首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Climate models, forced only with insolation, indicate that boreal summer monsoons respond to orbital forcing with a zero phase both at the precession and obliquity bands. Discrepancies exist among data with respect to the timing of the response. Some late Pleistocene monsoon records show small lags of 2–3 kyr, close to model results, while many others show considerably longer lags of 5–8 kyr. It has been hypothesized that such lags arise from factors that were, up till now, not included in the modelling experiments, namely variations in glacial-age boundary conditions.Here we address this issue using long, time-dependent climate simulations that do include varying ice sheets and greenhouse gas concentrations. Inclusion of these additional forcings introduces a small peak in the monsoon spectra at the 100 kyr period, while monsoon variance remains dominated by precession with a smaller contribution from obliquity. At the precession band orbital forcing remains the dominant control, with lags close to zero. At the obliquity band varying ice sheet and greenhouse gases explain most of the simulated African and Indian monsoon variance, with orbital forcing playing a minor role. For the East Asian monsoon orbital forcing remains dominant. As a result the simulated obliquity phase of different monsoon systems lies between summer insolation maxima and ice minima/greenhouse gas maxima, with a lag that varies with distance to the Eurasian ice sheet.  相似文献   

2.
Cross-correlation between insolation intensities and a combination of sedimentary characters is introduced to obtain precise time calibration of sedimentary cycles. The first step is to transfer the section scale into ages using power spectra comparing the main periods with orbital cycles, while in the second step the standardized values of sedimentary signals are cross-correlated with the standardized insolation curve. As an example for the applicability of the method, we investigated calcium carbonate, organic carbon in a 9-m sampled section from the historical Badenian stratotype at Baden/Sooss (Lower Austria). Comparing courses of geochemical parameters between the historical stratotype and a nearby drilled 102-m scientific core resulted in continuation of the core section into the stratotype. Cross-correlation between magnetic susceptibility (MS) combined with the negatively correlated calcium carbonate content of the drilled section on the one side and summer solar insolation at 65° northern latitude on the other resulted in an extremely significant correlation between −14.221 and −13.982 Ma. This is younger than the before estimated time frame (−14.379 to −14.142 Ma) based on cross-correlation between MS and the orbital 100-kyr eccentricity and 41-kyr obliquity cycles. The direct continuation of the drilled section by the stratotype covering a time span of 17.7 kyr consequently dates the Badenian stratotype between −13.982 and −13.964 Ma. Therefore, the upper limit of the stratotype, assigned to the Early Badenian, puts it close to the Langhian/Seravallian boundary at −13.82 Ma, demonstrating the need for revising the Badenian stratigraphic subdivision based on orbital cycles, especially the middle Badenian Wielician substage.  相似文献   

3.
Late Pleistocene variations in rainfall in subtropical southern African are estimated from sediments preserved in the Pretoria Saltpan, a 200000 year-old closed-basin crater lake on the interior plateau of South Africa. We show that South African summer rainfall covaried with changes in southern hemisphere summer insolation resulting from orbital precession. As predicted by orbital precession geometry (Berger, 1978), this South African record is out of phase with North African palaeomonsoon indices (Street and Grove, 1979; Rossignol-Strick, 1983; McIntyre et al., 1989); the amplitude of the rainfall response to insolation forcing agrees with climate model estimates (Prell and Kutzbach, 1987). These results document the importance of direct orbital insolation forcing on both subtropical North and South African climate as well as the predicted antiphase sensitivity to precessional insolation forcing.  相似文献   

4.
The ice-age hypothesis of Muller and MacDonald (1995, 1997a, 1997b) has two parts: (a) The 100-kyr cycle does not owe its existence to Milankovitch forcing; and (b) variations in inclination of Earth's orbit (i.e., the orbit's angle with the solar system invariable plane) provide the mechanism sought. In support of the first proposition, Muller and MacDonald point to the paradox that the spectrum of oxygen isotope series from deep-sea sediments contains no power for two prominent eccentricity cycles, 125 and 400 kyr. In support of the second proposition, they offer a match between the SPECMAP record (Imbrie et al. 1984) and a plot of the amplitude of orbital inclination, shifted by 33 kyr. The hypothesis of Muller and MacDonald is rejected in both parts, although an influence of inclination forcing is not precluded entirely. The paradox of the missing eccentricity cycles (125 and 400 kyr) is explained by suppression of the two longer cycles, and enhancement of the one near 96 kyr, as a result of internal oscillation. A Muller–MacDonald machine for making the 100-kyr ice-age cycles, however conceived, would have to have a memory near 30 kyr to provide for phase shift between input and output. Precisely this amount of memory is sufficient to produce the needed oscillation in Milankovitch machine here applied; thus, there is no advantage, from the point of view of either necessity or simplicity, in replacing Milankovitch forcing, with its precise phasing (despite the fuzzy physics), with inclination forcing, and with its severe problems in phasing (and, thus far, no physics at all). Received: 10 June 1998 / Accepted: 2 February 1999  相似文献   

