首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
On the need to test hydrological models under changing conditions   总被引:1,自引:1,他引:0  
Abstract

The ability of hydrological models to deal with changing conditions should not be taken for granted: it is an unfortunate but well-known problem of hydrology that the model structure and/or parameters optimized for certain conditions may not be transferable in time. Consequently, it is essential that, for application under changing conditions (e.g. in climate change impact studies), models be thoroughly assessed for their extrapolation capacity using adequate protocols. This editorial provides an overview of the Special Issue of Hydrological Sciences Journal compiled after a workshop on this theme held during the General Assembly of the International Association of Hydrological Sciences (IAHS) in Gothenburg (Sweden) in 2013. The Workshop participants had been invited to apply a calibration and evaluation protocol to their own models on a given set of changing basins. The results show that this protocol is an appropriate and instructive way of assessing the suitability of hydrological models to be applied under changing conditions. This special issue also includes papers following alternative testing methodologies, as well as an opinion paper on the definition of non-stationarity.  相似文献   

2.
Abstract

The robustness of the physically-based, semi-distributed hydrological model ECOMAG with respect to changing (climatic or land-use) conditions was evaluated for two basins, considered within the modelling workshop held in the frame of the 2013 IAHS conference in Göteborg, Sweden. The first basin, the Garonne River basin, France, is characterized mostly by changes in climatic conditions, while the second, Obyån Creek, Sweden, was exposed to drastic land cover change due to deforestation. Tests were conducted to evaluate the model’s ability to simulate with acceptable accuracy the changing hydrological regime of each basin and to retain, in the process, relatively stable values of the parameters. Acceptable performance of the ECOMAG model was obtained under the different combinations of the calibration/evaluation periods, including, importantly, the periods of hydrological regime changes in both basins.  相似文献   

3.
Abstract

The robustness of the physically-based, semi-distributed hydrological model ECOMAG with respect to changing (climatic or land-use) conditions was evaluated for two basins, considered within the modelling workshop held in the frame of the 2013 IAHS conference in Göteborg, Sweden. The first basin, the Garonne River basin, France, is characterized mostly by changes in climatic conditions, while the second, Obyån Creek, Sweden, was exposed to drastic land cover change due to deforestation. Tests were conducted to evaluate the model’s ability to simulate with acceptable accuracy the changing hydrological regime of each basin and to retain, in the process, relatively stable values of the parameters. Acceptable performance of the ECOMAG model was obtained under the different combinations of the calibration/evaluation periods, including, importantly, the periods of hydrological regime changes in both basins.  相似文献   

4.
Harald Kling 《水文科学杂志》2015,60(7-8):1374-1393
Abstract

This study is a contribution to a model intercomparison experiment initiated during a workshop at the 2013 IAHS conference in Göteborg, Sweden. We present discharge simulations with the conceptual precipitation–runoff model COSERO in 11 basins located under different climates in Europe, Africa and Australia. All of the basins exhibit some form of non-stationary conditions, due, for example, to warming, droughts or land-cover change. The evaluation of the daily discharge simulations focuses on the overall model performance and its decomposition into three components measuring temporal dynamics, mean flow volume and distribution of flows. Calibration performance is similarly high as in previous COSERO applications. However, when looking at evaluation periods independent of the calibration, the model performance drops considerably, mainly due to severely biased discharge simulations in semi-arid basins with strong non-stationarity in rainfall. Simulations are more robust in European basins with humid climates. This highlights the fact that hydrological models frequently fail when simulations are required outside of calibration conditions in basins with non-stationary conditions. As a consequence, calibration periods should be sufficiently long to include both wet and dry periods, which should yield more robust predictions.  相似文献   

