首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Monitoring of altimeter microwave radiometer measurements is necessary in order to identify radiometer drifts or offsets that if uncorrected will introduce systematic errors into ocean height measurements. To examine TOPEX Microwave Radiometer (TMR) and Jason-1 Microwave Radiometer (JMR) behavior, we have used coincident wet zenith delay estimates from Very Long Baseline Interferometry (VLBI) and Global Positioning System (GPS) geodetic sites near altimeter ground tracks. We derived a TMR path delay drift rate of ?1.1 ± 0.1 mm/yr using GPS data for the period from 1993.0–1999.0 and ?1.2 ± 0.5 mm/yr using VLBI data. Thereafter, the drift appears to have leveled off. Already after 2.3 years (82 cycles) of the Jason-1 mission, it is clear that there have been significant systematic errors in the JMR path delay measurements. From comparison with GPS wet delays, there is an offset of ?5.2 ± 0.6 mm at about cycle 30 and a more abrupt offset of ?11.5 ± 0.8 mm at cycle 69. If we look at the behavior of the JMR coldest brightness temperatures, we see that the offsets near cycle 30 and cycle 69 are mainly caused by corresponding offsets in the 23.8 GHz channel of ?0.49 ± 0.12 K and ?1.18 ± 0.13 K, although there is a small 34.0 GHz offset at cycle 69 of 0.75 ± 0.22 K. Drifts in the 18.0 and 34.0 GHz channels produce a small path delay drift of 0.3 ± 0.5 mm/yr.  相似文献   

2.
Monitoring of altimeter microwave radiometer measurements is necessary in order to identify radiometer drifts or offsets that if uncorrected will introduce systematic errors into ocean height measurements. To examine TOPEX Microwave Radiometer (TMR) and Jason-1 Microwave Radiometer (JMR) behavior, we have used coincident wet zenith delay estimates from Very Long Baseline Interferometry (VLBI) and Global Positioning System (GPS) geodetic sites near altimeter ground tracks. We derived a TMR path delay drift rate of -1.1 ± 0.1 mm/yr using GPS data for the period from 1993.0-1999.0 and -1.2 ± 0.5 mm/yr using VLBI data. Thereafter, the drift appears to have leveled off. Already after 2.3 years (82 cycles) of the Jason-1 mission, it is clear that there have been significant systematic errors in the JMR path delay measurements. From comparison with GPS wet delays, there is an offset of -5.2 ± 0.6 mm at about cycle 30 and a more abrupt offset of -11.5 ± 0.8 mm at cycle 69. If we look at the behavior of the JMR coldest brightness temperatures, we see that the offsets near cycle 30 and cycle 69 are mainly caused by corresponding offsets in the 23.8 GHz channel of -0.49 ± 0.12 K and -1.18 ± 0.13 K, although there is a small 34.0 GHz offset at cycle 69 of 0.75 ± 0.22 K. Drifts in the 18.0 and 34.0 GHz channels produce a small path delay drift of 0.3 ± 0.5 mm/yr.  相似文献   

3.
We present an initial assessment of SARAL/AltiKa data in the coastal band. The study focuses on the Ibiza Channel where the north-south water exchanges play a key role in controlling the circulation variability in the western Mediterranean. In this area, the track 16 of SARAL/AltiKa intercepts the domain covered by a coastal high-frequency (HF) radar system, which provides surface currents with a range up to 60 km. We evaluate the performance of the SARAL/AltiKa Ssalto/Duacs delayed-time along-track products compared to the HF radar surface velocity fields. SARAL/AltiKa data are retrieved at a distance of only 7 km from the coast, putting in evidence the emerging capabilities of the new altimeter. The derived velocities resolved the general features of the seasonal mesoscale variability with reasonable agreement with HF radar fields (significant correlations of 0.54). However, some discrepancies appear, which might be caused by instrumental hardware radar errors, ageostrophic velocities as well as inaccurate corrections and editing in the altimeter data. Root mean square (rms) differences between the estimated SARAL/AltiKa and the HF radar velocities are about 13 cm/s. These results are consistent with recent studies in other parts of the ocean applying similar approaches to Topex/Poseidon and Jason-1 missions and using coastal altimeter corrections.  相似文献   

