首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Johnstown meteorite is a brecciated orthopyroxenite (diogenite) containing coarsegrained centimeter-sized clasts of cumulate origin that have undergone subsolidus recrystallization. The brecciated portion is dominated by subangular fragments of orthopyroxene (Wo2–3En72–74Fs23–25) in a variably comminuted matrix of the same material. Minor and accessory phases include plagioclase (An82–90Ab10–18Or0–1), diopside (Wo44–45En46–47Fs9–10), olivine (Fo71–72), tridymite, troilite, metallic Ni-Fe (~3% Ni), and chromite (Cm71–80Hc1–8Sp11–19Mt2–4Uv1–3).The clastic component is parental to the brecciated matrix which contains no foreign lithic or mineralogic components. Siderophile trace element studies, however, reveal the presence of meteoritic (chondritic) contamination in the brecciated portion using unbrecciated clasts for indigenous values. Rare earth element abundances show a wide range of values for the light REE in different samples, although all samples exhibit a strong negative Eu anomaly, indicative of earlier plagioclase fractionation. Two pairs of adjacent brecciated and unbrecciated samples from different portions of the meteorite show, respectively, the most enriched and the most depleted light REE patterns. The variability in La content is over a factor of 100. However, in each case the REE pattern for the brecciated portion is very similar to that of the unbrecciated portion. These differences are attributed to sampling of variable amounts of residual, REE-enriched, trapped liquid. The most representative REE pattern for the bulk meteorite has an intermediate composition and was obtained from the largest sample. The data presented here indicate that Johnstown is a monomict breccia, in contrast to several other diogenites which may be considered to be polymict on the basis of their mineral compositions and/or clast populations.  相似文献   

2.
The Precambrian Sierra Ancha sill complex, more than 700 feet thick, is a multiple intrusion with a central layer of feldspathic olivine-rich diabase, and upper and lower layers of olivine diabase derived from a high-alumina basalt magma. Minor rock types include albite diabase and albite-diabase pegmatite. Deuteric alteration was extensive. Principal primary minerals are plagioclase (An72 to An16), augite (Wo43En44Fs13 to Wo40En38Fs22), olivine (Fo74 to Fo54), orthopyroxene (En77 to En44), magnetite (Mgt66Usp34 to Mgt89Usp11), and ilmenite (Ilm86Hem14 to Ilm96Hem4). Ilmenite formed by reaction-exsolution from magnetitess is consistently different in compositon from primary ilmenite. Primary ilmenite became enriched in Mn and depleted in Mg as crystallization proceded. A systematic Fe-Mg partition between contacting olivine and orthopyroxene suggests that equilibrium prevailed on an extremely local scale during crystallization. Albite-diabase pegmatite contains a mineral assemblage including augite, ferrosalite (Wo49En28Fs23 to Wo49En14Fs37), albite (An2 to An0), and iron-rich chlorite. Altered diabase and albite diabase also have unusually calcium-rich pyroxenes. The calcium-rich pyroxenes, which occur in assemblages like those characterizing some spilites, are richer in calcium and lower in aluminum and titanium than basaltic augite.Contribution No. 1712 of the Division of Geological Sciences, California Institute of Technology, Pasadena, California.  相似文献   

3.
The Larkman Nunatak (LAR) 06319 olivine-phyric shergottite is composed of zoned megacrysts of olivine (Fo76-55 from core to rim), pyroxene (from core to rim En70Fs25Wo5, En50Fs25Wo25, and En45Fs45Wo10), and Cr-rich spinel in a matrix of maskelynite (An52Ab45), pyroxene (En30-40Fs40-55Wo10-25,), olivine (Fo50), Fe-Ti oxides, sulfides, phosphates, Si-rich glass, and baddeleyite. LAR 06319 experienced equilibration shock pressures of 30-35 GPa based on the presence of localized shock melts, mechanical deformation of olivine and pyroxene, and complete transformation of plagioclase to maskelynite with no relict birefringence. The various phases and textures of this picritic basalt can be explained by closed system differentiation of a shergottitic melt. Recalculated parent melt compositions obtained from melt inclusions located in the core of the olivine megacrysts (Fo>72) resemble those of other shergottite parent melts and whole-rock compositions, albeit with a lower Ca content. These compositions were used in the MELTS software to reproduce the crystallization sequence. Four types of spinel and two types of ilmenite reflect changes in oxygen fugacity during igneous differentiation. Detailed oxybarometry using olivine-pyroxene-spinel and ilmenite-titanomagnetite assemblages indicates initial crystallization of the megacrysts at 2 log units below the Fayalite-Magnetite-Quartz buffer (FMQ - 2), followed by crystallization of the groundmass over a range of FMQ - 1 to FMQ + 0.3. Variation is nearly continuous throughout the differentiation sequence.LAR 06319 is the first member of the enriched shergottite subgroup whose bulk composition, and that of melt inclusions in its most primitive olivines, approximates that of the parental melt. The study of this picritic basalt indicates that oxidation of more than two log units of FMQ can occur during magmatic fractional crystallization and ascent. Some part of the wide range of oxygen fugacities recorded in shergottites may consequently be due to this process. The relatively reduced conditions at the beginning of the crystallization sequence of LAR 06319 may imply that the enriched shergottite mantle reservoir is slightly more reduced than previously thought. As a result, the total range of Martian mantle oxygen fugacities is probably limited to FMQ − 4 to − 2. This narrow range could have been generated during the slow crystallization of a magma ocean, a process favored to explain the origin of shergottite mantle reservoirs.  相似文献   

