity. Sampling spanned areas influenced by Atlantic Water (AW) to those lying under Arctic Water (ArW), and included stations with mixed water masses. Ice cover suppressed water column productivity in the northern areas. Three main faunal groups were identified, based on similarity of numerical faunal composition. The northern and southern faunal groups were separated by the northernmost penetration of AW in the bottom water and the third group, the Hopen group, was influenced by modified bank water. Faunal abundances were significantly higher within the southern faunal group relative to the northern group, but the numbers of taxa present were similar. The particularly rich fauna of the Hopen group reflected sediment heterogeneity and tight pelagic–benthic coupling. These results suggest that a retreat and thinning of the ice cover in the Barents Sea likely will result in the northern parts of the Barents Sea becoming more Atlantic in character, with a higher productivity at the sea floor.  相似文献   

11.
While there is already a comprehensive understanding of the effects of environmental variables, such as dissolved oxygen, temperature and salinity, on the structure, biomass and metabolism of aquatic biota in estuarine habitats, the effect of sedimentation, a harmful underlying factor, remains unclear. The aim of this study was to assess the differences in fish assemblages along the freshwater to salt water gradient of a large tropical estuary, and to evaluate the effects on them of habitat disturbance associated with shallow water sedimentation in the intertidal areas. Fish and environmental variables were recorded in the upper, middle and lower salinity zones of the estuary at ebb tide in both the dry and wet seasons. Sediment samples associated with different levels of habitat disturbance were analysed using granulometry, and their organic content and dissolved oxygen levels were quantified. Water temperature, salinity, pH and dissolved oxygen levels were also measured. Habitat disturbance was found to be correlated with the density, biomass and richness of fish assemblages. A total of 77 species were recorded, forming two distinct fish assemblages, with the Eleotridae family dominating in the upper zone, and Gerreidae, Gobiidae and Tetraodontidae the most common in the middle and lower estuary. Changes in the structure of fish assemblages, including reductions in density, biomass and richness, were associated with disturbance to natural features, where muddy sediment was replaced by sandy sediment and the quantity of organic matter fell. Atherinella brasiliensis was the species which showed a preference for the disturbed areas in the middle and lower zones, while Dormitator maculatus showed a preference for them in the upper estuary. They may be taken as indicators of habitat disturbance due to shallow sedimentation.  相似文献   

12.
The relative effects of hydrocarbon pollutants, salinity and tidal height on the invertebrates and fish that inhabit oyster reefs were studied along the Louisiana Gulf of Mexico coastline. Dried oyster shell (cultch) was first exposed to crude oil in the laboratory. In a series of experiments, plastic trays filled with control and oil-exposed cultch were then deployed at two locations differing in salinity, in two seasons and at two tidal levels. In experiments on hydrocarbon, salinity, and seasonal effects, trays were colonized for one month. To examine the effects of colonization time, half of the trays were retrieved after two and the rest after five weeks. Salinity dramatically affected oyster reef assemblages, with species richness and total abundance halved at the estuarine site. Hydrocarbon effects were less prominent, whether cultch was dosed with light or heavy crude oil. The sub-tidal site had higher colonization rates, but colonization interval did not affect colonization, and seasonal differences occurred only at the higher-diversity, sub-tidal site. To determine effects of cleaners, Corexit 9580 was applied alone and with oil on cultch, and trays were colonized for one month. At high concentrations, the cleaner ameliorated hydrocarbon effects. In general, hydrocarbon effects were less prominent than salinity and aerial exposure in explaining colonization of oyster reef assemblages. Gas chromatography/mass spectrometry analysis of oyster shells after one month immersion revealed considerable losses of oil, especially with higher flow at the inter-tidal site. Sediment on shell also diluted oil. We argue that oyster reef assemblages should recover from small-scale spills, unless they occur during periods of reproduction and dispersal.  相似文献   

13.
Abstract. The amphipod population associated with Bugula neritina (L.), a verycommon bryozoan species in Algeciras Bay (Strait of Gibraltar), was studied on a spatio-temporal scale, in order to define its role as a bioindicator. Samples were collected in December, March, June and September along a transect running from the external to the internal sampling stations.
Fifty-three species belonging to 22 families were identified; the most abundant species were Jassa marmorata H olmes , Ischyrocerus inexpectatus (R uffo ) and Phtisica marina S labber .
The spatial evolution of the amphipod community reflected the physico-chemical conditions of Algeciras Bay, yielding a clear gradient from the outer to the inner stations. The stations located at the mouth of the bay, characterised by high hydrodynamism and low sedimentation, had a higher diversity and species richness than the inner stations with low water movement and higher sedimentation. Eight species preferred for the outer stations, while another nine species were typical of the inner harbours.
The most notable aspect of the seasonal evolution was the increased dominance of the tube-builder and deposit-suspension feeder Jassa marmorota .
Structural and ordination analyses corroborate the outer-inner gradient in the bay and illustrate the importance of hydrodynamic forces and sedimentation in the amphipod community.  相似文献   