5.
Abstract

Abstract Assessment of the impacts of mining and reclamation, and design of management practices to reduce chemical loads in stream channels, require knowledge of changing hydrological conditions and of changing sources and rates of release of chemicals into stream waters. One simple method for evaluating these impacts is to combine flow duration curves with regression relations between surface-water chemical concentrations (C) and instantaneous discharge (Q). However, little is known regarding the drainage basin-scale effects of mining and reclaiming drainage basins on regression relations. These effects were assessed on three small experimental drainage basins in Ohio subjected to surface mining for coal. Comparisons were made between regression parameter changes for natural/undisturbed conditions, land disturbances caused by mining and reclamation, incomplete reclamation, and the final condition of the reclaimed drainage basins. Regression analysis used a total of 5047 laboratory analyses of 36 constituents. Of 429 regressions, 153 (36%) were statistically significant. Knowledge of changes in regression parameters is important because regressions supply information on the rate of release and supply of chemical constituents in mined and reclaimed drainage basins. Duration curves of concentration and loads can be constructed using these regressions with flow–duration curves to give estimates of the percentage of time that concentrations and loads are exceeded during different phases of disturbance. This study assessed the changes in regression relations due to mining coal seams and reclamation activities for 36 chemical constituents, two mining methods, three reclamation practices and three distinct geologic settings.  相似文献   

6.
B. Yu  Z. Zhu 《水文科学杂志》2015,60(7-8):1200-1212
Abstract

The Australian Water Balance model (AWBM) and the SimHyd rainfall–runoff model are conceptual models widely used for simulating daily flows in Australia. To evaluate their ability to model non-stationary daily flows, to quantify the effect of land disturbance, and to assess their performance in catchments outside Australia, these two models were applied to two small watersheds, the Fernow watershed No. 6 in West Virginia, USA, for the period 1959–2009, and the River Rimbaud watershed in the French Alps for the period 1968–2006. Both watersheds have experienced well documented disturbances as a result of clearing and fire, respectively. The modelling protocol followed was adopted for a workshop on hydrology under change, held during the 2013 IAHS Assembly in Göteborg, Sweden, which was based on split-sample tests. On balance, the AWBM worked marginally better than SimHyd for these two catchments, and neither model worked satisfactorily for the Fernow watershed where forest clearing, application of herbicide and changes in species composition had occurred. There is little difference in terms of model performance between periods when land disturbances occurred and other periods with relatively stable conditions. Conceptual models are better equipped to simulate climate-driven variations in the observed streamflow (e.g. the River Rimbaud), and inadequate in reproducing streamflow variability as a result of complex forest management practices.  相似文献   

7.
Abstract

Hydrological modelling has faced the problem of ungauged basins for many years: how does one estimate hydrological characteristics for a river for which there are no data? Whatever the kind of model, it needs at least hydroclimatic input data and discharge data for calibration. However, the Yates model does not need any discharge data for calibration: it is a pre-calibrated model from a vegetation—climate classification map. In the specific context of West and Central Africa, where data are often of poor quality and very scarce, it is interesting to compare the performance of such a model with those of calibrated models, and with observed data. For this study, a platform including different semi-global rainfall—runoff models which allow the estimation of monthly runoff at a spatial resolution of 0.5° × 0.5° was used. The performance of the Yates model is very close to those of calibrated models, so that one can say that this simple model, based simply on a vegetation—climate classification, can be a very useful prediction tool in regions of scarce and unreliable data, such as those of interest to the International Association of Hydrological Sciences (IAHS) initiative on prediction in ungauged basins (PUB). Therefore, this model was applied to a period covering the last 30 years, and to a data set covering the first decades of the 21st century, from a climatic scenario of doubling the CO2 concentration in the atmosphere. The results show that, in West Africa, where drought conditions have now prevailed for 35 years, water resources should still be decreasing in the future, following the general decreasing trend of rainfall projected by the climatic scenarios.  相似文献   

8.
Abstract

River basins are by definition temporally-varying systems: changes are apparent at every temporal scale, in terms of changing meteorological inputs and catchment characteristics due to inherently uncertain natural processes and anthropogenic interventions. In an operational context, the ultimate goal of hydrological modelling is predicting responses of the basin under conditions that are similar or different to those observed in the past. Since water management studies require that anthropogenic effects are considered known and a long hypothetical period is simulated, the combined use of stochastic models, for generating the inputs, and deterministic models that also represent the human interventions in modified basins, is found to be a powerful approach for providing realistic and statistically consistent simulations (in terms of product moments and correlations, at multiple time scales, and long-term persistence). The proposed framework is investigated on the Ferson Creek basin (USA) that exhibits significantly growing urbanization during the last 30 years. Alternative deterministic modelling options include a lumped water balance model with one time-varying parameter and a semi-distributed scheme based on the concept of hydrological response units. Model inputs and errors are respectively represented through linear and nonlinear stochastic models. The resulting nonlinear stochastic framework maximizes the exploitation of the existing information by taking advantage of the calibration protocol used in this issue.  相似文献   