4.
Ultramafic-mafic rocks from Makrirrakhi, Central Greece exhibit features of an original ophiolite sequence which contains depleted mantle material, ultramafic containing partial melt textures and possibly the mafic pluton which resulted from the coalescing of these partial melt segregations. Considerable mineralogical variation exists: unzoned olivine crystals range in composition from Fo78–84 (mafics) to Fo88–92 (ultramafics), plagioclases An64–79 (mafics) to An80–90 (ultramafics) and spinel varies from a chromian spinel (ultramafics) to a more aluminous-titaniferous spinel (mafics). Pyroxenes from the ultramafics display a limited range: En89–92 Fs9–8 Wo0–2 (orthopyroxene) and En48–54 Fs1–10 Wo38–50 (clinopyroxene). Mafic rocks display a greater range being richer in ferrosilite En36–65 Fs3–20 Wo33–51. Pyroxenes from within the partial melt segregations have chemical affinities with those from the gabbrotroctolite series. A model of partial melt within the upper mantle, and, a set of criteria to distinguish partial melt textures from cumulate textures, are developed from analytical data and textural evidence.  相似文献   

5.
New data is presented for five evolved, low-Ti lunar mare basalt meteorites from the LaPaz Icefield, Antarctica, LAP 02205, LAP 02224, LAP 02226, LAP 02436, and LAP 03632. These basalts have nearly identical mineralogies, textures, and geochemical compositions, and are therefore considered to be paired. The LaPaz basalts contain olivine (Fo64-2) and pyroxene (Fs32Wo8En60 to Fs84-86Wo15En2-0) crystals that record extreme chemical fractionation to Fe-enrichment at the rims, and evidence for silicate liquid immiscibility and incompatible element enrichment in the mesostasis. The basalts also contain FeNi metals with unusually high Co and Ni contents, similar to some Apollo 12 basalts, and a single-phase network of melt veins and fusion crusts. The fusion crust has similar chemical characteristics to the whole rock for the LaPaz basalts, whereas the melt veins represent localized melting of the basalt and have an endogenous origin. The crystallization conditions and evolved nature of the LaPaz basalts are consistent with fractionation of olivine and chromite from a parental liquid similar in composition to some olivine-phyric Apollo 12 and Apollo 15 basalts or lunar low-Ti pyroclastic glasses. However, the young reported ages for the LaPaz mare basalts (∼2.9 Ga) and their relative incompatible element enrichment compared to Apollo mare basalts and pyroclastic glasses indicate they cannot be directly related. Instead, the LaPaz mare basalts may represent fractionated melts from a magmatic system fed by similar degrees of partial melting of a mantle source similar to that of the low-Ti Apollo mare basalts or pyroclastic glasses, but which possessed greater incompatible element enrichment. Despite textural differences, the LaPaz basalts and mare basalt meteorite NWA 032 have similar ages and compositions and may originate from the same magmatic system on the Moon.  相似文献   

6.
The Kenna ureilite was found in February, 1972 near the town of Kenna, Roosevelt County, New Mexico U.S.A., weighed 10.9 kg, and measured 26.7 × 14.7 × 14.2 cm; it is the seventh known ureilite. The meteorite is composed of xenoblastic olivine (Fo79.2), commonly rimmed by forsterite (Fo99), and pigeonite (En73Wo9Fs18), in a volumetric ratio of 3:1, set in a matrix of three carbon polymorphs (graphite, lonsdaleite, and diamond) plus nickel-iron metal and troilite. Some thin metalliferous veins penetrating silicate grains contain secondary inclusions of melt with high-calcium clinopyroxene (high-Ca, Mg-rich augite to augite), andesine, K-feldspar, chromite, and siliceous CaO- and alkali-rich glasses of variable compositions.Textural, mineralogical and fabric information suggest a complex history for Kenna, involving igneous, metamorphic and shock processes. The rock appears to have originated as an ultramafic cumulate whose texture and structure was modified by adcumulus processes and by solution and redeposition in a weak deviatoric stress field. A strong mineral elongation lineation was produced during this high-temperature phase accompanied by mild plastic deformation of olivine on the system 0kl[100]. Superimposed on this original texture and fabric are processes resulting from light to moderate (50–250 kbar) shock deformation, as manifested by fracturing of the silicates, slip parallel to (001) in olivine, and twin and translation gliding parallel to (100) in the clinopyroxene. Lonsdaleite and diamond probably formed during this shock phase, which may be associated with the break-up of the parent body, but the relative time of introduction of the carbon-rich matrix is still unresolved.  相似文献   