5.
Sensitivity of the Australian summer monsoon to tilt and precession forcing   总被引:1,自引:0,他引:1  
The response of the Australian summer monsoon to orbital forcing is studied using a coupled General Circulation Model (GCM) with the focus on the relative roles of tilt and precession on the forcing of the northern Australian summer monsoon. It was found that unlike the Northern Hemisphere monsoons, which are dominated by precession forcing, the Australian monsoon can be enhanced significantly not only by precession forcing, but also by tilt forcing coupled to oceanic feedback. The new insights obtained from a series of experiments with differing tilt-precession configurations allow an interpretation of the Australian Late Quaternary monsoon record in which insolation forcing plays a significant role.  相似文献   

6.
Widespread empirical evidence suggests that extraterrestrial forcing influences the Earth’s climate, but how this could occur remains unclear. Here we describe a new approach to this problem that unifies orbital, solar and lunar forcing based on their common control of the Earth’s latitudinal insolation gradient (LIG). The LIG influences the climate system through differential solar heating between the tropics and the poles that gives rise to the latitudinal temperature gradient (LTG), which drives the Earth’s atmospheric and (wind driven) ocean circulation. We use spectral analysis of recent changes in the Earth’s LTG to support earlier work on orbital timescales (Davis and Brewer, 2009) that suggests the climate system may be unusually sensitive to changes in the LIG. Identification of LIG forcing of the LTG is possible because the LIG varies according to seasonally specific periodicities based on obliquity in summer (41 kyr orbital and 18.6 yr lunar cycle), and precession (21 kyr orbital cycle) and total solar irradiance (11 yr solar cycle) in winter. We analyse changes in the Northern Hemisphere LTG over the last 120 years and find significant (99%) peaks in spectral frequencies corresponding to 11 years in winter and 18.6 years in summer, consistent with LIG forcing. The cross-seasonal and multi-frequency nature of the LIG signal, and the diffuse effect of the LTG driver on the climate system may account for the complexity of the response to extraterrestrial forcing as seen throughout the climatic record. This hypersensitivity of the LTG to the LIG appears poorly reproduced in climate models, but would be consistent with the controversial theory that the LTG is finely balanced to maximise entropy.  相似文献   

7.
At the 41,000-period of orbital tilt, summer insolation forces a lagged response in northern ice sheets. This delayed ice signal is rapidly transferred to nearby northern oceans and landmasses by atmospheric dynamics. These ice-driven responses lead to late-phased changes in atmospheric CO2 that provide positive feedback to the ice sheets and also project ‘late’ 41-K forcing across the tropics and the Southern Hemisphere. Responses in austral regions are also influenced by a fast response to summer insolation forcing at high southern latitudes.At the 22,000-year precession period, northern summer insolation again forces a lagged ice-sheet response, but with muted transfers to proximal regions and no subsequent effect on atmospheric CO2. Most 22,000-year greenhouse-gas responses have the ‘early’ phase of July insolation. July forcing of monsoonal and boreal wetlands explains the early CH4 response. The slightly later 22-K CO2 response originates in the southern hemisphere. The early 22-K CH4 and CO2 responses add to insolation forcing of the ice sheets.The dominant 100,000-year response of ice sheets is not externally forced, nor does it result from internal resonance. Internal forcing appears to play at most a minor role. The origin of this signal lies mainly in internal feedbacks (CO2 and ice albedo) that drive the gradual build-up of large ice sheets and then their rapid destruction. Ice melting during terminations is initiated by uniquely coincident forcing from insolation and greenhouse gases at the periods of tilt and precession.  相似文献   

