首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We calculate the energy density and energy distribution of Kantowski-Sachs space-time, using Einstein, Bergmann-Thomson and Landau-Lifshitz energy-momentum complexes, in the theory of teleparallel gravity. A comparison of the results shows that the Einstein and Bergmann-Thomson definitions furnish a consistent result for the energy density and energy distribution, but the definition of Landau-Lifshitz does not concur with them. We show that the space-time under consideration gives a counterexample that the energy distribution is the same either in general relativity or teleparallel gravity.  相似文献   

2.
3.
We use the teleparallel geometry analog of the Møller energy-momentum complex to calculate the energy distribution (due to matter plus field including gravity) of a charged black hole solution in heterotic string theory. We find the same energy distribution as obtained by Gad who investigated the same problem by using the Møller energy-momentum complex in general relativity. The total energy depends on the black hole mass M and charge Q. The energy obtained is also independent of the teleparallel dimensionless coupling constant, which means that it is valid not only in the teleparallel equivalent of general relativity, but also in any teleparallel model. Furthermore, our results also sustains (a) the importance of the energy-momentum definitions in the evaluation of the energy distribution of a given spacetime and (b) the viewpoint of Lessner that the Møller energy-momentum complex is a powerful concept of energy and momentum.  相似文献   

4.
5.
In this paper, using the energy definition in MØller’s tetrad theory of gravity we calculate the total energy of the universe in Bianchi-type I cosmological models which includes both the matter and gravitational fields. The total energy is found to be zero and this result agrees with a previous works of Banerjee and Sen who investigated this problem using the general relativity version of the Einstein energy-momentum complex and Xulu who investigated same problem using the general relativity versions of the Landau and lifshitz, Papapetrou and Weinberg’s energy-momentum complexes. The result that total energy of the universe in Bianchi-type I universes is zero supports the viewpoint of Tryon.  相似文献   

6.
We calculate the energy and momentum distributions associated with a Gödel-type space–time, using the well-known energy–momentum complexes of Landau–Lifshitz and Møller. We show that the definitions of Landau–Lifshitz and Møller do not furnish a consistent result.  相似文献   

7.
The energy densities of dark matter (DM) and dark energy (DE) are of the same order at the present epoch despite the fact that both these quantities have contrasting characteristics and are presumed to have evolved distinctively with cosmic evolution. This is a major issue in standard ΛCDM cosmology and is termed “The Coincidence Problem” which hitherto cannot be explained by any fundamental theory. In this spirit, Bisabr (2010) reported a cosmological scenario in f(R) gravity where DM and DE interact and exchange energy with each other and therefore evolve dependently. We investigate the efficiency and model independancy of the technique reported in Bisabr (2010) in addressing the Coincidence problem with the help of two f(R) gravity models with model parameters constrained from various observations. Our result confirm the idea that not all scalar-tensor gravity theories and models can circumvent the Coincidence Problem and any cosmological scenario with interacting fluids is highly model dependent and hence alternate model independent theories and ideas should be nominated to solve this mystery.  相似文献   

8.
9.
The efficiency of absorption of X-rays generated by a nuclear explosion at the surface of an asteroid, estimated earlier, is used to calculate the explosion yield needed to deflect the orbit of an asteroid. Following the work of Ahrens &38; Harris, it is shown that a recoil velocity of 1 cm s−1 is required to deflect an asteroid from a collision course with the Earth, and the necessary yield of explosion energy is estimated. If it is assumed that the scaling law between the energy and the diameter of the resulting crater, obtained from experiments carried out on the Earth, remains valid on the asteroid surface, where gravity is much weaker, an explosion energy of 8 and 800 megaton (Mton) equivalent of TNT would be required for asteroids of diameter 1 and 10 km respectively. If, on the other hand, the crater diameter is proportional to a certain power of the gravity g , the power being determined from a dimension analysis, 130 kton and 12 Mton would be required to endow asteroids of diameters 1 and 10 km with the required velocity, respectively. The result indicates that in order to estimate the required explosion energy, a better understanding of cratering under gravity much weaker than on the Earth would be required.  相似文献   