4.
The Kavaratti calibration-validation site in India at Lakshadweep Sea has been improved to carry out absolute calibration of SARAL/AltiKa altimeter. This site is augmented with a down-looking radar gauge and a permanent GPS receiver. The Kavaratti Island is located near a repeating ground track of SARAL/AltiKa and ~12 km away from the point of closest measurement of Jason-2, SARAL/AltiKa crossover point. Additionally, the altimeter and radiometer footprints do not experience any land contamination. This article aims at presenting the initial calibration-validation results over cycles 001-011 of AltiKa. The absolute sea surface height bias has been found to be ?48 mm at Kavaratti calibration site. In this preliminary study the effect of environmental variables such as winds and pressure are not considered in calculations.  相似文献   

5.
This work presents the first calibration results for the SARAL/AltiKa altimetric mission using the Gavdos permanent calibration facilities. The results cover one year of altimetric observations from April 2013 to March 2014 and include 11 calibration values for the altimeter bias. The reference ascending orbit No. 571 of SARAL/AltiKa has been used for this altimeter assessment. This satellite pass is coming from south and nears Gavdos, where it finally passes through its west coastal tip, only 6 km off the main calibration location. The selected calibration regions in the south sea of Gavdos range from about 8 km to 20 km south off the point of closest approach. Several reference surfaces have been chosen for this altimeter evaluation based on gravimetric, but detailed regional geoid, as well as combination of it with other altimetric models.

Based on these observations and the gravimetric geoid model, the altimeter bias for the SARAL/AltiKa is determined as mean value of ?46mm ±10mm, and a median of ?42 mm ±10 mm, using GDR-T data at 40 Hz rate. A preliminary cross-over analysis of the sea surface heights at a location south of Gavdos showed that SARAL/AltiKa measure less than Jason-2 by 4.6 cm. These bias values are consistent with those provided by Corsica, Harvest, and Karavatti Cal/Val sites. The wet troposphere and the ionosphere delay values of satellite altimetric measurements are also compared against in-situ observations (?5 mm difference in wet troposphere and almost the same for the ionosphere) determined by a local array of permanent GNSS receivers, and meteorological sensors.  相似文献   

6.
The CNES/ISRO mission SARAL/AltiKa was successfully launched on 25 February 2013. It reached its nominal orbit on 13 March 2013. AltiKa is the first altimeter using the Ka-band frequency. This article presents the results of the calibration and validation activities perfromed on the first year of the SARAL/AltiKa mission. The main objective of the article is to assess the SARAL/AltiKa data quality and to estimate the altimeter system performance using GDR products. To achieve this goal, we present mono-mission metrics and compare them with Jason-2 over the same period. Even if these missions do not have the same ground track, precise comparisons are still possible. They allow assessing parameter discrepancies and SSH consistency between both missions in order to detect geographically correlated biases, jumps or drifts. These results show that SARAL/AltiKa data quality is excellent: ocean data coverage is greater than 99.5%, standard deviation at cross-overs is 5.4 cm. The mission therefore fulfills the requirements of high precision altimetry and can be used (in conjunction with Jason-2) to monitor the global mean sea level, ensuring the continuity of the record over ERS/Envisat historical ground track. Possible improvements and open issues are also identified, foreseeing an even better mission performance.  相似文献   

7.
SARAL/AltiKa completed its first year in orbit in March 2014. The 1 Hz GDR-T data of the first 10 cycles of the mission are used to perform a comprehensive quality assessment by means of a global multi-mission crossover analysis. Within this approach, SARAL sea surface heights are compared with data from other current missions, mainly Jason-2 and Cryosat-2, to reveal its accuracy and consistency with the other altimeter systems. Alongside with global mean range bias and instrumental drifts, investigations on geographically correlated errors as well as on the realization of the systems origin are performed. The study proves the high quality and reliability of SARAL. The mission shows only a small range bias of about ?5 cm with respect to Jason-2 and neither significant time-tag bias nor instrumental drifts. With 1.3 cm the scatter of radial errors is in the same order of magnitude as for Cryosat-2 and Jason-1 GM and will probably further improve using an enhanced sea state bias (SSB) model. However, the wet tropospheric corrections from SARAL radiometer still show some systematic effects influencing the range bias as well as geographically correlated error patterns and the z-component of the origin. Improved inflight calibration will be necessary to overcome these effects.  相似文献   

