首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

Present global climate models (GCMs) are unable to provide reliable projections of physical oceanographic properties on the continental shelf off Newfoundland and Labrador. Here we first establish linear statistical relationships between oceanographic properties and coastal air temperature based on historical observations. We then use these relationships to project future states of oceanographic conditions under different emission scenarios, based on projected coastal air temperatures from global (Canadian Earth System Model, version 2 (CanESM2), Geophysical Fluid Dynamics Laboratory's Earth System Model, version 2M (GFDL-ESM2M)) and regional (Canadian Regional Climate Model (CRCM)) climate models. Estimates based on CanESM2 agree reasonably well with observed trends, but the trends based on two other models result in substantial underestimates. Projected trends are closer to observations under a high emission scenario than under median-level emission scenarios. Over the next 50 years, the increases in projected sea surface temperature off eastern Newfoundland (Station 27) range from 0.4° to 2.2°C. The increases in bottom ocean temperature over the Newfoundland and Labrador Shelves range from 0.4° to 2.1°C. The area of the cold intermediate layer (<0°C) on the Flemish Cap (47°N) section is projected to decrease by 9–35% of the 1981–2010 average. The decline in sea-ice extent off Newfoundland and Labrador ranges from 20 to 77% of the average (0.4–1.5?×?105?km2), and the reduction in the number of icebergs at 48°N off Newfoundland ranges from 30% to nearly 100% of the norm at this latitude. Despite differences among the models and scenarios, statistical projections indicate that conditions in this region will reach or exceed their maxima (sea surface temperature, bottom ocean temperature) and reach or fall below their minima (sea-ice extent, number of icebergs) that were observed during the course of monitoring activities over the past 30–60 years, possibly as early as 2040. We note, however, that the statistical relationships based on historical data may not hold in the future because of the changing influence of input from Arctic waters and because of large uncertainties in projected air temperatures from GCMs.  相似文献   

2.
The snow-sea-ice albedo parameterization in an atmospheric general circulation model (GCM), coupled to a simple mixed-layer ocean and run with an annual cycle of solar forcing, is altered from a version of the same model described by Washington and Meehl (1984). The model with the revised formulation is run to equilibrium for 1 × CO2 and 2 × CO2 experiments. The 1 ×CO2 (control) simulation produces a global mean climate about 1° warmer than the original version, and sea-ice extent is reduced. The model with the altered parameterization displays heightened sensitivity in the global means, but the geographical patterns of climate change due to increased carbon dioxide (CO2) are qualitatively similar. The magnitude of the climate change is affected, not only in areas directly influenced by snow and ice changes but also in other regions of the globe, including the tropics where sea-surface temperature, evaporation, and precipitation over the oceans are greater. With the less-sensitive formulation, the global mean surface air temperature increase is 3.5 °C, and the increase of global mean precipitation is 7.12%. The revised formulation produces a globally averaged surface air temperature increase of 4.04 °C and a precipitation increase of 7.25%, as well as greater warming of the upper tropical troposphere. Sensitivity of surface hydrology is qualitatively similar between the two cases with the larger-magnitude changes in the revised snow and ice-albedo scheme experiment. Variability of surface air temperature in the model is comparable to observations in most areas except at high latitudes during winter. In those regions, temporal variation of the sea-ice margin and fluctuations of snow cover dependent on the snow-ice-albedo formulation contribute to larger-than-observed temperature variability. This study highlights an uncertainty associated with results from current climate GCMs that use highly parameterized snow-sea-ice albedo schemes with simple mixed-layer ocean models.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

3.
The heat budget of the upper Arctic Ocean is examined in an ensemble of coupled climate models under idealised increasing CO2 scenarios. All of the experiments show a strong amplification of surface air temperatures but a smaller increase in sea surface temperature than the rest of the world as heat is lost to the atmosphere as the sea-ice cover is reduced. We carry out a heat budget analysis of the Arctic Ocean in an ensemble of model runs to understand the changes that occur as the Arctic becomes ice free in summer. We find that as sea-ice retreats heat is lost from the ocean surface to the atmosphere contributing to the amplification of Arctic surface temperatures. Furthermore, heat is mixed upwards into the mixed layer as a result of increased upper ocean mixing and there is increased advection of heat into the Arctic as the ice edge retreats. Heat lost from the upper Arctic Ocean to the atmosphere is therefore replenished by mixing of warmer water from below and by increased advection of warm water from lower latitudes. The ocean is therefore able to contribute more to Arctic amplification.  相似文献   

