首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We quantify the angular distribution of radio sources in the NRAO VLA Sky Survey (NVSS) by measuring the two-point angular correlation function w ( θ ). By careful consideration of the resolution of radio galaxies into multiple components, we are able to determine both the galaxy angular clustering and the size distribution of giant radio galaxies. The slope of the correlation function for radio galaxies agrees with that for other classes of galaxy,     , with a 3D correlation length     (under certain assumptions). Calibration problems in the survey prevent clustering analysis below     . About 7 per cent of radio galaxies are resolved by NVSS into multiple components, with a power-law size distribution. Our work calls into question previous analyses and interpretations of w ( θ ) from radio surveys.  相似文献   

2.
We explore the possibility of searching for groups of radio sources from the FIRST catalog on angular scales 1′–5′. We developed an efficient method of searching for such groups that takes into account the need for combining the components of extended sources represented in the catalog by separate objects. We found 31 groups of radio sources with angular sizes <5′ that contain no fewer than five sources with flux densities ≥3 mJy. This number is at least triple the expected number of such groups for a random Poisson distribution of radio sources in the sky. The prospects for using groups of radio sources to detect and study distant systems of galaxies are discussed.  相似文献   

3.
We present new 1.6-GHz (18-cm) MERLIN maps of 15 Seyfert galaxies, with angular resolutions typically 0.1 to 0.3 arcsec. These and previous observations are used to investigate the properties of 19 of the 24 CfA Seyfert galaxies brighter than 2 mJy at 8.4 GHz. This is the first time a significant fraction of the CfA sample has been mapped at this frequency with subarcsecond resolution, and our observations provide the highest resolution radio maps available for several sources. We use our observations to measure the two-point spectral indices of compact radio components, and we investigate the correlation between infrared and radio emission shown by Seyfert galaxies.
Our results can be summarized as follows. Resolved structures as small as 20 pc are found in three previously unresolved radio sources, and only four sources show single, unresolved radio components. The mean 1.6 to 8.4 GHz spectral index of 31 radio components is         , and approximately 25 per cent of the components have a spectral index flatter than     . The spectral index distributions of type 1 and type 2 Seyferts are statistically indistinguishable. The cores of multiple-component sources tend to have flatter radio spectra than secondary components. The low-resolution infrared ( IRAS ) emission from Seyfert galaxies is usually dominated by kiloparsec-scale, extranuclear emission regions.  相似文献   

4.
One-dimensional sections of WMAP maps—ILC and background components (synchrotron, free-free radiation and dust emission) are investigated and their correlation properties on various angular scales are analyzed. Sections of the ILC map are found to correlate significantly with the maps of Galactic background components at the δ = 41° declination of RATAN-600 survey. The confidence level of the correlations found is estimated by analyzing random realizations of the Gaussian process that describes the microwave background. A method for identifying correlated intervals from maps on the sphere as a function of angular scale is proposed. This method can be used to search for non-Gaussian features (spots) found in the distribution of microwave background and radio sources in the same coordinate areas. The approach described can also be used to search for such non-Gaussian sources in observational programs performed on the radio telescope RATAN-600.  相似文献   

5.
Giant radio galaxies are the most extended radio sources in the universe having the sizes of groups and clusters of galaxies (about 1 Mpc). Their total number is comparable with the amount of clusters, revealing the Zeldovich-Sunyaev effect, which may lead to a biased estimation of the angular power spectrum for the ZS effect. To assess a possible contribution to the power spectrum, we need to collect the data on all the observed giant radio galaxies. We propose an algorithm for the selection of large sources (sized over 4′) from the NVSS survey catalog, using the parameters of possible components of radio sources, cataloged as compact objects. As a result of the first stage of our work, we have selected 61 new giant radio galaxy candidates, of which 35 have a pronounced morphological type FRII, and 26 galaxies—the FRI type.  相似文献   

6.
We consider a method of reconstructing the structure delay of extended radio sources without constructing their radio images. The residuals derived after the adjustment of geodetic VLBI observations are used for this purpose. We show that the simplest model of a radio source consisting of two point components can be represented by four parameters (the angular separation of the components, the mutual orientation relative to the poleward direction, the flux-density ratio, and the spectral index difference) that are determined for each baseline of a multi-baseline VLBI network. The efficiency of this approach is demonstrated by estimating the coordinates of the radio source 0014+813 observed during the two-week CONT14 program organized by the International VLBI Service (IVS) in May 2014. Large systematic deviations have been detected in the residuals of the observations for the radio source 0014+813. The averaged characteristics of the radio structure of 0014+813 at a frequency of 8.4 GHz can be calculated from these deviations. Our modeling using four parameters has confirmed that the source consists of two components at an angular separation of ~0.5 mas in the north–south direction. Using the structure delay when adjusting the CONT14 observations leads to a correction of the average declination estimate for the radio source 0014+813 by 0.070 mas.  相似文献   