10.
In this paper, we explore some exact cylindrically symmetric solutions in the context of Rastall theory of gravity. For this purpose, we consider the general form of a metric in the cylindrical Weyl coordinates. The modified field equations are developed in the presence of charge. In particular, we try to recover the well-known Levi–Civita’s static cylindrically symmetric solution in the framework of Rastall gravity. The graphical behavior of energy density and pressure component is presented along with the discussion of energy conditions. Finally, the solutions in the context of general relativity are discussed. It is concluded that Levi–Civita’s static cylindrically symmetric charged solutions do exist in Rastall theory of gravity.  相似文献   

11.
In this work the collapsing process of a spherically symmetric star, made of dust cloud, in the background of dark energy is studied for two different gravity theories separately, i.e., DGP Brane gravity and Loop Quantum gravity. Two types of dark energy fluids, namely, Modified Chaplygin gas and Generalised Cosmic Chaplygin gas are considered for each model. Graphs are drawn to characterize the nature and the probable outcome of gravitational collapse. A comparative study is done between the collapsing process in the two different gravity theories. It is found that in case of dark matter, there is a great possibility of collapse and consequent formation of Black hole. In case of dark energy possibility of collapse is far lesser compared to the other cases, due to the large negative pressure of dark energy component. There is an increase in mass of the cloud in case of dark matter collapse due to matter accumulation. The mass decreases considerably in case of dark energy due to dark energy accretion on the cloud. In case of collapse with a combination of dark energy and dark matter, it is found that in the absence of interaction there is a far better possibility of formation of black hole in DGP brane model compared to Loop quantum cosmology model.  相似文献   

12.
Using the teleparallel gravity versions of the Einstein and Landau–Lifshitz’s energy and/or momentum complexes, I obtain the energy and momentum of the universe in viscous Kasner-type cosmological models. The energy and momentum components (due to matter plus field) are found to be zero and this agree with a previous work of Rosen and Johri et al., who investigated the problem of the energy in Friedmann–Robertson–Walker (FRW) universe. The result that the total energy and momentum components of the universe in these models is zero same as Bergmann–Thomson’s energy–momentum and props the viewpoint of Tryon. Rosen found that the energy of the FRW space–time is zero, which agrees with the studies of Tryon. PACs Numbers: 04.20.-q; 04.50.+h An erratum to this article is available at .  相似文献   

13.
This short paper gives a brief overview of the manifestly covariant canonical gauge gravity (CCGG) that is rooted in the De Donder-Weyl Hamiltonian formulation of relativistic field theories, and the proven methodology of the canonical transformation theory. That framework derives, from a few basic physical and mathematical assumptions, equations describing generic matter and gravity dynamics with the spin connection emerging as a Yang Mills-type gauge field. While the interaction of any matter field with spacetime is fixed just by the transformation property of that field, a concrete gravity ansatz is introduced by the choice of the free (kinetic) gravity Hamiltonian. The key elements of this approach are discussed and its implications for particle dynamics and cosmology are presented. New insights: Anomalous Pauli coupling of spinors to curvature and torsion of spacetime, spacetime with (A)dS ground state, inertia, torsion and geometrical vacuum energy, Zero-energy balance of the Universe leading to a vanishing cosmological constant and torsional dark energy.  相似文献   

14.
15.
In this paper, we study a cosmological application of the new agegraphic dark energy density in the f(R) gravity framework. We employ the new agegraphic model of dark energy to obtain the equation of state for the new agegraphic energy density in a spatially flat universe. Our calculations show, taking n<0, that it is possible to have w Λ crossing −1. This implies that one can generate a phantom-like equation of state from a new agegraphic dark energy model in a flat universe in the modified gravity cosmology framework. Also, we develop a reconstruction scheme for the modified gravity with f(R) action.  相似文献   