8.
2.5Ma以来地球轨道参数变化对黄土粒度变化的线性驱动   总被引:9,自引:7,他引:9  
本文对2.5Ma以来宝鸡黄土剖面粒度曲线与ETP曲线做了互功率谱和凝聚函数分析,以期反映风力强度与地球轨道参数变化的关系。结果表明,2.5Ma以来粒度记录中始终存在着与地轴倾斜度、岁差呈线性响应的41000a、23000a和19000a周期;同时,在0.6—0.0MaB.P.时段存在与偏心率呈线性响应的0.1Ma周期,在2.5—1.6MaB.P.时段存在与偏心率0.4Ma呈线性响应的周期。上述结果佐证了地球轨道变化对内陆古气候变化的线性驱动作用,但该理论不能解释在约0.9—0.6MaB.P.和1.6MaB.P.前后出现的二次较大的主导气候周期转型事件。  相似文献   

9.
The three problems composing the astronomical theory of paleoclimate have been solved in a new way. Two of them (changes in the orbital motion of the Earth and its insolation) have confirmed the results of previous research. In the third problem (a change in the rotational motion of the Earth), the obtained oscillations of the Earth’s rotation axis have an amplitude seven–eight times higher than the earlier estimated one. They lead to changes in insolation, which explain the paleoclimatic fluctuation. The changes in insolation and its structure for 200 kyr are considered. It is shown that the Late Pleistocene key events in West Siberia, for example, the last glaciations and warming between them, coincide with the extremes of insolation. The insolation periods of paleoclimatic changes and their characteristics are given.  相似文献   

10.
The role of ocean feedback on monsoon variations at 6 and 9.5 kyr Before Present (BP) compared to present-day is investigated by using sets of simulations computed with the IPSL–CM4 ocean–atmosphere coupled model and simulations with the atmospheric model only with the SST prescribed to the present-day simulation for the coupled model. This work is complementary to the study by Marzin and Braconnot (2009) who have analyzed in detail the response of Indian and African monsoons to changes in insolation at 6 and 9.5 kyr BP using the IPSL–CM4 coupled model. The monsoon rainfall was intensified at 6 and 9.5 kyr BP compared to 0 kyr BP as a result of the intensified seasonal cycle of insolation in the Northern Hemisphere. In this paper, the impact of the ocean feedback is analysed for the Indian, East-Asian and African monsoons. The response of the ocean to the 6 and 9.5 kyr BP insolation forcing shares similarities between the two periods, but we highlight local differences and a delay in the response of the surface ocean between 6 and 9.5 kyr BP. The ocean feedback is shown to be positive for the early stage of the African monsoon. A dipole of SST in the tropical Atlantic favouring the earlier build-up of the monsoon in the 6 and 9.5 kyr BP coupled simulations. However, it is strongly negative for the Indian and East Asian monsoons, and of stronger amplitude at 9.5 than at 6 kyr BP over India. In these Asian regions, the convection is more active over the ocean than over the continent during the late monsoon season due to the ocean feedback. The results are consistent with previous studies about 6 kyr BP climate. In addition, it is shown that the ocean feedback is not sufficient to explain the relative amplifications of the different monsoon systems within the three periods of the Holocene, but that the mechanisms such as the effect of the precession on the seasonal cycle of monsoons as discussed in Marzin and Braconnot (2009) are more plausible.  相似文献   

11.
An integrated study of the ammonites, inoceramid bivalves, planktonic foraminifera, calcareous nannofossils, geochemistry, stable carbon isotopes, and cyclostratigraphy is provided for the upper Middle to upper Upper Albian sucession exposed in the Col de Palluel section east of Rosans in Hautes-Alpes, France. The Albian-Cenomanian boundary interval described by Gale et al. at Mont Risou is re-examined, a total thickness of 370 m of the Marnes Bleues Formation. Zonal schemes based on ammonites, inoceramid bivalves, planktonic foraminifera, and calcareous nannofossils are integrated with the stable carbon isotope curve and key lithostratigraphic markers to provide a sequence of more than 70 events in the uppermost Middle Albian to basal Cenomanian interval. Time series analysis of the Al2O3 content of the 500 m Albian sequence present in the Col de Palluel and Risou sections reveals the presence of the 20 kyr precession, 40 kyr tilt, 100 kyr short eccentricity, and 406 kyr long eccentricity cycles. Correlation using planktonic foraminiferan and nannofossil data provide a link between the Col de Palluel and Risou sections and the Italian sequence at Gubbio, and in the Piobbico core. This provides a basis for the extension of the orbital time scale of Grippo et al. to the sequence. It reveals a major break in the Col de Palluel succession at the top of the distinctive marker bed known as the Petite Vérole that may represent as much as 2 Ma. It also provides a basis for the estimation of the length of the Albian Stage at 4.12 Ma, 0.8 Ma for the early Albian, 2.84 Ma for the Middle Albian, and 3.68 Ma for the late Albian substages.  相似文献   