7.
We have discovered a radio source (B2114+022) with a unique structure during the course of the JVAS gravitational lens survey. VLA, MERLIN, VLBA and MERLIN+EVN radio maps reveal four compact components, in a configuration unlike that of any known lens system, or, for that matter, any of the ∼15 000 radio sources in the JVAS and CLASS surveys. Three of the components are within 0.3 arcsec of each other while the fourth is separated from the group by 2.4 arcsec. The widest separation pair of components have similar radio structures and spectra. The other pair also have similar properties. This latter pair have spectra which peak at ∼5 GHz. Their surface brightnesses are much lower than expected for synchrotron self-absorbed components.
Ground-based and Hubble Space Telescope optical observations show two galaxies ( z =0.3157 and 0.5883) separated by 1.25 arcsec. The lower redshift galaxy has a post-starburst spectrum and lies close to, but not coincident with, the compact group of three radio components. No optical or infrared emission is detected from any of the radio components down to I =25 and H =23 . We argue that the most likely explanation of the B2114+022 system is that the post-starburst galaxy, assisted by the second galaxy, lenses a distant radio source producing the two wide-separation images. The other two radio components are then associated with the post-starburst galaxy. The combination of the angular sizes of these components, their radio spectra and their location with respect to their host galaxy still remains puzzling.  相似文献   

8.
Radio maps at 5 GHz with an angular resolution of 1 to 2 arcsec and a dynamic range ≳ 200:1 are presented for a sample of 45 radio quasars at redshifts between 0.2 and 1.5. The sources were imaged from observations made with the Very Large Array with the aim of investigating the epoch dependence of misalignments and asymmetries in their extended radio structure. Maps of some of the larger radio sources are presented also at a frequency of 1.5 GHz with a typical angular resolution of ≈ 4 arcsec. The radio structure of most of the quasars reported here has been delineated in considerably greater detail than available in the literature.  相似文献   

9.
We implement an independent component analysis (ICA) algorithm to separate signals of different origin in sky maps at several frequencies. Owing to its self-organizing capability, it works without prior assumptions on either the frequency dependence or the angular power spectrum of the various signals; rather, it learns directly from the input data how to identify the statistically independent components, on the assumption that all but, at most, one of the components have non-Gaussian distributions.
We have applied the ICA algorithm to simulated patches of the sky at the four frequencies (30, 44, 70 and 100 GHz) used by the Low Frequency Instrument of the European Space Agency's Planck satellite. Simulations include the cosmic microwave background (CMB), the synchrotron and thermal dust emissions, and extragalactic radio sources. The effects of the angular response functions of the detectors and of instrumental noise have been ignored in this first exploratory study. The ICA algorithm reconstructs the spatial distribution of each component with rms errors of about 1 per cent for the CMB, and 10 per cent for the much weaker Galactic components. Radio sources are almost completely recovered down to a flux limit corresponding to ≃0.7 σ CMB, where σ CMB is the rms level of the CMB fluctuations. The signal recovered has equal quality on all scales larger than the pixel size. In addition, we show that for the strongest components (CMB and radio sources) the frequency scaling is recovered with per cent precision. Thus, algorithms of the type presented here appear to be very promising tools for component separation. On the other hand, we have been dealing here with a highly idealized situation. Work to include instrumental noise, the effect of different resolving powers at different frequencies and a more complete and realistic characterization of astrophysical foregrounds is in progress.  相似文献   

10.
We observed the pair of radio sources 1150+812 and 1803+784 in November 1993 with a VLBI array, simultaneously recording at 8.4 and 2.3 GHz. We determined the angular separation between the two sources with submilliarcsecond accuracy by using differential techniques. This result demonstrates the feasibility of high precision differential astrometry for radio sources separated in the sky by almost 15°, and opens the avenue to its application to larger samples of radio sources.  相似文献   

11.
《New Astronomy Reviews》2002,46(2-7):61-65
In this paper we discuss the early phase of radio source evolution as represented by Gigahertz Peaked Spectrum (GPS) and Compact Steep Spectrum (CSS) radio sources. Correlations between their spectral peak and angular size strongly suggest that the spectral turnovers are caused by synchrotron self absorption, and indicate that young radio sources evolve in a self similar way. We argue that the evolution of a radio source during its first 105 years is qualitatively very different from that during the rest of its life-time. This may be caused by the difference in the density gradient of the intra-galactic medium inside and outside the core-radius of the host galaxy.  相似文献   

12.
During close angular approaches of solar system planets to astrometric radio sources, the apparent positions of these sources shift due to relativistic effects and, thus, these events may be used for testing the theory of general relativity; this fact was successfully demonstrated in the experiments on the measurements of radio source position shifts during the approaches of Jupiter carried out in 1988 and 2002. An analysis, performed within the frames of the present work, showed that when a source is observed near a planet’s disk edge, i.e., practically in the case of occultation, the current experimental accuracy makes it possible to measure the relativistic effects for all planets. However, radio occultations are fairly rare events. At the same time, only Jupiter and Saturn provide noticeable relativistic effects approaching the radio sources at angular distances of about a few planet radii. Our analysis resulted in the creation of a catalog of forthcoming occultations and approaches of planets to astrometric radio sources for the time period of 2008–2050, which can be used for planning experiments on testing gravity theories and other purposes. For all events included in the catalog, the main relativistic effects are calculated both for ground-based and space (Earth-Moon) interferometer baselines.  相似文献   