4.
General circulation models (GCMs) are unanimous in projecting warmer temperatures in an enhanced CO2 atmosphere, with amplification of this warming in higher latitudes. The Hudson Bay region, which is located in the Arctic and subarctic regions of Canada, should therefore be strongly influenced by global warming. In this study, we compare the response of Hudson Bay to a transient warming scenario provided by six-coupled atmosphere-ocean models. Our analysis focuses on surface temperature, precipitation, sea-ice coverage, and permafrost distribution. The results show that warming is expected to peak in winter over the ocean, because of a northward retreat of the sea-ice cover. Also, a secondary warming peak is observed in summer over land in the Canadian and Australian-coupled GCMs, which is associated with both a reduction in soil moisture conditions and changes in permafrost distribution. In addition, a relationship is identified between the retreat of the sea-ice cover and an enhancement of precipitation over both land and oceanic surfaces. The response of the sea-ice cover and permafrost layer to global warming varies considerably among models and thus large differences are observed in the projected regional increase in temperature and precipitation. In view of the important feedbacks that a retreat of the sea-ice cover and the distribution of permafrost are likely to play in the doubled and tripled CO2 climates of Hudson Bay, a good representation of these two parameters is necessary to provide realistic climate change scenarios. The use of higher resolution regional climate model is recommended to develop scenarios of climate change for the Hudson Bay region.  相似文献   

5.
The three-member historical simulations by the Chinese Academy of Sciences Flexible Global Ocean–Atmosphere–Land System model, version f3-L(CAS FGOALS-f3-L), which is contributing to phase 6 of the Coupled Model Intercomparison Project(CMIP6), are described in this study. The details of the CAS FGOALS-f3-L model, experiment settings and output datasets are briefly introduced. The datasets include monthly and daily outputs from the atmospheric, oceanic, land and sea-ice component models of CAS FGOALS-f3-L, and all these data have been published online in the Earth System Grid Federation(ESGF, https://esgf-node.llnl.gov/projects/cmip6/). The three ensembles are initialized from the 600th, 650th and 700th model year of the preindustrial experiment(piControl) and forced by the same historical forcing provided by CMIP6 from 1850 to 2014. The performance of the coupled model is validated in comparison with some recent observed atmospheric and oceanic datasets. It is shown that CAS FGOALS-f3-L is able to reproduce the main features of the modern climate, including the climatology of air surface temperature and precipitation,the long-term changes in global mean surface air temperature, ocean heat content and sea surface steric height, and the horizontal and vertical distribution of temperature in the ocean and atmosphere. Meanwhile, like other state-of-the-art coupled GCMs, there are still some obvious biases in the historical simulations, which are also illustrated. This paper can help users to better understand the advantages and biases of the model and the datasets.  相似文献   

6.
The patterns of large-scale climate change over the 21st century simulated by 23 CMIP3 global climate models are analyzed to provide understanding of the range of projected temperature T and precipitation P changes for Australia published in 2007. Means of change, standardized by the global warming, within each of 11 regions are calculated for each model. Correlations between regions across the 23 models indicate that the changes are rather coherent across much of the mainland. The all-Australian average changes are also well correlated with a pattern of tropical sea surface temperatures. A Pacific-Indian Dipole index, representing this pattern, correlates strongly with Australian P. It also correlates well with variables in Southeast Asia. The global warming itself correlates well with Australian warming. These two indices of large-scale ocean warming are used to partition the 23 models into four representative future climates. For Australia overall, these can be described as much warmer and drier, much warmer, warmer and drier, and warmer. The four climates span much of the range of the earlier Australian projections over most of the continent. Further, they may be reproduced by a downscaling model forced with the SST anomalies. An assessment of the realism of the ocean pattern changes has the potential to reduce the uncertainty of projections, both for Australia and beyond.  相似文献   