12.
石正国  刘晓东 《第四纪研究》2009,29(6):1025-1032
亚洲季风演化受到地球轨道参数强迫,尤其是岁差所引起日射变化的显著影响,但关于其驱动机制的争议仍然存在,且集中在“零相位”和“南半球潜热”两种假说上。两个假说都得到了部分地质证据的支持,因此亟需相应的数值模拟,尤其是长期瞬变试验的检验。长期瞬变模拟试验可以对气候的连续演变进行模拟,并能与地质证据进行对比,有助于深入认识亚洲季风系统演化的内在物理机制。但由于计算能力的匮乏,过去的古季风数值模拟多为“时间片”模拟,这使得季风变迁机理研究受到限制。文章通过一个海-气耦合模式的长期瞬变试验,讨论了轨道日射的变化特征,证明过去280ka亚洲夏季风降水对日射有十分显著的响应,且与北半球初夏日射变化相位接近,部分支持了“零相位”假说。同时,模拟结果还揭示了随意选取日射参考标尺会导致缺乏内在物理机制的位相关系,合理选择日射参考以及明确地质记录的气候学意义在古季风强迫-响应机制研究中十分重要。  相似文献   

13.
The formation of the supercontinent Pangaea during the Permo–Triassic gave rise to an extreme monsoonal climate (often termed ‘mega-monsoon’) that has been documented by numerous palaeo-records. However, considerable debate exists about the role of orbital forcing in causing humid intervals in an otherwise arid climate. To shed new light on the forcing of monsoonal variability in subtropical Pangaea, this study focuses on sediment facies and colour variability of playa and alluvial fan deposits in an outcrop from the late Carnian (ca 225 Ma) in the southern Germanic Basin, south-western Germany. The sediments were deposited against a background of increasingly arid conditions following the humid Carnian Pluvial Event (ca 234 to 232 Ma). The ca 2·4 Myr long sedimentary succession studied shows a tripartite long-term evolution, starting with a distal mud-flat facies deposited under arid conditions. This phase was followed by a highly variable playa-lake environment that documents more humid conditions and finally a regression of the playa-lake due to a return of arid conditions. The red–green (a*) and lightness (L*) records show that this long-term variability was overprinted by alternating wet/dry cycles driven by orbital precession and ca 405 kyr eccentricity, without significant influence of obliquity. The absence of obliquity in this record indicates that high-latitude forcing played only a minor role in the southern Germanic Basin during the late Carnian. This is different from the subsequent Norian when high-latitude signals became more pronounced, potentially related to the northward drift of the Germanic Basin. The recurring pattern of pluvial events during the late Triassic demonstrates that orbital forcing, in particular eccentricity, stimulated the occurrence and intensity of wet phases. It also highlights the possibility that the Carnian Pluvial Event, although most likely triggered by enhanced volcanic activity, may also have been modified by an orbital stimulus.  相似文献   

14.
《Quaternary Research》2014,81(3):433-444
A high-resolution rock magnetic investigation was performed on the Chaona Quaternary loess/paleosol sequences in the Central Chinese Loess Plateau. Based on a newly developed independent unturned time scale and magnetic records, we reconstructed the history of the East Asia monsoons during the last 3 Ma and explored the middle Pleistocene climate transition (MPT). Rock magnetic results show that the loess layers are characterized by relatively high coercivity and remanent coercivity, lower magnetic susceptibility (MS), and that the paleosol layers are characterized by relatively high MS, saturation magnetization and remanent saturation magnetization. Spectrum analyses indicate that there are various periods in addition to orbital periodicities. According to the onset and stable appearance of 100 kyr period, we consider that the MPT recorded in this section began at ~ 1.26 Ma and was completed by ~ 0.53 Ma, which differs from previous investigations based on orbitally tuned time scales. The forcing mechanism for the MPT was more complicated than just the orbital forcing. We conclude that the rapid uplift of the Tibetan Plateau may have played an important role in the shift of periodicities during the middle Pleistocene.  相似文献   