14.
Grab samples of the smaller macrobenthos (>1 mm, <1g wet weight) were obtained seasonally at fourteen stations along two transects in the shallow coastal waters of the westernmost part of Wakasa Bay. According to Morisita's similarity index (C i , two faunal groups were recognized to be present throughout the year. The boundary between them was found to lie between depths of 10 and 20 m where the silt-clay fraction increased abruptly in the sediment, although the boundary was less obvious in summer. Statistics on community structure (species diversity, species richness, and evenness) also showed marked differences between the two assemblages. The change in faunal features was found to be roughly parallel to changes in sediment characteristics. On the nearshore sandy bottom, the influence of wave action is considered to be the major factor affecting the fauna as it results in a decrease in evenness and species richness. On the other hand, on the offshore muddy bottom, stagnant conditions cause the benthic fauna to decrease in density and to bear some resemblance to those of enclosed bays. The highest species diversity was found on the silty sand bottom (20 m deep). This can be understood as an edge effect of an ecotone.  相似文献   

15.
Copepod assemblages in a highly complex hydrographic region   总被引:2,自引:2,他引:2  
Community structure and diversity patterns of planktonic copepods were investigated for the Southwestern Atlantic Ocean between 34 and 41°S. Our objectives were (1) to define copepod assemblages, (2) to accurately identify their association to different water masses/hydrodynamic regimes, (3) to characterize the assemblages in terms of their community structure, and (4) to test if frontal boundaries between water masses separate copepod assemblages. Biogeographic patterns were investigated using multivariate analysis (cluster and ANOSIM analyses). Biodiversity patterns were examined using different univariate indexes (point species richness and taxonomic distinctness). Five regions of similar copepod assemblages were defined for our study area each one corresponding to different environments (freshwater, estuarine, continental shelf, Malvinas and Brazil current assemblages). These assemblages have major community structure differences. In spite of the complex oceanographic scenario of our study area, that can lead us to expect a pattern of copepod communities with diffuse boundaries, we found a strong spatial correspondence between these limits and the presence of permanent frontal structures.  相似文献   

16.
This study tested whether the development of coralligenous assemblages on horizontal and vertical surfaces differed between localities of high and low sediment deposition. The development and structure of these assemblages varied in predictable ways according to the level of sediment deposition. These differences were largely independent of the orientation of substratum. Turfs were more extensive in areas of high sediment deposition while erect and encrusting algae were most extensive in areas of low sediment deposition. Encrusting invertebrates characterised vertical surfaces and were most extensive in areas of high sediment deposition. These results are consistent with studies from other temperate regions of the globe, suggesting that effects of sedimentation on temperate coasts are substantial and widespread.  相似文献   

17.
Abstract. A quantitative survey (18 stations) of the subtidal soft bottom macroinfauna in an estuary of the south Chilean coast was conducted during January, 1980. The map of sedimentological facies elaborated for the Queule River Estuary shows sandy bottoms in the outlet and upper part of the area studied, while the middle part is occupied by muddy sand. The ordination of stations by Principal Component Analysis is fundamentally defined by mud and gravel percentage and is, in general, concordant with the distribution of sediments in the facies map. A total of 17,405 animals was collected (16 taxa), Polychaeta being the dominant group in density (77.47%) and biomass (73.4%). The maximum number of species was obtained outside the mouth of the estuary, while maximum densities and biomass were obtained in the middle of the estuary.
The Factor Analysis performed with the abundances data of the most abundant species rendered the ordination of two groups of stations (concordant with a Cluster Analysis) in the Q-mode and two groups of species in the R-mode. One group of stations is restricted to sandy habitats of the outlet area and is dominated by suspension feeders. The other, in the middle and upper part of the estuary (muddy sand or sandy bottoms with a higher percentage of organic matter), is dominated by deposit feeders. Between these two groups, significant differences in sedimentological variables (sand, mud, and organic matter percentage) were detected. Each of the two delineated groups of species corresponds to the groups of stations, showing that most of the taxa can be combined in faunal assemblages with preference for different types of substrate.  相似文献   