7.
“一带一路”地区人口众多,气候类型复杂,亟待加强区域气候变化风险的认识。文中将该区分成10个区域,基于第五次耦合模式比较计划(CMIP5)中的31个全球模式模拟结果,应用概率密度分布(PDF)方法评估历史阶段(1986—2005年)各模式模拟暖月和冷月气温的能力,挑选并建立较优模式集合,用以预估21世纪中叶(2041—2060年)和21世纪末(2081—2100年)的极端月气温。结果表明,模式对观测中冷月气温距平PDF的模拟水平整体较暖月高。与多模式平均以及中位值相比,较优模式集合方法更适于极端暖/冷月气温的评估。在中等排放RCP4.5情景下,与低纬度地区相比,较优模式模拟中高纬地区未来极端暖/冷月气温的增温幅度的不确定性范围较大。21世纪中叶和21世纪末较优模式模拟的极端暖月气温在地中海增幅整体最大,东南亚增幅整体最小。对较优模式集合预估的极端冷月气温而言,无论是21世纪中叶还是世纪末,北欧增幅整体最大,东南亚增幅整体最小。  相似文献   

8.
Long (130,000 years) transient simulations with a coupled model of intermediate complexity (CLIMBER-2) have been performed. The main objective of this study is to examine leads and lags in the response to the climate system to separate obliquity and precession-induced insolation changes. Focus is on the role of internal feedbacks in the coupled atmosphere/ocean/sea-ice/vegetation system. No interactive ice sheets were used. The results show that leads and lags occur in response to the African/Asian monsoon, temperatures at high latitudes and the Atlantic thermohaline circulation. For the monsoon, leads and lags of the monthly precipitation with respect to the precession parameter were found, which are strongly modified by vegetation. In contrast, no lag was observed for the annual precipitation. At high latitudes during late winter/early spring a vegetation-induced lag with respect to the precession parameter was found in surface air temperatures. Again, no annual lag was detected. The lag in the monthly surface air temperatures induces a lag in the annual overturning in the Atlantic Ocean by changing the strength of the deep convection. The lag is several thousand years. The obliquity-related forcing does not give rise to lags in the climate system. We conclude that lags in monthly climatic variables, which are due to vegetation feedbacks, can result in an annual lag when a climatic process (like deep water formation) acts as a filter for certain months.  相似文献   

9.
A regional sea-ice?Cocean model was used to investigate the response of sea ice and oceanic heat storage in the Hudson Bay system to a climate-warming scenario. Projections of air temperature (for the years 2041?C2070; effective CO2 concentration of 707?C950?ppmv) obtained from the Canadian Regional Climate Model (CRCM 4.2.3), driven by the third-generation coupled global climate model (CGCM 3) for lateral atmospheric and land and ocean surface boundaries, were used to drive a single sensitivity experiment with the delta-change approach. The projected change in air temperature varies from 0.8°C (summer) to 10°C (winter), with a mean warming of 3.9°C. The hydrologic forcing in the warmer climate scenario was identical to the one used for the present climate simulation. Under this warmer climate scenario, the sea-ice season is reduced by 7?C9?weeks. The highest change in summer sea-surface temperature, up to 5°C, is found in southeastern Hudson Bay, along the Nunavik coast and in James Bay. In central Hudson Bay, sea-surface temperature increases by over 3°C. Analysis of the heat content stored in the water column revealed an accumulation of additional heat, exceeding 3?MJ?m?3, trapped along the eastern shore of James and Hudson bays during winter. Despite the stratification due to meltwater and river runoff during summer, the shallow coastal regions demonstrate a higher capacity of heat storage. The maximum volume of dense water produced at the end of winter was halved under the climate-warming perturbation. The maximum volume of sea ice is reduced by 31% (592?km3) while the difference in the maximum cover is only 2.6% (32,350?km2). Overall, the depletion of sea-ice thickness in Hudson Bay follows a southeast?Cnorthwest gradient. Sea-ice thickness in Hudson Strait and Ungava Bay is 50% thinner than in present climate conditions during wintertime. The model indicates that the greatest changes in both sea-ice climate and heat content would occur in southeastern Hudson Bay, James Bay, and Hudson Strait.  相似文献   