9.
Abstract

One of the main challenges faced by hydrologists and water engineers is the estimation of variables needed for water resources planning and management in ungauged river basins. To this end, techniques for transposing information, such as hydrological regional analyses, are widely employed. A method is presented for regionalizing flow-duration curves (FDCs) in perennial, intermittent and ephemeral rivers, based on the extended Burr XII probability distribution. This distribution shows great flexibility to fit data, with accurate reproduction of flow extremes. The performance analysis showed that, in general, the regional models are able to synthesize FDCs in ungauged basins, with a few possible drawbacks in the application of the method to intermittent and ephemeral rivers. In addition to the regional models, we summarize the experience of using synthetic FDCs for the indirect calibration of the Rio Grande rainfall–runoff model parameters in ungauged basins.

Editor D. Koutsoyiannis

Citation Costa, V., Fernandes, W., and Naghettini, M., 2013. Regional models of flow-duration curves of perennial and intermittent streams and their use for calibrating the parameters of a rainfall–runoff model. Hydrological Sciences Journal, 59 (2), 262–277.  相似文献   

10.
《水文科学杂志》2013,58(6):857-880
Abstract

Drainage basins in many parts of the world are ungauged or poorly gauged, and in some cases existing measurement networks are declining. The problem is compounded by the impacts of human-induced changes to the land surface and climate, occurring at the local, regional and global scales. Predictions of ungauged or poorly gauged basins under these conditions are highly uncertain. The IAHS Decade on Predictions in Ungauged Basins, or PUB, is a new initiative launched by the International Association of Hydrological Sciences (IAHS), aimed at formulating and implementing appropriate science programmes to engage and energize the scientific community, in a coordinated manner, towards achieving major advances in the capacity to make predictions in ungauged basins. The PUB scientific programme focuses on the estimation of predictive uncertainty, and its subsequent reduction, as its central theme. A general hydrological prediction system contains three components: (a) a model that describes the key processes of interest, (b) a set of parameters that represent those landscape properties that govern critical processes, and (c) appropriate meteorological inputs (where needed) that drive the basin response. Each of these three components of the prediction system, is either not known at all, or at best known imperfectly, due to the inherent multi-scale space—time heterogeneity of the hydrological system, especially in ungauged basins. PUB will therefore include a set of targeted scientific programmes that attempt to make inferences about climatic inputs, parameters and model structures from available but inadequate data and process knowledge, at the basin of interest and/or from other similar basins, with robust measures of the uncertainties involved, and their impacts on predictive uncertainty. Through generation of improved understanding, and methods for the efficient quantification of the underlying multi-scale heterogeneity of the basin and its response, PUB will inexorably lead to new, innovative methods for hydrological predictions in ungauged basins in different parts of the world, combined with significant reductions of predictive uncertainty. In this way, PUB will demonstrate the value of data, as well as provide the information needed to make predictions in ungauged basins, and assist in capacity building in the use of new technologies. This paper presents a summary of the science and implementation plan of PUB, with a call to the hydrological community to participate actively in the realization of these goals.  相似文献   

11.
ABSTRACT

In this study, a multi-modelling approach is proposed for improved continuous daily streamflow estimation in ungauged basins using regionalization—the process of transferring hydrological data from gauged to ungauged watersheds. Four regionalization models, two data-driven and two hydrological, were used for continuous daily streamflow estimation. Comparison of the individual models reveals that each of the four models performed well on a limited number of ungauged basins while none of them performed well for the entire 90 selected watersheds. The results obtained from the four models are evaluated and reported in a deterministic way by a model combination approach along with its uncertainty range consisting of 16 ensemble members. It is shown that a combined model of the four individual models performed well on all 90 watersheds and the ensemble range can account for the uncertainty of models. The combined model was more efficient and appeared more robust compared to the individual models. Furthermore, continuous ranked probability scores (CRPS) calculated for the ensemble model outputs indicate better performance compared to individual models and competitive with the combined model.
EDITOR A. Castellarin ASSOCIATE EDITOR G. Di Baldassarre  相似文献   