8.
The Jason-1 Microwave Radiometer (JMR) provides measurements of the wet troposphere content to correct the altimetric range measurement for the associated path delay. Various techniques are used to monitor the JMR wet troposphere path delays, with measurements of zenith troposphere content from terrestrial GPS sites used as an independent verification technique. Results indicate that an unexpected offset of approximately +4.1 ± 1.2 mm (drier) emerged in the JMR measurements of wet path delay between cycles 28–32 of the Jason-1 mission, and that the measurements may be drifting at a rate of approximately ?0.5 mm/year. These anomalies are shown to be caused by a ?0.7 K offset in 23.8 GHz brightness temperatures between cycles 28–32, and a 0.16 ± 0.04 and ?0.45 ± 0.08 K/year drift in the 18.7 and 34.0 GHz brightness temperatures, respectively. Intercomparison of the 3-Hz JMR brightness temperature measurements show that they have been drifting with respect to each other, and that a dependence on yaw-steering regime is present in these measurements. An offset of 0.5 m/s between cycles 28–32 and a drift of approximately 0.5 m/s/year in the JMR wind speed measurements is also associated with these anomalies in the 1-Hz brightness temperatures. These errors in JMR wind speeds presently have a negligible impact on the retrieved JMR path delays.  相似文献   

9.
The focus of this study is the validation of significant wave height (SWH) and sea surface height anomaly (SSHA) obtained from the first Ka-band altimeter AltiKa onboard SARAL (Satellite for ARGOS and Altimeters). It is a collaborative mission of the Indian Space Research Organization and Centre National d'Etudes Spatiales (CNES). This is done using in-situ observations from buoy and Jason-2 measurements. Validation using buoy observations are at particular locations while that using Jason-2 altimeter is an attempt towards global validation of Altika products. The results clearly indicate that the SARAL/AltiKa provide high-quality data and the errors are within a predefined range of accuracy. A parallel validation of SWH from other altimeters, which monitored ocean since last decade, like EnviSAT and Jason-2 was also performed with buoy observations. The results clearly show that the accuracy of AltiKa SWH is much better than EnviSAT and comparable to reference mission Jason-2. The accuracy is quite good for the calm sea while in the rough seas the accuracy degrades some. The inter-comparison of SARAL/AltiKa SSHA with Jason-2 indicates a fair match between them. These validation exercises demonstrate the high quality of AltiKa products, usable for practical applications.  相似文献   

10.
The Jason-1 Microwave Radiometer (JMR) provides measurements of the wet troposphere content to correct the altimetric range measurement for the associated path delay. Various techniques are used to monitor the JMR wet troposphere path delays, with measurements of zenith troposphere content from terrestrial GPS sites used as an independent verification technique. Results indicate that an unexpected offset of approximately +4.1 ± 1.2 mm (drier) emerged in the JMR measurements of wet path delay between cycles 28-32 of the Jason-1 mission, and that the measurements may be drifting at a rate of approximately -0.5 mm/year. These anomalies are shown to be caused by a -0.7 K offset in 23.8 GHz brightness temperatures between cycles 28-32, and a 0.16 ± 0.04 and -0.45 ± 0.08 K/year drift in the 18.7 and 34.0 GHz brightness temperatures, respectively. Intercomparison of the 3-Hz JMR brightness temperature measurements show that they have been drifting with respect to each other, and that a dependence on yaw-steering regime is present in these measurements. An offset of 0.5 m/s between cycles 28-32 and a drift of approximately 0.5 m/s/year in the JMR wind speed measurements is also associated with these anomalies in the 1-Hz brightness temperatures. These errors in JMR wind speeds presently have a negligible impact on the retrieved JMR path delays.  相似文献   

11.
Results are presented from the on-orbit calibration of the Jason Microwave Radiometer (JMR). The JMR brightness temperatures (TBs) are calibrated at the hottest and coldest ends of the instrument's dynamic range, using Amazon rain forest and vicarious cold on-Earth theoretical brightness temperature references. The retrieved path delay values are validated using collocated TOPEX Microwave Radiometer and Radiosonde Observation path delay (PD) values. Offsets of 1–4 K in the JMR TBs and 8–12 mm in the JMR PDs, relative to TMR measurements, were initially observed. There were also initial TB offsets of 2 K between the satellite's yaw state. The calibration was adjusted by tuning coefficients in the antenna temperature calibration algorithm and the antenna pattern correction algorithm. The calibrated path delay values are demonstrated to have no significant bias or scale errors with consistent performance in all nonprecipitating weather conditions. The uncertainty of the individual path delay measurements is estimated to be 0.74 cm ± 0.15, which exceeds the mission goal of 1.2 cm RMS.  相似文献   