10.
Earth system models (ESMs) provide high resolution simulations of variables such as sea surface temperature (SST) that are often used in off-line biological impact models. Coral reef modellers have used such model outputs extensively to project both regional and global changes to coral growth and bleaching frequency. We assess model skill at capturing sub-regional climatologies and patterns of historical warming. This study uses an established wavelet-based spatial comparison technique to assess the skill of the coupled model intercomparison project phase 5 models to capture spatial SST patterns in coral regions. We show that models typically have medium to high skill at capturing climatological spatial patterns of SSTs within key coral regions, with model skill typically improving at larger spatial scales (≥4°). However models have much lower skill at modelling historical warming patters and are shown to often perform no better than chance at regional scales (e.g. Southeast Asian) and worse than chance at finer scales (<8°). Our findings suggest that output from current generation ESMs is not yet suitable for making sub-regional projections of change in coral bleaching frequency and other marine processes linked to SST warming.  相似文献   

11.
An ocean–atmosphere–sea ice model is developed to explore the time-dependent response of climate to Milankovitch forcing for the time interval 5–3 Myr BP. The ocean component is a zonally averaged model of the circulation in five basins (Arctic, Atlantic, Indian, Pacific, and Southern Oceans). The atmospheric component is a one-dimensional (latitudinal) energy balance model, and the sea-ice component is a thermodynamic model. Two numerical experiments are conducted. The first experiment does not include sea ice and the Arctic Ocean; the second experiment does. Results from the two experiments are used to investigate (1) the response of annual mean surface air and ocean temperatures to Milankovitch forcing, and (2) the role of sea ice in this response. In both experiments, the response of air temperature is dominated by obliquity cycles at most latitudes. On the other hand, the response of ocean temperature varies with latitude and depth. Deep water formed between 45°N and 65°N in the Atlantic Ocean mainly responds to precession. In contrast, deep water formed south of 60°S responds to obliquity when sea ice is not included. Sea ice acts as a time-integrator of summer insolation changes such that annual mean sea-ice conditions mainly respond to obliquity. Thus, in the presence of sea ice, air temperature changes over the sea ice are amplified, and temperature changes in deep water of southern origin are suppressed since water below sea ice is kept near the freezing point.  相似文献   

12.
Although there has been a considerable amount of research conducted on the East Asian winter-mean climate, subseasonal surface air temperature(SAT) variability reversals in the early and late winter remain poorly understood. In this study,we focused on the recent winter of 2014/15, in which warmer anomalies dominated in January and February but colder conditions prevailed in December. Moreover, Arctic sea-ice cover(ASIC) in September–October 2014 was lower than normal,and warmer sea surface temperature(SST) anomalies occurred in the Ni ?no4 region in winter, together with a positive Pacific Decadal Oscillation(PDO|+) phase. Using observational data and CMIP5 historical simulations, we investigated the PDO|+ phase modulation upon the winter warm Ni ?no4 phase(autumn ASIC reduction) influence on the subseasonal SAT variability of East Asian winter. The results show that, under a PDO|+ phase modulation, warm Ni ?no4 SST anomalies are associated with a subseasonal delay of tropical surface heating and subsequent Hadley cell and Ferrel cell intensification in January–February, linking the tropical and midlatitude regions. Consistently, the East Asian jet stream(EAJS) is significantly decelerated in January–February and hence promotes the warm anomalies over East Asia. Under the PDO|+ phase,the decrease in ASIC is related to cold SST anomalies in the western North Pacific, which increase the meridional temperature gradient and generate an accelerated and westward-shifted EAJS in December. The westward extension of the EAJS is responsible for the eastward-propagating Rossby waves triggered by declining ASIC and thereby favors the connection between ASIC and cold conditions over East Asia.  相似文献   