12.
Abstract

This review paper critically examines one of the most popular flood hydrograph modelling techniques for ungauged basins, the synthetic unit hydrograph (SUH), and its recent developments and advances. For this purpose, the SUH models were first grouped into four main classes, as follows: (a) traditional or empirical models; (b) conceptual models; (c) probabilistic models; and (d) geomorphological models. It was found that the geomorphological class is the most useful and interesting, since it is able to employ topographic information, so limiting the role of the calibration parameters. This review is expected to be helpful to hydrologists, water managers and decision-makers searching for models to study the flood hydrograph, modelling techniques and related processes in ungauged basins. It was completed as the International Association of Hydrological Sciences (IAHS) Decade (2003–2012) on predictions in ungauged basins (PUB), drew to a close.

Editor D. Koutsoyiannis; Associate editor S. Grimaldi

Citation Singh, P.K., Mishra, S.K., and Jain, M.K., 2013. A review of the Synthetic Unit Hydrograph: from the empirical UH to advanced geomorphological methods. Hydrological Sciences Journal, 59 (2), 239–261.  相似文献   

13.
Abstract

The new Scientific Decade 2013–2022 of IAHS, entitled “Panta Rhei—Everything Flows”, is dedicated to research activities on change in hydrology and society. The purpose of Panta Rhei is to reach an improved interpretation of the processes governing the water cycle by focusing on their changing dynamics in connection with rapidly changing human systems. The practical aim is to improve our capability to make predictions of water resources dynamics to support sustainable societal development in a changing environment. The concept implies a focus on hydrological systems as a changing interface between environment and society, whose dynamics are essential to determine water security, human safety and development, and to set priorities for environmental management. The Scientific Decade 2013–2022 will devise innovative theoretical blueprints for the representation of processes including change and will focus on advanced monitoring and data analysis techniques. Interdisciplinarity will be sought by increased efforts to connect with the socio-economic sciences and geosciences in general. This paper presents a summary of the Science Plan of Panta Rhei, its targets, research questions and expected outcomes.

Editor Z.W. Kundzewicz

Citation Montanari, A., Young, G., Savenije, H.H.G., Hughes, D., Wagener, T., Ren, L.L., Koutsoyiannis, D., Cudennec, C., Toth, E., Grimaldi, S., Blöschl, G., Sivapalan, M., Beven, K., Gupta, H., Hipsey, M., Schaefli, B., Arheimer, B., Boegh, E., Schymanski, S.J., Di Baldassarre, G., Yu, B., Hubert, P., Huang, Y., Schumann, A., Post, D., Srinivasan, V., Harman, C., Thompson, S., Rogger, M., Viglione, A., McMillan, H., Characklis, G., Pang, Z., and Belyaev, V., 2013. “Panta Rhei—Everything Flows”: Change in hydrology and society—The IAHS Scientific Decade 2013–2022. Hydrological Sciences Journal. 58 (6) 1256–1275.  相似文献   

14.
Abstract

The new Scientific Decade 2013–2022 of IAHS, entitled “Panta Rhei—Everything Flows”, is dedicated to research activities on change in hydrology and society. The purpose of Panta Rhei is to reach an improved interpretation of the processes governing the water cycle by focusing on their changing dynamics in connection with rapidly changing human systems. The practical aim is to improve our capability to make predictions of water resources dynamics to support sustainable societal development in a changing environment. The concept implies a focus on hydrological systems as a changing interface between environment and society, whose dynamics are essential to determine water security, human safety and development, and to set priorities for environmental management. The Scientific Decade 2013–2022 will devise innovative theoretical blueprints for the representation of processes including change and will focus on advanced monitoring and data analysis techniques. Interdisciplinarity will be sought by increased efforts to connect with the socio-economic sciences and geosciences in general. This paper presents a summary of the Science Plan of Panta Rhei, its targets, research questions and expected outcomes.