7.
We report on the petrology and geochemistry of the Northwest Africa 2737 (NWA 2737) meteorite that was recovered from the Morrocan Sahara in 2000. It is the second member of the chassignite subclass of the SNC (Shergotitte-Nakhlite-Chassignite) group of meteorites that are thought to have originated on Mars. It consists of black olivine- and spinel-cumulate crystals (89.7 and 4.6 wt%, respectively), with intercumulus pyroxenes (augite 3.1 wt% and pigeonite-orthopyroxene 1.0 wt%), analbite glass (1.6 wt%) and apatite (0.2 wt%). Unlike Chassigny, plagioclase has not been observed in NWA 2737. Olivine crystals are rich in Mg, and highly equilibrated (Fo = 78.7 ± 0.5 mol%). The black color of olivine grains may be related to the strong shock experienced by the meteorite as revealed by the deformation features observed on the macroscopic to the atomic scale. Chromite is zoned from core to rim from Cr83.4Uv3.6Sp13.0 to Cr72.0Uv6.9Sp21.1. Pyroxene compositional trends are similar to those described for Chassigny except that they are richer in Mg. Compositions range from En78.5Wo2.7Fs18.8 to En76.6Wo3.2Fs20.2 for the orthopyroxene, from En73.5Wo8.0Fs18.5 to En64.0Wo22.1Fs13.9for pigeonite, and from En54.6Wo32.8Fs12.6 to En46.7Wo44.1Fs9.2 for augite. Bulk rock oxygen isotope compositions confirm that NWA 2737 is a new member of the martian meteorite clan (Δ17O = 0.305 ± 0.02‰, n = 2). REE abundances measured in NWA 2737 mineral phases are similar to those in Chassigny and suggest a genetic relationship between these two rocks. However, the parent melt of NWA 2737 was less evolved and had a lower Al abundance.  相似文献   

8.
The evolution of major mineral compositions and trace element abundances during fractional crystallization of a model lunar magma ocean have been calculated. A lunar bulk composition consistent with petrological constraints has been selected. Major mineral compositions have been calculated using published studies of olivine-melt, plagioclase-melt, and pyroxene-olivine equilibria. Trace element abundances have been calculated using experimentally-determined partition coefficients where possible. In the absence of experimental determinations, published partition coefficients obtained by analyzing phase separates from porphyritic volcanic rocks have been used. Trace elements studied are La, Sm, Eu, Lu, Rb, Sr( Eu2+), Ni, Co, and Cr.The first mineral to crystallize is olivine, which varies in composition from Fo98 at the liquidus to Fo95 at 50% solidification. Orthopyroxene crystallizes from 50 to 60% solidification with a restricted composition range of En95-En93. Plagioclase and Ca-rich clinopyroxene (XWo arbitrarily set equal to 0.5) co-crystallize during the final 40% solidification. Plagioclase changes in composition from An97 to approximately An93, while clinopyroxene evolves from En46 to approximately En40. The concomitant evolution of major element abundances in the melt is also discussed.The concentration of Ni in the melt decreases rapidly because solid-melt partition coefficients are significantly greater than unity at all stages of crystallization. The concentration of Cr in the melt increases slowly during olivine crystallization, then drops precipitously during the crystallization of orthopyroxene and clinopyroxene. The concentration of Co in the melt decreases slowly during olivine and orthopyroxene crystallization, after which it returns slowly to its initial concentration. Rubidium and Sr are not fractionated relative to one another until the onset of plagioclase crystallization. Ratios of Rb/Sr, normalized to their initial concentrations in the magma, do not rise above 10 until 95% of the magma has solidified. The ratios of Eu/Sm and La/Lu, normalized to their initial concentrations in the magma, remain essentially unfractionated until the onset of crystallization of clinopyroxene plus plagioclase, at which point the normalized La/Lu ratio increases to approximately 1.3 at 100% solidification and the normalized Eu/Sm ratio decreases to approximately 0.2 at 100% solidification.The model calculations are used to place approximate constraints on the bulk composition of the primitive Moon. Consideration of the effect on plagioclase composition of the activities of NaO0.5 and SiO2 in the melt suggests that the primitive Moon contained less than 0.4 wt % NaO0.5 and approximately 42–43 wt % SiO2. Concentrations of the REE in model lunar anorthosites are consistent with the returned samples. Concentrations of the REE in several model ‘highland basalts’ (considered to be representative of the average lunar terrae) are too low when compared with returned samples. Several possible explanations of this discrepancy are considered. The possible role of spinel in a twostage geochemical evolution of mare basalt liquids is discussed.  相似文献   