13.
The MIT 2D climate model is used to make probabilistic projections for changes in global mean surface temperature and for thermosteric sea level rise under a variety of forcing scenarios. The uncertainties in climate sensitivity and rate of heat uptake by the deep ocean are quantified by using the probability distributions derived from observed twentieth century temperature changes. The impact on climate change projections of using the smallest and largest estimates of twentieth century deep ocean warming is explored. The impact is large in the case of global mean thermosteric sea level rise. In the MIT reference (“business as usual”) scenario the median rise by 2100 is 27 and 43 cm in the respective cases. The impact on increases in global mean surface air temperature is more modest, 4.9 and 3.9 C in the two respective cases, because of the correlation between climate sensitivity and ocean heat uptake required by twentieth century surface and upper air temperature changes. The results are also compared with the projections made by the IPCC AR4’s multi-model ensemble for several of the SRES scenarios. The multi-model projections are more consistent with the MIT projections based on the largest estimate of ocean warming. However, the range for the rate of heat uptake by the ocean suggested by the lowest estimate of ocean warming is more consistent with the range suggested by the twentieth century changes in surface and upper air temperatures, combined with the expert prior for climate sensitivity.  相似文献   

14.
This study used “factor separation” to quantify the sensitivity of simulated present and future surface temperatures and precipitation to alternative regional climate model physics components. The method enables a quantitative isolation of the effects of using each physical component as well as the combined effect of two or more components. Simulation results are presented from eight versions of the Mesoscale Modeling System Version 5 (MM5), one-way nested within one version of the Goddard Institute for Space Studies Atmosphere-Ocean Global Climate Model (GISS AOGCM). The MM5 simulations were made at 108 km grid spacing over the continental United States for five summers in the 1990s and 2050s. Results show that the choice of cumulus convection parameterization is the most important “factor” in the simulation of contemporary surface summer temperatures and precipitation over both the western and eastern USA. The choice of boundary layer scheme and radiation package also increases the range of model simulation results. Moreover, the alternative configurations give quite different results for surface temperature and precipitation in the 2050s. For example, simulated 2050s surface temperatures by the scheme with the coolest 1990s surface temperatures are comparable to 1990s temperatures produced by other schemes. The study analyzes the spatial distribution of 1990s to 2050s projected changes in the surface temperature for the eight MM5 versions. The predicted surface temperature change at a given grid point, averaged over all eight model configurations, is generally about twice the standard deviation of the eight predicted changes, indicating relative consensus among the different model projections. Factor separation analysis indicates that the choice of cumulus parameterization is the most important modeling factor amongst the three tested contributing to the computed 1990s to 2050s surface temperature change, although enhanced warming over many areas is also attributable to synergistic effects of changing all three model components. Simulated ensemble mean precipitation changes, however, are very small and generally smaller than the inter-model standard deviations. The MM5 versions therefore offer little consensus regarding 1990s to 2050s changes in precipitation rates.  相似文献   

15.
Summary In this paper a simple climate model is presented which is used to perform some sensitivity experiments. The atmospheric part is represented by a vertically and zonally averaged layer in which the surface air temperature, radiative fluxes at the surface and at the top of the atmosphere, the turbulent fluxes between atmosphere and surface and the snow cover are calculated. This atmospheric layer is coupled to a two-dimensional advection-diffusion ocean model in which the zonal overturning pattern is prescribed. The ocean model evaluates the temperature distribution, the amount of sea-ice and the meridional and vertical heat fluxes. The present-day climate simulated by the model compares reasonably well with observations of the seasonal and latitudinal distribution of temperature, radiation, surface alebdo, sea-ice and snow cover and meridional energy fluxes. Then, the sensitivity of the model-simulated present-day climate to perturbations in the incident solar radiation at the top of the atmosphere is investigated. The temperature response displays large latitudinal and seasonal variations, which is in qualitative agreement with results obtained with other climate models. It is found that the seasonal variation of sea-ice cover (and hence, the effective oceanic heat capacity) is one of the most important elements determining seasonal variations in climate sensitivity. Differences in sensitivity between the seasonal and annual mean version of the model are discussed. Finally, the equilibrium response to perturbations in some selected model variables is presented; these variables include meridional diffusion coefficients, drag coefficient, sea-ice thickness, atmospheric CO2-concentration and cloud optical thickness.With 13 Figures  相似文献   