Editor Z.W. Kundzewicz

Citation Montanari, A., Young, G., Savenije, H.H.G., Hughes, D., Wagener, T., Ren, L.L., Koutsoyiannis, D., Cudennec, C., Toth, E., Grimaldi, S., Blöschl, G., Sivapalan, M., Beven, K., Gupta, H., Hipsey, M., Schaefli, B., Arheimer, B., Boegh, E., Schymanski, S.J., Di Baldassarre, G., Yu, B., Hubert, P., Huang, Y., Schumann, A., Post, D., Srinivasan, V., Harman, C., Thompson, S., Rogger, M., Viglione, A., McMillan, H., Characklis, G., Pang, Z., and Belyaev, V., 2013. “Panta Rhei—Everything Flows”: Change in hydrology and society—The IAHS Scientific Decade 2013–2022. Hydrological Sciences Journal. 58 (6) 1256–1275.  相似文献   

15.
Abstract

The impact of fire on daily discharges from two mountainous basins located in the permafrost region of Eastern Siberia, the Vitimkan (969 km2) and Vitim (18 200 km2) rivers, affected by fire over 78% and 49% of their areas, respectively, in 2003, was investigated. The results of hydrological and meteorological data analysis suggest that the Vitimkan River basin had a rapid and profound hydrological response to wildfire in 2003 expressed through a 41% (133 mm) increase of summer flow. Conversely, the larger Vitim River basin showed no significant changes in discharge after the fire. The parameters of the process-based hydrological model Hydrograph were estimated for pre-fire conditions. The results of runoff simulations conducted for the continuous pre-fire periods of 1966–2002 and 1970–2002 for the Vitimkan and Vitim river basins, respectively, on a daily time step, showed satisfactory agreement with the observed flow series of both basins. Significant underestimation of precipitation and its poor representativeness for mountainous watersheds was revealed as the main cause of observed and simulated flow discrepancies, especially for high flood events. The set of dynamic parameters was developed based on data analysis and post-fire landscape changes as derived from a literature review. The model was applied to investigate the processes in the soil column and their effect on runoff formation during the post-fire period. The new set of model parameters implied the intensification of soil thaw, reduction of infiltration rate and evapotranspiration, and increase of upper subsurface flow fraction in summer flood events following the fire. According to modelling results, the post-fire thaw depth exceeded the pre-fire thaw depth by 0.4–0.7 m. Total evapotranspiration reduced by 40% in summer months, while surface flow increased almost 2.5 times during maximum flood events.  相似文献   

16.
Abstract

Hydrological models are often used for studying the hydrological effects of climate change; however, the stability of model performance and parameter values under changing climate conditions has seldom been evaluated and compared. In this study, three widely-used rainfall–runoff models, namely the SimHYD model, the HBV model and the Xin’anjiang model, are evaluated on two catchments subject to changing climate conditions. Evaluation is carried out with respect to the stability in their performance and parameter values in different calibration periods. The results show that (a) stability of model performance and parameter values depends on model structure as well as the climate of catchments, and the models with higher performance scores are more stable in changing conditions; (b) all the tested models perform better on a humid catchment than on an arid catchment; (c) parameter values are also more stable on a humid catchment than on an arid catchment; and (d) the differences in stability among models are somewhat larger in terms of model efficiency than in model parameter values.  相似文献   

17.
Abstract

Steep mountainous areas account for 70% of all river catchments in Japan. To predict river discharge for the mountainous catchments, many studies have applied distributed hydrological models based on a kinematic wave approximation with surface and subsurface flow components (DHM-KWSS). These models reproduce observed river discharge of catchments in Japan well; however, the applicability of a DHM-KWSS to catchments with different geographical and climatic conditions has not been sufficiently examined. This research applied a DHM-KWSS to two river basins that have different climatic conditions from basins in Japan to examine the transferability of the DHM-KWSS model structure. Our results show that the DHM-KWSS model structure explained flow regimes for a wet river basin as well as a large flood event in an arid basin; however, it was unable to explain long-term flow regimes for the arid basin case study.  相似文献   