9.
Orthopyroxene-magnetite intergrowths (symplectites), partly or completely surrounding olivine, are described from the Wateranga layered mafic intrusion, Queensland, Australia. The texture occurs in unmetamorphosed plagioclase-rich norites, olivine gabbros and troctolites in which the primary minerals are olivine (Fo63–69) orthopyroxene (En66–72), clinopyroxene (Wo42En42Fs16), plagioclase (An49–65), hornblende, ilmenite, magnetite and sulphides. Symplectites range from incipient fine grained developments around corroded olivine grains to intricately formed pseudomorphs after olivine and slow a consistent orthopyroxene/magnetite ratio. Orthopyroxene in symplectites is commonly in optical continuity with surrounding magnetite-free orthopyroxene rims. Later intercumulus hornblended has replaced orthopyroxene. There is marked chemical similarity between primary and simplectite, orthopyroxenes and magnetites. Textures similar to those described here are considered elsewhere to have formed at a late magmatic stage or by solid state reactions involving subsolidus oxidation of olivine. In the Wateranga intrusion textural relations, the chemical similarity between primary and symplectite phases, and the consistent volume proportions of magnetite and orthopyroxene in the intergrowths suggest that they developed during late magmatic crystallization.  相似文献   

10.
Tertiary volcanism in the İkizce region at the western edge of the eastern Pontides paleo-magmatic arc is represented by basaltic and andesitic rocks associated with sediments deposited in a shallow basin environment. The basaltic rocks contain plagioclase (An58–80), olivine (Fo82–84), clinopyroxene (Wo44–48En35–42Fs7–17), hornblende (Mg# = 0.68–0.76) phenocrysts, and magnetite microcrysts, whereas the andesitic rocks include plagioclase (An25–61), clinopyroxene (Wo46–49En38–43Fs11–13), hornblende (Mg# = 0.48–0.81), biotite (Mg# = 0.48–0.60) phenocrysts, titanomagnetite, apatite, and zircon microcrysts.Geochemical data indicate magmatic evolution from tholeiitic-alkaline transitional to calc-alkaline characteristics with medium-K contents. The geochemical variation in the rocks can be explained by fractionation of common mineral phases such as clinopyroxene, olivine, hornblende, plagioclase, magnetite, and apatite. The trace elements’ distributions of the volcanic rocks show similarities to those of E-Type MORB, have a shape that is typical of rocks from subduction-related tectonic setting with enrichment in LILE and to a lesser extent in LREE, but depletion in HFSE. The rocks evolved from a parental magma derived from an enriched source formed by subduction induced metasomatism of basaltic rocks, the latter formed through clinopyroxene ± olivine controlled fractionation in a high level magma chamber. The andesitic rocks developed through hornblende ± plagioclase controlled fractionation in shallow level magma chamber(s).  相似文献   

11.
A unique clinopyroxene (En19Fs78Wo3), clinoeulite, space group P21/c, $${\text{(Fe}}_{{\text{1}}{\text{.48}}} {\text{Mg}}_{{\text{0}}{\text{.37}}} {\text{Mn}}_{{\text{0}}{\text{.08}}}^{{\text{2 + }}} {\text{Ca}}_{{\text{0}}{\text{.05}}} {\text{Al}}_{{\text{0}}{\text{.01}}} {\text{)}}_{{\text{1}}{\text{.99}}} {\text{ [Si}}_{{\text{2}}{\text{.01}}} {\text{O6],}}$$ contains sharp exsolution lamellae of ferroaugite (En17Fs43Wo40) from which the former presence of a ferropigeonite near En17Fs70Wo13 can be calculated. This two-pyroxene intergrowth is the main component of a eulysite containing also magnetite, olivine (Fo9Fa86Te5), quartz, oligoclase-K feldspar inter-growth, and retrograde cummingtonite with about 76 % grunerite end member. The occurrence of this most unusual rock type in the center of the Vredefort structure is attributed to a period of high-temperature metamorphism (at least 800 °–850 °C) which was followed by hot deformation of the rock during the Vredefort event thus probably preventing the common formation of orthopyroxene through pigeonite exsolution and inversion upon cooling. After this tectonic deformation, the rock recrystallized within the low-temperature stability range of clinoeulite to yield fine annealing textures. Late-stage equilibria at temperatures well below 500 °C include the complete unmixing of a former high-temperature anorthoclase, a Mg/Fe redistribution in the clinoeulite and olivine and, with the introduction of water, the partial formation of cummingtonite through reaction of clinoeulite, olivine, and quartz. During weathering the olivine was transformed to a nearly opaque, anhydrous ferrisilicate which, except for the change of Fe2+ to Fe3+ and the oxygen introduction, largely retained its original chemistry.  相似文献   