16.
Future physical and chemical changes to the ocean are likely to significantly affect the distribution and productivity of many marine species. Tuna are of particular importance in the tropical Pacific, as they contribute significantly to the livelihoods, food and economic security of island states. Changes in water properties and circulation will impact on tuna larval dispersal, preferred habitat distributions and the trophic systems that support tuna populations throughout the region. Using recent observations and ocean projections from the CMIP3 and preliminary results from CMIP5 climate models, we document the projected changes to ocean temperature, salinity, stratification and circulation most relevant to distributions of tuna. Under a business-as-usual emission scenario, projections indicate a surface intensified warming in the upper 400 m and a large expansion of the western Pacific Warm Pool, with most surface waters of the central and western equatorial Pacific reaching temperatures warmer than 29 °C by 2100. These changes are likely to alter the preferred habitat of tuna, based on present-day thermal tolerances, and in turn the distribution of spawning and foraging grounds. Large-scale shoaling of the mixed layer and increases in stratification are expected to impact nutrient provision to the biologically active layer, with flow-on trophic effects on the micronekton. Several oceanic currents are projected to change, including a strengthened upper equatorial undercurrent, which could modify the supply of bioavailable iron to the eastern Pacific.  相似文献   

17.
Sea ice has been suggested, based on simple models, to play an important role in past glacial–interglacial oscillations via the so-called “sea-ice switch” mechanism. An important requirement for this mechanism is that multiple sea-ice extents exist under the same land ice configuration. This hypothesis of multiple sea-ice extents is tested with a state-of-the-art ocean general circulation model coupled to an atmospheric energy–moisture-balance model. The model includes a dynamic-thermodynamic sea-ice module, has a realistic ocean configuration and bathymetry, and is forced by annual mean forcing. Several runs with two different land ice distributions represent present-day and cold-climate conditions. In each case the ocean model is initiated with both ice-free and fully ice-covered states. We find that the present-day runs converge approximately to the same sea-ice state for the northern hemisphere while for the southern hemisphere a difference in sea-ice extent of about three degrees in latitude between the different runs is observed. The cold climate runs lead to meridional sea-ice extents that are different by up to four degrees in latitude in both hemispheres. While approaching the final states, the model exhibits abrupt transitions from extended sea-ice states and weak meridional overturning circulation, to less extended sea ice and stronger meridional overturning circulation, and vice versa. These transitions are linked to temperature changes in the North Atlantic high-latitude deep water. Such abrupt changes may be associated with Dansgaard–Oeschger events, as proposed by previous studies. Although multiple sea ice states have been observed, the difference between these states is not large enough to provide a strong support for the sea-ice-switch mechanism.  相似文献   

18.
Three different reconstructed wind-stress fields which take into account variations of the North Atlantic Oscillation, one general circulation model wind-stress field, and three radiative forcings (volcanic activity, insolation changes and greenhouse gas changes) are used with the UVic Earth System Climate Model to simulate the surface air temperature, the sea-ice cover, and the Atlantic meridional overturning circulation (AMOC) since 1500, a period which includes the Little Ice Age (LIA). The simulated Northern Hemisphere surface air temperature, used for model validation, agrees well with several temperature reconstructions. The simulated sea-ice cover in each hemisphere responds quite differently to the forcings. In the Northern Hemisphere, the simulated sea-ice area and volume during the LIA are larger than the present-day area and volume. The wind-driven changes in sea-ice area are about twice as large as those due to thermodynamic (i.e., radiative) forcing. For the sea-ice volume, changes due to wind forcing and thermodynamics are of similar magnitude. Before 1850, the simulations suggest that volcanic activity was mainly responsible for the thermodynamically produced area and volume changes, while after 1900 the slow greenhouse gas increase was the main driver of the sea-ice changes. Changes in insolation have a small effect on the sea ice throughout the integration period. The export of the thicker sea ice during the LIA has no significant effect on the maximum strength of the AMOC. A more important process in altering the maximum strength of the AMOC and the sea-ice thickness is the wind-driven northward ocean heat transport. In the Southern Hemisphere, there are no visible long-term trends in the simulated sea-ice area or volume since 1500. The wind-driven changes are roughly four times larger than those due to radiative forcing. Prior to 1800, all the radiative forcings could have contributed to the thermodynamically driven changes in area and volume. In the 1800s the volcanic forcing was dominant, and during the first part of the 1900s both the insolation changes and the greenhouse gas forcing are responsible for thermodynamically produced changes. Finally, in the latter part of the 1900s the greenhouse gas forcing is the dominant factor in determining the sea-ice changes in the Southern Hemisphere.
Jan SedláčekEmail:
  相似文献   