12.
SARAL/AltiKa GDR-T are analyzed to assess the quality of the significant wave height (SWH) measurements. SARAL along-track SWH plots reveal cases of erroneous data, more or less isolated, not detected by the quality flags. The anomalies are often correlated with strong attenuation of the Ka-band backscatter coefficient, sensitive to clouds and rain. A quality test based on the 1 Hz standard deviation is proposed to detect such anomalies. From buoy comparison, it is shown that SARAL SWH is more accurate than Jason-2, particularly at low SWH, and globally does not require any correction. Results are better with open ocean than with coastal buoys. The scatter and the number of outliers are much larger for coastal buoys. SARAL is then compared with Jason-2 and Cryosat-2. The altimeter data are extracted from the global altimeter SWH Ifremer data base, including specific corrections to calibrate the various altimeters. The comparison confirms the high quality of SARAL SWH. The 1 Hz standard deviation is much less than for Jason-2 and Cryosat-2, particularly at low SWH. Furthermore, results show that the corrections applied to Jason-2 and to Cryosat-2, in the data base, are efficient, improving the global agreement between the three altimeters.  相似文献   

13.
On 25 February 2013, the Satellite for Argos and AltiKa (SARAL) was launched from the Indian Sriharikota launch site. The AltiKa payload consisted of an altimeter and a radiometer. This paper describes the AltiKa radiometer. This instrument has been studied for several years by CNES, TAS-F, ASTRIUM-F and a set of science laboratories, and AltiKa is the first compact instrument embedding simultaneously the altimeter and radiometer functions. AltiKa radiometer is a dual frequency instrument working in K (23.8 GHz) and Ka band (37 GHz), it is based on the total power principle, with direct detection receivers. On-ground acceptance tests exhibited a very high level of performance: less than 0.2 dB has been estimated for both sensitivity and absolute accuracy in both frequencies. This paper focuses on the in-flight performances that have been observed since the launch. All the instrument observable characterizations are nominal, and in-flight sensitivity has been estimated lower than 0.2 K.  相似文献   

14.
Jason Microwave Radiometer Performance and On-Orbit Calibration   总被引:2,自引:0,他引:2  
Results are presented from the on-orbit calibration of the Jason Microwave Radiometer (JMR). The JMR brightness temperatures (TBs) are calibrated at the hottest and coldest ends of the instrument's dynamic range, using Amazon rain forest and vicarious cold on-Earth theoretical brightness temperature references. The retrieved path delay values are validated using collocated TOPEX Microwave Radiometer and Radiosonde Observation path delay (PD) values. Offsets of 1-4 K in the JMR TBs and 8-12 mm in the JMR PDs, relative to TMR measurements, were initially observed. There were also initial TB offsets of 2 K between the satellite's yaw state. The calibration was adjusted by tuning coefficients in the antenna temperature calibration algorithm and the antenna pattern correction algorithm. The calibrated path delay values are demonstrated to have no significant bias or scale errors with consistent performance in all nonprecipitating weather conditions. The uncertainty of the individual path delay measurements is estimated to be 0.74 cm ± 0.15, which exceeds the mission goal of 1.2 cm RMS.  相似文献   

15.
High-precision satellite altimeters help in measuring the variations in sea level since the early 1990s. After a number of such successful altimetry missions such as Topex/Poseidon, Jason-1, Jason-2, and Envisat, SARAL/AltiKa, a high resolution altimetry mission based on the Ka frequency band that can also cover high latitudinal zones, was launched in February 2013. Even though the data set available from this recent mission is not yet suitable for climate research owing to its short duration, in this study we perform a preliminary validation of SARAL/AltiKa sea-level data. The first part of the validation is the comparison of SARAL/AltiKa and Jason-2 sea-level data between March 2013 and August 2014 in terms of temporal mean spatial pattern. Comparisons in terms of global mean sea-level time series and latitudinal band-based mean time series are also performed. The second part of the validation is the comparison of the SARAL/AltiKa sea-level based time series with several tide gauge records covering the period of our study. Finally, an analysis of the annual sea-level budget with SARAL/AltiKa data, steric sea level, and ocean mass is performed. Results of these preliminary comparisons show good agreement with other sea-level data.  相似文献   

16.
The impact of SARAL/AltiKa derived sea level anomaly (SLA) has been studied by assimilating it along with Jason-2 and Cryosat-2 SLA in the Princeton Ocean model (POM) using ensemble optimal interpolation (EnOI) technique. For isolating the extra benefit brought by SARAKL/Altika, a parallel run with assimilation of only Jason-2 and Cryosat-2 SLA has also been conducted. The importance of SARAL SLA in a data assimilative ocean prediction system has been evaluated with special emphasis on the improvement in thermocline depth, depth of the 20° isotherm, subsurface temperature and currents. Comparison with RAMA buoy has shown a positive impact of up to 13% for 20°C isotherm and up to 17% for thermocline depth after assimilating SARAL SLA. An overall improvement in temperature profile is also observed when compared with analogous profiles from RAMA buoys and Argo floats. Improvement in zonal currents away from the equator has also been noticed.  相似文献   