12.
The Tin Zebane gabbro–anorthosite layered mafic intrusion represented by plagioclase-rich cumulates forms a set of small lenticular to round-shaped mainly undeformed bodies intruding the Pan-African high-pressure metamorphic rocks from western Hoggar (Tuareg shield, southwest Algeria). The coarse-grained anorthosites are mainly made of slightly zoned bytownite (An86–74) with the higher anorthite content at the cores. Anorthosites are interlayered with leucogabbros and gabbros that show preserved magmatic structures and with olivine gabbros characterised by coronitic textures. The primary assemblage in gabbros includes plagioclase (An93–70), olivine (Fo77–70), zoned clinopyroxene (En43–48Fs05–13Wo41–49 with Al2O3 up to 4.3 wt.%) and rare orthopyroxene (En73–78). Pyroxenes and olivine are commonly surrounded by Ca-amphibole. The olivine–plagioclase contact is usually marked by a fine orthopyroxene–Cr-spinel–amphibole symplectite. A magnesian pigeonite (En70–75Fs19–20Wo6–10) is also involved in corona. The coronitic minerals have equilibrated with the primary mineral rims at PTaH2O conditions of 797 ± 42 °C for aH2O=0.5 and 808 ± 44 °C for aH2O=0.6 at 6.2 ± 1.4 kbar. The Tin Zebane gabbroic rocks are depleted in REE with a positive Eu anomaly, high Sr (>10 * chondrite) and Al2O3 concentrations (17–33%) that support plagioclase accumulation with the extreme case represented by the anorthosites. The REE patterns can be modelised using plagioclase, clinopyroxene and orthopyroxene REE signature, without any role played by accessory minerals. High MgO content points to olivine as a major cumulate phase. Anorthositic gabbros Sr and Nd isotopic initial ratios are typical of a depleted mantle source (Sri=0.70257–0.70278; Nd=+5.9 to +7.8). This isotopic signature is identical to that of the 10-km wide 592 Ma old dyke complex composed of alkaline to peralkaline granites and tholeiitic gabbros and one single bimodal complex can be inferred. The source of the Tin Zebane basic rocks corresponds to the prevalent mantle (PREMA). The Tin Zebane complex was emplaced along the mega-shear zone bounding to the west the Archaean In Ouzzal metacraton. The model proposed suggests a linear lithospheric delamination along this rigid and cold terrane due to post-collisional transtensional movements. This allowed the asthenosphere to rise rapidly and to melt by adiabatic pressure release. Transtension along a rigid body allowed these mantle melts to reach the surface rapidly without any crustal contamination.  相似文献   

13.
CLAGUE  DAVID A. 《Journal of Petrology》1988,29(6):1161-1186
Ultramafic xenoliths were recovered in four alkalic lava flowsfrom Loihi Seamount at depths between 2200 and 1400m. No xenolithbearing flows were sampled near the summit despite a concentrateddredge program. The flows, three of alkalic basalt and one ofbasanite, contain common olivine megacrysts and small xenolithsof dunite, rarer harzburgite, and a single wehrlite. Olivinemegacrysts as large as 8 mm are Fo84–88 6 and containmagnesiochromite inclusions with 1?1–3?5 wt.% TiO2 Dunitecontains Fo83 5–88?5 olivine, magnesiochromite with l?5–6?9wt.% TiO2 (avg. 3?2 wt.%), and extremely rare chrome-rich diopside.The wehrlite contains euhedral Fo85 9 olivine and magnesiochromitewith 1?9–4?7 wt.% TiO2 poikilitically enclosed in chrome-richdiopside (Wo45 4En48 0Fs6?6).Most of the olivine megacrysts,dunite, and the wehrlite are cumulates of Loihi alkalic lavasthat accumulated in a magma storage zone located at least 16kmbelow sea level. The rarity of dunite related to tholeiiticmagmas supports the interpretation that the alkalic lavas atLoihi generally predate the tholeiitic lavas. The harzburgitexenoliths have cataclastic textures and contain Fo89 5–926 olivine, enstatite (Wo2 0–2?7En90?0–88 7Fe8?0–8?6),Cr-rich endiopside (Wo43 4–44 5En52 0–50 0Fs4 6–45), and translucent red-brown magnesiochromite. The harzburgitexenoliths, which have 2-pyroxene temperatures of 1066 ? 35?C,originated in the uppermost mantle in a region of high strainrate, probably near the boundary between the mantle and theoverlying ocean crust. The presence of upper mantle xenolithsindicates that the magma storage zone is located below the baseof the ocean crust within the uppermost mantle.  相似文献   