19.
The sensitivity of global climate to colder North Atlantic sea surface temperatures is in vestigated with the use of the GISS general circulation model. North Atlantic ocean temperatures 18,000 B.P., resembling those prevalent during the Younger Dryas, were incorporated into the model of the present climate and also into an experiment using orbital parameters and land ice characteristic of 11,000 B.P. The results show that with both 11,000 B.P. and present conditions the colder ocean temperatures produce cooling over western and central Europe, in good agreement with Younger Dryas paleoclimatic evidence. Cooling also occurs over extreme eastern North America, although the precise magnitude and location depends upon the specification of ocean temperature change in the western Atlantic. Despite the presence of increased land ice and colder ocean temperatures, the Younger Dryas summer air temperatures at Northern Hemisphere midlatitudes in the model are warmer than those of today due to changes in the orbital parameters, chiefly precession, and atmospheric subsidence at the perimeter of the ice sheets.  相似文献   

20.
Impact of ocean model resolution on CCSM climate simulations   总被引:1,自引:1,他引:0  
The current literature provides compelling evidence suggesting that an eddy-resolving (as opposed to eddy-permitting or eddy-parameterized) ocean component model will significantly impact the simulation of the large-scale climate, although this has not been fully tested to date in multi-decadal global coupled climate simulations. The purpose of this paper is to examine how resolved ocean fronts and eddies impact the simulation of large-scale climate. The model used for this study is the NCAR Community Climate System Model version 3.5 (CCSM3.5)—the forerunner to CCSM4. Two experiments are reported here. The control experiment is a 155-year present-day climate simulation using a 0.5° atmosphere component (zonal resolution 0.625 meridional resolution 0.5°; land surface component at the same resolution) coupled to ocean and sea-ice components with zonal resolution of 1.2° and meridional resolution varying from 0.27° at the equator to 0.54° in the mid-latitudes. The second simulation uses the same atmospheric and land-surface models coupled to eddy-resolving 0.1° ocean and sea-ice component models. The simulations are compared in terms of how the representation of smaller scale features in the time mean ocean circulation and ocean eddies impact the mean and variable climate. In terms of the global mean surface temperature, the enhanced ocean resolution leads to a ubiquitous surface warming with a global mean surface temperature increase of about 0.2?°C relative to the control. The warming is largest in the Arctic and regions of strong ocean fronts and ocean eddy activity (i.e., Southern Ocean, western boundary currents). The Arctic warming is associated with significant losses of sea-ice in the high-resolution simulation. The sea surface temperature gradients in the North Atlantic, in particular, are better resolved in the high-resolution model leading to significantly sharper temperature gradients and associated large-scale shifts in the rainfall. In the extra-tropics, the interannual temperature variability is increased with the resolved eddies, and a notable increases in the amplitude of the El Ni?o and the Southern Oscillation is also detected. Changes in global temperature anomaly teleconnections and local air-sea feedbacks are also documented and show large changes in ocean–atmosphere coupling. In particular, local air-sea feedbacks are significantly modified by the increased ocean resolution. In the high-resolution simulation in the extra-tropics there is compelling evidence of stronger forcing of the atmosphere by SST variability arising from ocean dynamics. This coupling is very weak or absent in the low-resolution model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号