16.
It is shown that the acceleration of the universe can be understood by considering a f(T) gravity models. Modified teleparallel gravity theory with the torsion scalar has recently gained a lot of attention as a possible explanation of dark energy. For these f(T) gravity models, a variant of the accelerating cosmology reconstruction program is developed. We consider spatially homogenous and anisotropic Bianchi type I universe in the context of f(T) gravity. The de Sitter, power-law and general exponential solutions are assumed for the scale factor in each spatial direction and the corresponding cosmological models are reconstructed. We reconstruct f(T) theories from two different holographic dark energy models in different time durations. For the holographic dark energy model, the dark energy dominated era with new setting up is chosen for reconstruction, and the Ricci dark energy model, radiation, matter and dark energy dominated time durations are all investigated. Finally we have obtained a modified gravity action consistent with the holographic dark energy scenario.  相似文献   

17.
Among different candidates to play the role of Dark Energy (DE), modified gravity has emerged as offering a possible unification of Dark Matter (DM) and DE. The purpose of this work is to develop a reconstruction scheme for the modified gravity with f(T) action using holographic energy density. In the framework of the said modified gravity we have considered the equation of state of the Holographic DE (HDE) density. Subsequently we have developed a reconstruction scheme for modified gravity with f(T) action. Finally we have obtained a modified gravity action consistent with the HDE scenario.  相似文献   

18.
We demonstrate how Sakharov's idea of induced gravity allows one to explain the statistical-mechanical origin of the entropy of a black hole. According to this idea, gravity becomes dynamical as the result of quantum effects in the system of heavy constituents of the underlying theory.The black hole entropy is related to the properties of the vacuum in the induced gravity in the presence of the horizon. We obtain the Bekenstein-Hawking entropy by direct counting the states of the constituents.  相似文献   

19.
B. N. Andersen 《Solar physics》1994,152(1):241-246
The interaction between convection and gravity waves are simulated numerically in a model closely corresponding to the physical conditions in the solar interior.The penetration of convective elements into the stably stratified interior is shown to generate gravity waves. The energy efficiency of this generation is less than 0.1 %. The simulations also show that the convective overshoot region is very shallow, 0.02–0.06 pressure scaleheights.  相似文献   

20.
Keith A. Holsapple 《Icarus》2004,172(1):272-303
The study of the equilibrium and stability of spinning ellipsoidal fluid bodies with gravity began with Newton in 1687, and continues to the present day. However, no smaller bodies of the Solar System are fluid. Here I model those bodies as elastic-plastic solids using a cohesionless Mohr-Coulomb yield envelope characterized by an angle of friction. This study began in Holsapple 2001. Here new closed-form algebraic formulas for the spin limits of ellipsoidal shapes are derived using an energy method. The fluid results of Maclaurin and Jacobi are again recovered as special cases. I then consider the stability of those equilibrium states. For elastic-plastic solids the common methods cannot be used, because the constitutive equations lack sufficient smoothness at the limiting plastic states. Therefore, I propose and study a new measure of the stability of dynamic processes in general bodies. An energy-based approach is introduced which is shown to include stability approaches used in the statics of nonlinear elastic and elastic-plastic bodies, spectral definitions and the Liapunov methods used for finite-dimensional dynamical systems. The method is applied to spinning, solid, strained bodies. In contrast to the special fluid case, it is found that the strain energy term of solid materials generally induces stability of all equilibrium shapes, except for two possible cases. First, strain softening in the elastic-plastic law can result in instability at the plastic limit spin. Second, a loss of shear stiffness can give unstable states at specific spins less than the limit equilibrium spins. In the latter case, a solid spinning ellipsoidal body without elastic shear stiffness can spin no faster than with a period of about 3.7 hr, else it will fail by shearing deformations. That is distinctly slower than the oft-quoted limit of 2.1 hr at which material would be flung off the equator by tensile forces. However, the final conclusion is that neither cohesion nor tensile strength is required for the shapes and spins of almost all of the larger observed asteroids: we cannot rule out rubble-pile structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号