14.
The Delakhari sill (maximum thickness cf. 200 m) is the most extensive Deccan Trap instrusion which occurs in central India, between longitutdes 78°3835 to 78°2240 and latitudes 22°26 and 22°2230. Based on petrographic examination, the sill is divided, from bottom to top, into (1) the Lower Chilled Zone (LCZ), up to 8 m thick, marked by abundant interstitial glass and an overall fine grain size, (2) the Olivine-Rich Zone (ORZ), 27 m thick, enriched in olivine (relative to the other zones in the sill), (3) the Central Zone (CZ), 70 m thick, marked by depletion in olivine and overall coarse grain size, (4) the Upper Zone (UZ), 55 m thick, marked by the presence of two chemically and morphologically distinct olivine types and abundant interstitial granophyre, and (5) the Upper Chilled Zone (UCZ), 10–25m thick, marked by abundant interstitial glass.Compositions of the pyroxenes and olivines show an overall increase in Fe/Mg with crystallization, but extensive interzonal and intrazonal variations and overlaps exist. Olivine ranges from Fa24 (ORZ) to Fa95 (UZ). In the UZ and inner UCZ, an equant (Fa44–50, called type-A olivine) and interstitial skeletal olivine (Fa70–95, called type-B olivine) occur together. Compositions of the Ca-rich and Ca-poor pyroxenes fall in the range Wo38En34Fs28 to Wo33En8Fs59 and Wo14En41Fs45 to Wo16En19Fs65, respectively. Overall, the two pyroxene trends converge with Fe-enrichment except for one anomalous sample from the UZ which contains a Ca-rich (Wo34En8Fs58) and a Ca-poor (Wo10En18Fs72) pyroxene well within the Forbidden Zone of Smith (1972).Compositions of coexisting oxide minerals indicate that the sill crystallized at oxygen fugacities from 10–10 atm (ORZ) to 10–13 (UZ). The magma prior to intrusion appears to have been derived from a more primitive melt from which a considerable amount of olivine and plagioclase have fractionated out. A model of open, interrupted fractional crystallization in the sill is proposed to explain the compositional variations exhibited by the major mineral phases.A previous study (Crookshank 1936) concluded that the sill is actually a multiple intrusion and has given rise to the lowermost (flow I) and the topmost (flow III) lava flows in the neighboring area around Tamia (78°4015, 22°2035). The olivines of flows I and III have compositions Fo87 and Fo88 respectively, and are much more Mg-rich than the maximum Mg-rich olivine (Fo76) of the Delakhari sill, refuting the possibility of the sill being the feeder of the lava flows I and III.Geosciences Department, University of Texas at Dallas Contribution No. 338  相似文献   

15.
Basaltic glasses from the three alkalic areas of Iceland (Snaefellsnes Volcanic Zone, Sudurland Volcanic Zone and Vestmannaeyjar Volcanic Area) contain plagioclase, olivine, clinopyroxene, chromian spinel and titanomagnetite as phenocryst phases. The glasses are hypersthene to nepheline normative alkali basaltic with FeO/ MgO ratios between 1.4–4.7. Olivine ranges in composition from Fo90 to Fo55, plagioclase from An90 to An50 and clinopyroxene from En45Fs10Wo45 to En40Fs17Wo43. Clinopyroxene reveals systematic Ti:Al metastable crystallization trends related to the composition of the enclosing glass. Two types of phenocryst are present in most glasses and show a bimodality in size and composition. Microphenocryst phases are those most likely to have crystallized from the enclosing glass, while macrophenocrysts may have crystallized from a liquid of slightly less evolved composition. The glasses show complex phenocryst-glass relations which can be related to a polybaric effect. The normative glass compositions are related to 2-phase cotectic surfaces in the basalt tetrahedron and define the position of the 3-phase cotectic line. In general with increasing FeO/MgO in the glass the phenocryst assemblages vary from clinopyroxene, olivine and plagioclase along a clinopyroxene-olivine surface to olivine and plagioclase along an olivine-plagioclase surface. The normative glass compositions show a deflection from clinopyroxene-bearing to clinopyroxene-free glasses. The appearance of plagioclase together with clinopyroxene and olivine can be explained in the light of experimental investigations of the effect of pressure on phase relations. The major element variation of the glasses is interpreted as representing mantle derived magma batches of primary liquids, modified to some degree by high (6 kbar) and intermediate to low pressure (below 3 kbar) crystal fractionation towards equilibrium phase relations during ascent and residence in crustal magma chambers. The observed deflection in normative compositions of the glasses marks the position of the high pressure 3-phase cotectic line. The bimodality in size and composition of plagioclase and olivine phenocrysts can be related to high pressure crystal fractionation in the melt. The Fe-Ti basalt glasses from Sudurland are believed to be quenched high pressure compositions.  相似文献   

16.
The 160 km2 Caledonian Fongen-Hyllingen complex is an extremelydifferentiated, layered, basic intrusion, synorogenically emplacedat 5–6 kb in the allochthonous Trondheim nappe complex,situated in the Trondheim region of Norway. A zone of gabbroic rocks without rythmic layering usually occursalong the margin and a supposed feeder to at least part of thecomplex is preserved. A wide variety of magmatic sedimentarystructures are present in the c. 10,000 m thick sequence ofrhythmically layered rocks which vary from olivine-picotitecumulates at the base to quartz-bearing ferrosyenites at thetop. Mineral compositions, fractionation trends, and the compositionof feeder rocks suggest a tholeiitic parent. Mineral compositions cover extreme ranges. Olivine varies fromFo86·2 to Fo0·2 with a hiatus between about Fo71and Fo61. Plagioclase ranges from An79·5 to An1·5,albite coexisting with orthoclase microperthite in the finaldifferentiates. Cumulus Ca-poor pyroxene (Wo2.4En66.8Fs30.8-Wo2·0En17·0Fs81·0)first shows sporadic inversion from pigeonite at the Fe-richcomposition of Fs67 and the final Ca-poor pyroxenes are replacedby magmatic grunerite which reaches an Mg: Fe ratio of 12:88.Ca-rich pyroxenes (Wo44·7En43·8Fs11·5-Wo47·0En0Fs53·0)are highly calcic and have a slight Ca-minimum in the earlystages, unrelated to the disappearance of Ca-poor pyroxene.Calcic amphibole, a constant intercumulus phase in most of thecomplex, becomes a cumulus phase in the later stages and variesfrom titanian-pargasite to ferro-edenite. Magnetite and ilmenitejoin the cumulate assemblage at Fo55 and ilmenite persists intothe final quartz-bearing ferrosyenite where it shows replacementby sphene. Apatite, biotite, zircon, quartz, K-feldspar andallanite join the final extreme differentiates in the namedsequence. The fractionation trend is, in many respects, transitionalbetween those typical of the tholeiitic and calc-alkaline series,and is interpreted as reflecting crystallization under moderate,increasing PH2O. Cryptic layering shows several reversals to higher temperatureassemblages with increasing stratigraphic height. Successivereversals are to irregular compositions and measured in termsof olivine composition, can be up to about 30 mole per centFo. The minimum stratigraphic thickness to include the entirefractionation range is reduced to about 2200 m after ‘removal’of the compositional overlaps due to the reversals. Thus roughlythree-quarters of the present cumulate stratigraphic sequencerepresents magma replenishment. A mechanism involving the mixingof fresh magma batches with the residual, differentiated magmafrom the previous influx, is envisaged. The periodic influxof fresh magma took place into a chamber which was probablyclosed to the exit of material.  相似文献   