15.
A multiproxy analysis of Hole 911A (Ocean Drilling Program (ODP) Leg 151) drilled on the Yermak Plateau (eastern Arctic Ocean) is used to investigate the behaviour of the Svalbard/Barents Sea ice sheet (SBIS) during late Pliocene and early Pleistocene (~3.0-1.7 Ma) climate changes. Contemporary with the 'Mid-Pliocene (~3 Ma) global warmth' (MPGW), a warmer period lasting ~300 kyr with seasonally ice-free conditions in the marginal eastern Arctic Ocean is assumed to be an important regional moisture source, and possibly one decisive trigger for intensification of the Northern Hemisphere glaciation in the Svalbard/Barents Sea area at ~2.7 Ma. An abrupt pulse of ice-rafted debris (IRD) to the Yermak Plateau at ~2.7 Ma reflects distinct melting of sediment-laden icebergs derived from the SBIS and may indicate the protruding advance of the ice sheet onto the outer shelf. Spectral analysis of the total organic carbon (TOC) record being predominantly of terrigenous/fossil-reworked origin indicates SBIS and possibly Scandinavian Ice Sheet response to incoming solar radiation at obliquity and precession periodicities. The strong variance in frequencies near the 41 kyr obliquity cycle between 2.7 and 1.7 Ma indicates, for the first time in the Arctic Ocean, a close relationship of SBIS growth and decay patterns to the Earth's orbital obliquity amplitudes, which dominated global ice volume variations during late Pliocene/early Pleistocene climate changes.  相似文献   

16.
《Quaternary Science Reviews》2003,22(15-17):1597-1629
The SPECMAP models of orbital-scale climate change (Imbrie et al., Paleoceanography 7 (1992) 701, Paleoceanography 8 (1993) 699) are the most comprehensive to date: all major climatic observations were analyzed within the framework of the three orbital signals. Subsequently, tuning of signals in Vostok ice to insolation forcing has fixed the timing of greenhouse-gas changes closely enough to permit an assessment of their orbital-scale climatic role. In addition, evidence from several sources has suggested changes in the SPECMAP δ18O time scale. This new information indicates that the timing of CO2 changes at the periods of precession and obliquity does not fit the 1992 SPECMAP model of a “train” of responses initiated in the north, propagated to the south, and later returning north to force the ice sheets. In addition, analysis of the effects of rectification on 100,000-year climatic signals reveals that all have a phase on or near that of eccentricity. This close clustering of phases rules out the long time constants for 100,000-year ice sheets required by the 1993 SPECMAP model.A new hypotheses presented here revives elements of an earlier CLIMAP view (Hays et al., Science 194 (1976a) 1121) but adds a new assessment of the role of greenhouse gases.As proposed by Milankovitch, summer (mid-July) insolation forces northern hemisphere ice sheets at the obliquity and precession periods, with an ice time constant derived here of 10,000 years. Changes in ice volume at 41,000 years drive ice-proximal signals (SST, NADW, dust) that produce a strong positive CO2 feedback and further amplify ice-volume changes. At the precession period, July insolation forces ice sheets but it also drives fast and early responses in CH4 through changes in tropical monsoons and boreal wetlands, and variations in CO2 through southern hemisphere processes. These CH4 and CO2 responses enhance insolation forcing of ice volume.Climatic responses at 100,000 years result from eccentricity pacing of forced processes embedded in obliquity and precession cycles. Increased modulation of precession by eccentricity every 100,000 years produces 23,000-year CO2 and CH4 maxima that enhance ablation caused by summer insolation and drive climate deeper into an interglacial state. When eccentricity modulation decreases at the 100,000-year cycle, ice sheets grow larger in response to obliquity forcing and activate a 41,000-year CO2 feedback that drives climate deeper into a glacial state. Alternation of these forced processes because of eccentricity pacing produces the 100,000-year cycle. The 100,000-year cycle began 0.9 Myr ago because gradual global cooling allowed ice sheets to survive during weak precession insolation maxima and grow large enough during 41,000-year ice-volume maxima to generate strong positive CO2 feedback.The natural orbital-scale timing of these processes indicates that ice sheets should have appeared 6000–3500 years ago and that CO2 and CH4 concentrations should have fallen steadily from 11,000 years ago until now. But new ice did not appear, and CO2 and CH4 began anomalous increases at 8000 and 5000 years ago, respectively. Human generation of CO2 and CH4 is implicated in these anomalous trends and in the failure of ice sheets to appear in Canada.  相似文献   