18.
Abstract

Two types of monthly water balance models at basin scale are used: PE models use precipitation and potential evapotranspiration (PET) as their observed input data, whereas P models need only precipitation. Calibration proceeds by comparing model runoff and observed runoff. Calibration is entirely automatic with the exclusion of subjective elements. All models differ only by their actual evapotranspiration equations. PE models from previous papers are generalized essentially by replacing the constant evapotranspiration parameter by a periodic one, thus increasing the number of parameters by two (a “parameter” is an unknown constant to be estimated, and which is a characteristic of the river basin to be described). P models use a periodic “driving force”, which is intended to represent periodicity of hydrological phenomena, normally originating in the (unavailable) PET time series. These eight PE models and three P models are then applied to 55 river basins in 10 countries with widely diverging climates and soil conditions. A marked improvement of model performance in about one third of the basins is due to the introduction of the above mentioned periodic functions. Even when PET data are available it is sometimes useful to consider P models. P models scarcely perform less well than PE models. An engineer, wanting to try out as few models as possible on a given river basin, can restrict his attention to the optimization of two or three models. The paper is an extension of a long effort towards monthly water balance models, and is believed to give a solution in most circumstances.  相似文献   

19.
J.M. Buttle  M.C. Eimers   《Journal of Hydrology》2009,374(3-4):360-372
Relationships explaining streamflow behaviour in terms of drainage basin physiography greatly assist efforts to extrapolate streamflow metrics from gauged to ungauged basins in the same landscape. The Dorset Environmental Science Centre (DESC) has monitored streamflow from 22 small basins (3.4–190.5 ha) on the Precambrian Shield in south-central Ontario, in some cases since 1976. The basins exhibit regional coherence in their interannual response to precipitation; however, there is often a poor correlation between streamflow metrics from basins separated by as little as 1 km. This study assesses whether inter-basin variations in such metrics can be explained in terms of basin scale and physiography. Several characteristics (annual maximum, minimum and average flow) exhibited simple scaling with basin area, while magnitude, range and timing of annual maximum daily runoff showed scaling behaviour consistent with the Representative Elementary Area (REA) concept. This REA behaviour is partly attributed to convergence of fractional coverage of the two dominant and hydrologically-contrasting land cover types in the DESC region with increasing basin size. Three Principal Components (PCs) explained 82.4% of the variation among basin physiographic properties, and several runoff metrics (magnitude and timing of annual minimum daily runoff, mean number of days per year with 0 streamflow) exhibited significant relationships with one or more PC. Significant relationships were obtained between basin quickflow (QF) production and the PCs on a seasonal and annual basis, almost all of which were superior to simple area-based relationships. Basin physiography influenced QF generation via its control on slope runoff, water storage and hydrologic connectivity; however, this role was minimized during Spring when QF production in response to large rain-on-snow events was relatively uniform across the DESC basins. The PC-based relationships and inter-seasonal changes in their form were consistent with previous research conducted at point, slope and basin scales in the DESC region, and perceptions of key hydrological processes in these small basins may not have been as readily obtained from scaling studies using streamflow from larger basins. This process understanding provides insights into scaling behaviour beyond those derived from simple scaling and REA analyses. The physiography of the study area is representative of large portions of the Precambrian Shield, such that basin streamflow behaviour could potentially be extended across much of south-central Ontario. This would assist predictions of streamflow conditions at ungauged locations, development and testing of hydrological models for this landscape, and interpretation of inter-basin and intra-annual differences in hydrochemical behaviour on the southern Precambrian Shield.  相似文献   

20.
《水文科学杂志》2013,58(1):171-182
Abstract

Abstract The aim of this study is to detect seasonal surface temperature changes and to estimate soil moisture conditions based on the evaporative cooling principle of damp ground in the alluvial basins of northwest Anatolia, Turkey, using Landsat TM/ETM data. According to analysis of satellite sensor data acquired on different dates, soil moisture is greatest in the spring season in the basins. Soil moisture decreases toward the summer and autumn. The 17 August 1999 earthquake occurred in the high surface temperature (low soil moisture) period, and the 12 November 1999 earthquake occurred in the low surface temperature (high soil moisture) period. It is possible to conclude that the urban-rural settlements and industrial developments on the loose deposits of the Adapazari, ?zmit and Düzce depressions have been affected by the seasonal changes in the local ground conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号