17.
Shock veins and melt pockets in Lithology A of Martian meteorite Elephant Moraine (EETA) 79001 have been investigated using electron microprobe (EM) analysis, petrography and X-ray Absorption Near Edge Structure (XANES) spectroscopy to determine elemental abundances and sulfur speciation (S2− versus S6+). The results constrain the materials that melted to form the shock glasses and identify the source of their high sulfur abundances. The XANES spectra for EETA79001 glasses show a sharp peak at 2.471 keV characteristic of crystalline sulfides and a broad peak centered at 2.477 keV similar to that obtained for sulfide-saturated glass standards analyzed in this study. Sulfate peaks at 2.482 keV were not observed. Bulk compositions of EETA79001 shock melts were estimated by averaging defocused EM analyses. Vein and melt pocket glasses are enriched in Al, Ca, Na and S, and depleted in Fe, Mg and Cr compared to the whole rock. Petrographic observations show preferential melting and mobilization of plagioclase and pyrrhotite associated with melt pocket and vein margins, contributing to the enrichments. Estimates of shock melt bulk compositions obtained from glass analyses are biased towards Fe- and Mg- depletions because, in general, basaltic melts produced from groundmass minerals (plagioclase and clinopyroxene) will quench to a glass, whereas ultramafic melts produced from olivine and low-Ca pyroxene megacrysts crystallize during the quench. We also note that the bulk composition of the shock melt pocket cannot be determined from the average composition of the glass but must also include the crystals that grew from the melt - pyroxene (En72-75Fs20-21Wo5-7) and olivine (Fo75-80). Reconstruction of glass + crystal analyses gives a bulk composition for the melt pocket that approaches that of lithology A of the meteorite, reflecting bulk melting of everything except xenolith chromite.Our results show that EETA79001 shock veins and melt pockets represent local mineral melts formed by shock impedance contrasts, which can account for the observed compositional anomalies compared to the whole rock sample. The observation that melts produced during shock commonly deviate from the bulk composition of the host rock has been well documented from chondrites, rocks from terrestrial impact structures and other Martian meteorites. The bulk composition of shock melts reflects the proportions of minerals melted; large melt pockets encompass more minerals and approach the whole rock whereas small melt pockets and thin veins reflect local mineralogy. In the latter, the modal abundance of sulfide globules may reach up to 15 vol%. We conclude the shock melt pockets in EETA79001 lithology A contain no significant proportion of Martian regolith.  相似文献   

18.
Lunar sample 76535 is a coarse-grained troctolitic granulite exhibiting a texture indicative of long annealing times. It is composed of homogeneous crystals of plagioclase (58 per cent, An96), olivine (37 per cent, Fo88) and bronzite (4 per cent, En86).Chromian spinel-bronzite-diopside (Wo46En50Fs4) symplectic intergrowths commonly occur along olivine-plagioclase boundaries and as tiny inclusions within olivine grains. These symplectites apparently formed by a reaction of the type:
OI + An + Chromite → Opx + Cpx + Al-Mg-chromite
. The reaction is related to the experimentally determined reaction
OI + An = Opx + Cpx + Sp
of Kushiro and Yoder (1966). The enstatite content of the diopside coexisting with the bronzite indicates equilibration at about 1000°C. Thermodynamic calculations for 1000°C indicate that the symplectites formed at a minimum pressure of about 0.6 kb. Low alumina contents of the pyroxenes indicate equilibration near this minimum pressure.Clusters of the same assemblage found in the symplectic intergrowths, but containing accessory metal, troilite, Ca-phosphates, baddeleyite, plagioclase and/or K-feldspar occur sporadically throughout the rock. These apparent late stage products crystallized in the low temperature-high pressure region discussed above.Phase relations of co-existing metal phases indicate that the rock cooled at a few tens of degrees/my, corresponding to depths of 10–20 km below the lunar surface, in agreement with the above pressure estimate.We infer that 76535 represents an original cumulate deposited at a depth between about 10 and 30 km. The last liquid crystallized in the relatively high pressure-low temperature field opx + cpx + Al-Mg-chromite. Cooling was extremely slow and accompanied by extensive chemical and textural re-equilibration. Reaction to form the symplectites occurred during the late stages of re-equilibration.  相似文献   