17.
As a part of our calibration/validation activities five months of SARAL/AltiKa wave data have been analyzed in this study. A robust quality control procedure using threshold values on signal and retrieved wave heights was implemented before the assimilation. Assimilation runs in the wave model Météo-France (MFWAM) were performed for a long period. The validation of the model outputs was performed with independent wave observations from altimeter and buoy data. The results indicate good performance in terms of bias and scatter index for the significant wave height and the peak wave period. Statistical analyses were performed for different ocean basins (high and intermediate latitudes and tropics). The use of SARAL/AltiKa and Jason-2 wave data combined was also investigated. This leads to further improvements for the analysis and forecast periods. In other respects, the impact of the assimilation of SARAL/AltiKa wave data is discussed for waves under strong wind conditions such as typhoons Fitow and Danas which occurred in early October 2013.  相似文献   

18.
The geodetic Corsica site was set up in 1998 in order to perform altimeter calibration of the TOPEX/Poseidon (T/P) mission and subsequently, Jason-1 and OSTM/Jason-2. The scope of the site was widened in 2005 in order to undertake the calibration of the Envisat mission and most recently of SARAL/AltiKa. Here we present the first results from the latter mission using both indirect and direct calibration/validation approaches. The indirect approach utilizes a coastal tide gauge and, as a consequence, the altimeter derived sea surface height (SSH) needs to be corrected for the geoid slope. The direct approach utilizes a novel GPS-based system deployed offshore under the satellite ground track that permits a direct comparison with the altimeter derived SSH. The advantages and disadvantages of both systems (GPS-based and tide gauges) and methods (direct or indirect) will be described and discussed. Our results for O/IGD-R data show a very good consistency for these three kinds of products: their derived absolute SSH biases are consistent within 17 mm and their associated standard deviation ranges from 31 to 35 mm. The AltiKa absolute SSH bias derived from GPS-zodiac measurement using the direct method is ?54 ±10 mm based on the first 13 cycles.  相似文献   

19.
Radar altimetry has demonstrated strong capabilities for the monitoring of water levels of lakes, rivers and wetlands over the last 20 years. The Indo-French SARAL/AltiKa mission, launched in February 2013, is the first satellite radar altimetry mission to carry onboard a Ka-band sensor. We propose here to evaluate the potential of this new instrument for land hydrology through comparisons with other altimetry-derived stages and discharges in the Ganges-Brahmaputra and Irrawaddy river basins using its first year of data. Due to the lack of concomitant in situ measurements for the current period, Jason-2 data, previously evaluated against in situ gauge records, were used as reference. Comparisons between Jason-2 and SARAL-derived water levels and discharges, and Jason-2 and Envisat (which flew the same orbit as SARAL from 2002 to 2010)-derived ones, was performed. Time-series of only one year of SARAL-derived water levels and discharges present better performances (lower RMSE and higher R, generally greater than 0.95) than the ones derived from Envisat when compared with Jason-2.  相似文献   

20.
One amazing heritage of the current altimetry missions, Jason-2, CryoSat-2 (without mentioning their predecessors TOPEX-Poseidon, ERS, Jason-1, and EnviSat) is that DORIS using DIODE On-Board Orbit Determination software calculate orbits in real-time with accuracy. For example, accuracy has been improved to 2.7 cm RMS on board DORIS/Jason-2 compared with the final Precise Orbit Ephemerides (POE) orbit, generally known to have less than 1 cm accuracy on the radial component. Simultaneously, an efficient integrity team on-ground continually monitors the health of the DORIS system.

In February 2013, SARAL/AltiKa was launched hosting a DORIS DGXX receiver with the latest LV11 software as previously used in Jason-2 and CryoSat-2. DORIS on-board SARAL has since been permanently producing results efficiently every ten seconds without exception, including during manoeuvring phases. Spacecraft, ground-system, and users are provided with real-time information on the satellite position: the accuracy is approximately 3.0 cm RMS on the radial component, which is a major break-through for Near Real-Time (NRT) processing. These results are detailed in the paper. Future DORIS/DIODE versions will be used on-board Jason-3 and Sentinel-3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号