18.
Sandy beach/surf‐zone ecosystems are unique environments that, despite the harsh and highly variable hydrodynamic conditions, present a diverse and heterogeneous fauna. However, the dynamics of these ecosystems are currently poorly understood. In this study we tested the hypothesis that surf‐zone assemblages vary with temporal factors such as time of day, tide and tidal height. To test this hypothesis, the surf‐zone community of Bastendorff, a Southern Oregon sandy beach was sampled during the summer of 2006. Samples were collected to (i) describe the smaller, benthic and larger swimming assemblages, (ii) determine whether assemblage compositions, densities, species richness and diversity vary with time of day, tide and tidal height, (iii) explore potential reasons for the variation by correlating environmental factors to the assemblages, and (iv) identify particular species that most strongly exhibit these variations. A hyperbenthic sledge, a sediment corer and a beach seine were used to collect the smaller swimming, benthic and larger swimming fauna, respectively. Sampling occurred during day and night, spring and neap tide, and high, mid and low tide. A total of 76,743 individuals belonging to 105 species were collected. Ninety‐one invertebrate (72,904 individuals), 15 invertebrates (2234 individuals), and 19 invertebrate and vertebrate species (1605 individuals) were collected with the sledge, corer and seine, respectively. Nine species of fish were caught, 98% of which were juveniles. The smaller and larger swimming assemblages varied most strongly with the time of day, suggesting certain species will actively move to the shallow surf‐zone at night. The three assemblages also varied with the tide, potentially due to the larger waves and higher abundance of detached macrophytes observed during spring tides when compared to neap tides, which could push individuals into the surf zone. The benthic assemblage most strongly varied with tidal height and sand grain size, confirming the presence of different faunal zones within Oregon sandy beaches. Finally, several variables of the swimming assemblages varied with temperature and salinity, suggesting that downwelling favorable conditions may have transported species close to shore. Bastendorff presents a complex and diverse surf‐zone community that appears to be influenced by diel species movements, environmental variables such as wave height and abundance of detached macrophytes, and regional oceanographic conditions.  相似文献   

19.
In the tropics and sub-tropics, estuarine environments with mangrove and seagrass habitats provide important structures and resources for diverse communities of benthic organisms. However, temperate estuarine habitats, especially in mangrove areas, may differ significantly in their community associations and interactions. The community composition of benthic macro-fauna was investigated within temperate Matapouri Estuary, northern New Zealand. The density and distribution of fauna were sampled within six distinctive habitats (mangrove stands, pneumatophore zones, Zostera beds, channels, banks, and sand flats), within four sampling events between December 2002 and September 2003. Each type of habitat was replicated seven times within different locations in the estuary. Counts of all infauna and epifauna within four replicate cores were recorded from each habitat and location. Multidimensional scaling plots were used to identify differences in structure and composition of assemblages among habitats and locations within each sampling event. Results from these benthic samples indicate that Matapouri Estuary has a high overall biodiversity, with distinctive faunal assemblages found within different habitats, and some seasonal variations also apparent. In terms of both number of individuals and taxa per unit area, seagrass beds had the highest numbers and mangrove areas had the lowest numbers, with all other habitats in between. Some locations were found to support a high diversity of organisms across habitats, while other locations had high densities of a few species only. Several physical and biological differences between tropical/sub-tropical and New Zealand's temperate mangrove habitats are put forth as potential reasons for the lower density and diversity of the benthic component observed herein. Further ongoing studies aim to elucidate the structure and interactions within food webs in this estuarine ecosystem.  相似文献   

20.
The effects of diel period and tow duration (5, 10 and 20 min) on samples of estuarine fauna in a beam trawl, were tested over bare sediment in Tuggerah Lake (New South Wales, Australia). Mean catch rates (numbers of fish caught 5 min−1) were significantly larger at night for the total numbers of individuals and abundant, economically important species of fish and invertebrates (e.g. Gerres subfasciatus, Metapenaeus macleayi, Penaeus plebejus). Greater proportions of larger fish were also caught at night for some species (e.g. G. subfasciatus, Acanthopagrus australis, Rhabdosargus sarba), but not across all tow durations. Multivariate analyses detected dissimilarities in the composition and structure of assemblages between diel periods, which were driven by species caught predominately, or in larger proportions, at night. Short tows (5 min) were more efficient than longer tows (10 or 20 min) for sampling the diversity of species (i.e. most species were caught in the first 5 min of a tow). There were, however, no clear or consistent patterns relating to the effect of tow duration on the catch rates of other variables, the size ranges of abundant species, or the structure and composition of assemblages. Our data confirm that at night, bare sediment is an important habitat for a wide size- and species-range of estuarine fish and invertebrates. In future, more cost-effective and reliable information concerning these taxa would be achieved by sampling with the beam trawl at night, using tow durations of 5 min. We also highlight a problem inherent in the design of many studies of diel variation of fauna (i.e. the potential non-independence of data among day and night periods) and discuss its solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号