13.
The possibility of obtaining information about small-scale inhomogenities of the electron component of the local interstellar medium (ISM) is investigated using interstellar scintillation of extragalactic radio sources. We analyze Culgoora array variability data at 80 and 160 MHz for 190 extragalactic radio sources distributed over most of the sky. The variability on time-scales of 1 month-15 years is interpreted as interstellar scintillations in rapidly-moving nearby (less than 150 pc) hot gas near shock waves in the local ISM. All-sky maps of scintillation index m averaged over 3-5 neighbouring sources and over m for time-scales of 1 month (m1) and one or several years (m12) show several maximum values for m. Locations of the maxima are insensitive to the method and number of points used for averaging. The positions of the maxima obtained in different ways agree to within 15-30 degrees on the sky; this is the angular resolution of this method. Two of the three most certain maxima are probably associated with Loop I, and the third coincides with a soft X-ray (0.1 - 0.3 keV) background maximum near the South Galactic Pole. Other less certain scintillation index maxima probably correspond to the Orion starformation region and to a soft X-ray maximum near the North Galactic Pole. A tunnel that is free of gas in the direction l = 240° is indicated by low values of m. The estimated time-scale for interstellar scintillations in these structures in the local ISM is in agreement with the time-scale for the observed radio source variations.  相似文献   

14.
本文对VLBI观测得到的河外射电源致密核core的视角大小进行了统计研究,发现对单个源平均上视角大小近似反比于观测频率,与目前的模型相一致。在5GHz上,在红移范围0.04<z<2.5内,平均的core视角大小近似为常数,在非均匀喷流模型框架下,一种可能的解释是在河外射电源致密结构中磁场存在着演化。  相似文献   

15.
A list has been compiled of 49 extragalactic sources, most of them identified with quasars, that appear to have a one-sided (D2 type) radio structure characterized by a single outer component displaced from a compact central (nuclear) component coincident with the optical object. The observed properties of a subsample of 28 D2 quasars that have an overall angular size larger than 5 arcsec are briefly discussed and compared with those of normal (D1 type) double quasars. It is found that the central components in most D2 sources account for more than half the total flux density at high frequencies in contrast to the D1 quasars which generally have less than 20 per cent of their total flux density in a central component. This makes it very unlikely that D2 sources are just those D1s in which there is a large intrinsic difference in the flux densities or separations of the two outer components. The observed properties of D2 sources are easier to understand in the relativistic beaming interpretation in which their axes are inclined at smaller angles with the line of sight compared to D1 sources.  相似文献   

16.
The large-scale angular distribution of quasars from a complete sample of extragalactic radio sources is examined at different redshifts. The sample contains 264 quasars which have been found so far among the complete sample of 518 radio sources stronger than. 1 Jy at 5 GHz. Of these, 19 quasars have redshift z > 2. Dividing the entire sky into three separate declination zones of equal area, the counts of quasars seem to indicate a deficit of high redshift quasars in the northernmost declination zone. On the other hand, the Iow-redshift quasars (z < 1) appear fairly uniformly distributed. We discuss some possible selection effects that might have led to the apparent anomaly at high redshifts and estimate the expected number of high-redshift quasars amongst the radio sources in the sample for which redshifts are presently not available.  相似文献   

17.
Universal expressions are presented for spectral characteristics of non-thermal cosmic radio sources which show maxima of the spectral density of radiation at specific frequencies (negative slopes spectra). For a number of quasars, radio galaxies and their individual details the most probable physical processes in space leading to spectra of the kind are determined, and some parameters of the space medium, magnetic field and angular sizes of compact radio sources are estimated.  相似文献   

18.
Six complete samples of radio sources have been analysed by the Spearman rank and the Spearman partial-rank correlation coefficients. The relations between the radio luminosities and linear sizes as well as between linear sizes and redshift indicate that the observed angular diameter-redshift diagram may be explained by the changes of linear sizes with radio luminosity of radio sources.  相似文献   

19.
We develop the formalism required to interpret, within a CDM framework, the angular clustering of sources in a deep radio survey. The effect of non-linear evolution of density perturbations is discussed, as is the effect of the assumed redshift distribution of sources. We also investigate what redshift ranges contribute to the clustering signal at different angular scales. Application of the formalism is focused on the clustering detected in the FIRST survey, but measurements made for other radio surveys are also investigated. We comment on the implications for the evolution of clustering.  相似文献   

20.
We consider some statistical characteristics of radio sources at 22 GHz in the framework of the preparatory works on the RadioAstron space mission. The expected density of radio sources with inverted spectra is estimated. Based on the observations of the radio sources from the preliminary RadioAstron sample, we compare the expected and measured angular densities of the radio sources with inverted spectra. The optical characteristics of the objects with inverted spectra and of the sources from the complete sample are compared as well. We present some spectral parameters of the radio sources observed at two different frequencies. Some conclusions about the completeness and reliability of the preliminary RadioAstron catalog are made.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号