17.
青藏高原东北部西宁-互助地区堆积的厚层黄土是认识高原第四纪环境演化和气候变化的重要信息载体。对西宁泮子山厚层黄土钻孔(181.7m)进行了间隔5cm的采样,在实验室测量了全部样品的粒度,以粒度和北半球高纬太阳辐射数据为材料,选择古地磁年龄作为独立年代控制点,采用改进的自动轨道调谐方法,建立了西宁黄土早更新世以来天文轨道调谐的时间标尺。调谐后的粒度时间序列与ETP曲线在轨道周期上高度相关,在一定程度上证明了轨道调谐方法建立西宁厚层黄土堆积年代标尺的可行性。泮子山厚层黄土的沉积速率在1.0Ma前后发生了明显变化,1.0Ma以来沉积速率的相对高值可能反映了粉尘源区的干旱化程度增强,也指示了亚洲中部和青藏高原干旱环境的急剧发展。西宁厚层黄土年代标尺的建立,对深入认识晚新生代亚洲干旱气候发展过程和青藏高原的环境演化具有积极意义。  相似文献   

18.
The eastern edge of the Qinghai-Tibetan plateau developed an integrated series of late Cenozoic lacustrine, loess, red and moraines deposits. Various genetic sediments recorded rich information of Quaternary palaeoenvironment changes. Xigeda Pliocene lacustrine deposits, formed during 4.2 Ma B.P.–2.6 Ma B.P., experienced nine periodic warm-cold stages. Eolian deposition in western Sichuan began at 1.15 Ma B.P., and the loess-soil sequences successively record fourteen palaeomonsoon change cycles. Red clay in the Chengdu plain record five stages of paleoclimatic change stages since 1.13 Ma B.P.. There was an old glacial period of 4.3 Ma B.P. in the eastern Qinghai-Tibetan plateau. During the Quaternary, there were five extreme paleoclimatic events corresponding to five glaciations. __________ Translated from Geological Bulletin of China, 2007, 26(12): 1620–1626 [译自: 地质通报]  相似文献   

19.
A new composite BDP-96 biogenic silica record over the entire Pleistocene was generated by splicing BDP-96-1 and BDP-96-2 drill cores from Lake Baikal, crosschecked against a similar record from a nearby BDP-98 drill core. A new astronomically tuned age model is proposed based on correlating peak biogenic silica responses with the timing of September perihelia. This target is derived from analysis of regional climate proxy responses during the Holocene, the last interglacial and around paleomagnetic reversals. By resolving virtually every precessional cycle during the Pleistocene, the new age model represents a major improvement compared with previously reported Lake Baikal timescales. The astronomically tuned ages of the Pleistocene paleomagnetic reversals are consistent with published dates. The minimal tuning approach we used (precession only) has also aligned high signal power in a narrow obliquity band, confirming the strong presence of orbital forcing. There are also strong ca 100-ka scale cycles, but these are not aligned with the orbital eccentricity.Despite the location of Lake Baikal in a continental interior that is highly sensitive to insolation forcing, the tuned biogenic silica record reveals a consistent phase difference of −32° (ca 4 ka) relative to insolation in the obliquity band. An inherent lag embedded in a continental proxy record, not driven by global ice volume, is an intriguing finding. Another new observation is that long-term changes in sedimentation rates in Lake Baikal appear to be related to the amplitude of orbital forcing; both amplitudes and sedimentation rates undergo significant changes during MIS 24-MIS 19 interval corresponding to the Middle Pleistocene Transition. With potential for linking continental and marine climato-stratigraphies, the new Baikal record serves a new benchmark correlation target in continental Eurasia, as an alternative to June 65°N insolation and ODP-correlated timescales.  相似文献   

20.
Cyclostratigraphy postulates that the stratigraphic record cyclically encodes the periodic orbital forcing of terrestrial insolation, thus providing a time calibration. Regular cycles are sought using spectral analysis of lithological data series, but there are inherent ambiguities in this method. It may detect more cyclicities than conventional orbital forcing allows, but only those with the closest correspondence to estimated orbital frequencies are used for time calibration. Irregular cycles are subjectively defined in terms of non-rhythmic repetitions of facies. The calibrations assume that they record the spatially distorted sedimentary effects of orbitally forced periodicity in insolation. The null hypothesis that such non-rhythmic repetitions are autogenic, rather than orbitally forced, cannot, however, be rejected. Both types of cyclicity conform to an 'expected universe' where orbital forcing is reliably and recognisably encoded in the stratigraphic record. Neither form of cyclicity rules out the presence of hiatuses; thus, even if orbital in origin, neither can provide dependably refined, orbitally scaled, time calibration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号