19.
Nilpena (173 g), a new ureilite find from the Parachilna area of South Australia, is an unusual polymict breccia containing polymineralic aggregates, mineral fragments and achondritic and chondritic lithic enclaves in a dark, C-rich matrix. The polymineralic aggregates consist of equigranular-textured olivine Fa20 and pigeonite En75Wo9FS16, and exhibit evidence of shock in the form of undulose extinction and kink-banding. Monomineralic fragments consist of olivine Fa19–24 (with highly forsteritic rims up to Fa3) and pigeonite, and appear to be derived by brecciation of the polymineralic aggregates. The enclave material consists of lithic granular olivine fragments, porphyritic enstatite fragments (either enstatite chondrite or aubrite), olivine-clinobronzite fragments resembling an H3 chondrite, and eucritelike lithic fragments composed of plagioclase An98, salitic clinopyroxene Wo48.5En31.4Fs20.1 and olivine Fa49–53. The matrix contains kamacite (generally rich in P), schreibersite and troilite. The texture of Nilpena suggests formation by disruption of a olivine-pigeonite granular aggregate while the presence of the diverse chondritic and achondritic enclave material suggests an origin as a surface or near-surface breccia.Like other ureilites Nilpena is strongly differentiated with respect to cosmic abundances but is significantly enriched in Ba and LREE. A lack of correlation of lithophile elements with Fe(Fe + Mg) ratio among ureilites suggests that the differentiation was not caused by varying degrees of partial melting of a homogeneous source. A cumulate origin therefore seems more plausible.  相似文献   

20.
We report on the petrography and geochemistry of the newly discovered olivine-phyric shergottite Larkman Nunatak (LAR) 06319. The meteorite is porphyritic, consisting of megacrysts of olivine (?2.5 mm in length, Fo77-52) and prismatic zoned pyroxene crystals with Wo3En71 in the cores to Wo8-30En23-45 at the rims. The groundmass is composed of finer grained olivine (<0.25 mm, Fo62-46), Fe-rich augite and pigeonite, maskelynite and minor quantities of chromite, ulvöspinel, magnetite, ilmenite, phosphates, sulfides and glass. Oxygen fugacity estimates, derived from the olivine-pyroxene-spinel geo-barometer, indicate that LAR 06319 formed under more oxidizing conditions (QFM -1.7) than for depleted shergottites. The whole-rock composition of LAR 06319 is also enriched in incompatible trace elements relative to depleted shergottites, with a trace-element pattern that is nearly identical to that of olivine-phyric shergottite NWA 1068. The oxygen isotope composition of LAR 06319 (Δ17O = 0.29 ±0.03) confirms its martian origin.Olivine megacrysts in LAR 06319 are phenocrystic, with the most Mg-rich megacryst olivine being close to equilibrium with the bulk rock. A notable feature of LAR 06319 is that its olivine megacryst grains contain abundant melt inclusions hosted within the forsterite cores. These early-trapped melt inclusions have similar trace element abundances and patterns to that of the whole-rock, providing powerful evidence for closed-system magmatic behavior for LAR 06319. Calculation of the parental melt trace element composition indicates a whole-rock composition for LAR 06319 that was controlled by pigeonite and augite during the earliest stages of crystallization and by apatite in the latest stages. Crystal size distribution and spatial distribution pattern analyses of olivine indicate at least two different crystal populations. This is most simply interpreted as crystallization of megacryst olivine in magma conduits, followed by eruption and subsequent crystallization of groundmass olivine.LAR 06319 shows close affinity in mineral and whole-rock chemistry to olivine-phyric shergottite, NWA 1068 and the basaltic shergottite NWA 4468. The remarkable features of these meteorites are that they have relatively similar quantities of mafic minerals compared with olivine-phyric shergottites (e.g., Y-980459, Dho 019), but flat and elevated rare earth element patterns more consistent with the LREE-enriched basaltic shergottites (e.g., Shergotty, Los Angeles). This relationship can be interpreted as arising from partial melting of an enriched mantle source and subsequent crystal-liquid fractionation to form the enriched olivine-phyric and basaltic shergottites, or by assimilation of incompatible-element enriched martian crust. The similarity in the composition of early-trapped melt inclusions and the whole-rock for LAR 06319 indicates that any crustal assimilation must have occurred prior to crystallization of megacryst olivine, restricting such processes to the deeper portions of the crust. Thus, we favor LAR06319 forming from partial melting of an “enriched” and oxidized mantle reservoir, with fractional crystallization of the parent melt upon leaving the mantle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号