首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
水岩相互作用对砂岩单轴强度的影响研究   总被引:7,自引:0,他引:7       下载免费PDF全文
针对重庆地区的微风化砂岩,完成了1、3、6、10、15次的干湿循环,对循环后的试件(饱水状态)进行了单轴抗压和劈裂试验。试验结果表明,干湿循环对砂岩造成了不可逆的渐进性损伤,在15次循环后,单轴抗压强度损失达20.73%,抗拉强度达51.96%,弹性模量达33.79%,三者与循环次数之间有良好的对数关系。在干湿循环过程中,砂岩的强度损伤会出现拐点,这取决于水对砂岩的侵蚀程度。  相似文献   

2.
This study aims to express the relationships between Schmidt rebound number (N) with unconfined compressive strength (UCS) and Young's modulus (Et) of the gypsum by empirical equations. As known, the Schmidt hammer has been used worldwide as an index test for a quick rock strength and deformability characterisation due to its rapidity and easiness in execution, simplicity, portability, low cost and nondestructiveness. In this study, gypsum samples have been collected from various locations in the Miocene-aged gypsum of Sivas Basin and tested. The tests include the determination of Schmidt hammer rebound number (N), tangent Young's modulus (Et) and unconfined compressive strength. Finally, obtained parameters were correlated and regression equations were established among Schmidt hammer rebound hardness, tangent Young's modulus and unconfined compressive strength, presenting high coefficients of correlation. It appears that there is a possibility of estimating unconfined compressive strength and Young's modulus of gypsum, from their Schmidt hammer rebound number by using the proposed empirical relationships of UCS=exp(0.818+0.059N) and Et=exp(1.146+0.054N). However, the equations must be used only for the gypsum with an acceptable accuracy, especially at the preliminary stage of designing a structure. Finally, by using the obtained Schmidt hammer rebound number from this study, unconfined compressive strength was calculated and compared with the calculated value from different empirical equations proposed by different authors. It can be said that it is impossible to obtain only one relation for all types of the rocks.  相似文献   

3.
Predictably, in a country such as Britain, with its preponderance of consolidated, sedimentary, mainly fissure-flow aquifers, there is a very large number of springs, many of which are, or have been, used for public supply. Migratory springs are a feature of the British (Ur. Cretaceous) Chalk, the most important British aquifer. The Chalk's low specific yield and high capillary moisture retention together give rise to very considerable fluctuations (more than 33 m in some areas) of the unconfined water table. Along the gentle dip slopes of the Chalk (North and South Downs of southern and southeastern England) springs may migrate laterally for several miles, giving rise to seasonal streams locally known as bournes or lavants. However, springs such as at Duncton, West Sussex, at the base of the much steeper scarp slopes of the Chalk, form point sources, the flows from which tend to be relatively steady; such springs commonly supply and are the original reason for the existence of many of the small towns and villages which nestle along the bases of the chalk scarps of Sussex and Kent.Where the Chalk forms coastal cliffs, a number of springs break out at the base of the cliff between high and low tide levels; there are major chalk coastal springs, for instance, at St. Margaret's Bay (Kent) and at Arish Mells, east of Lulworth Cove, Dorset. Such springs are not used for direct supply (their salinity is usually too high) but are indicators of the presence of local reserves of groundwater for possible future development.  相似文献   

4.
 During the Cenozoic, in the western Paris Basin, atmospheric weathering of the chalks with flints of the Upper Cretaceous led to the creation of clay with flints. A reconstitution of the chalks lost to dissolution is proposed and is based on the determination of the age of the parent chalks of the clay with flints and the quantification of the thickness of dissolved chalk. The chalks affected by weathering range in age from Turonian to Maastrichtian, thus confirming the deposition of calcareous sediments in the western Paris Basin up to the Maastrichtian. Chalk weathering took place in situ, as indicated by the preservation of the stratigraphic succession of the chalk in the clay with flints profiles. Weathering led to the dissolution of 20–200 m of chalk, with regional variations. The weathering rate varies between 2.1 and 14.5 m/Ma. Received: 20 July 1998 / Accepted: 1 July 1999  相似文献   

5.
Summary ?The paper presents an experimental study on the effects of fluid content on the mechanical behaviour of natural fractures in chalk. The aims of the study are to provide better understanding of the mechanisms of chalk-fluid interaction, in general, and to explain the behaviour of petroleum chalk reservoirs during water injection, in particular. The experiments were carried out on L?gerdorf chalk using the direct shear apparatus. Two types of fluids were used in the tests: 1) water, and 2) synthetic oil. L?gerdorf chalk is a water-wet material which will develop capillary pressures upon contact with water. Initially saturating the chalk with oil will enhance the water wettability by inducing additional capillary forces between water and the non-wetting oil. In addition to the tests on fractured chalk samples, unconfined compression and direct shear tests on intact chalk samples were performed. The results showed significant differences in the strength and deformation characteristics of intact chalk initially saturated with different fluids. Intact water-saturated chalk showed lower deformation modulus (about 50%) and lower peak (also about 50%) and residual shear strength than the oil-saturated chalk. Water injection in initially oil-saturated fractures resulted in significant normal deformation under constant effective normal stress and shear stress relaxation under fixed shear displacement. The water-induced deformation occurred almost instantaneously after only a few cm3 of water had been injected into the fracture, and further injection of water did not increase the water-induced deformation. After water injection, fractures in initially oil-saturated chalk showed significantly lower normal and shear stiffnesses and lower shear strength. The weakening in shear is attributed partly to the reduction in the basic friction angle, φb, and this reduction was verified in a series of tilt tests to measure the frictional resistance between smooth edges of core samples of chalk. The reduction in the basic friction angle implies that the interaction of chalk with water is governed not only by capillary forces, as postulated in several previous studies, but also by chemical and/or physio-chemical effects.  相似文献   

6.
The coastal town of Margate in north Kent, south-east England, is geologically well known, with extensive cliffs of chalk with locally common Upper Cretaceous fossils. But to the ichnologist the modern beach is at least as fascinating, with a trinity of borings in chalk clasts and mollusc shells posing interesting questions relevant to palaeoecology and taphonomy.  相似文献   

7.
Microtexture describes the type of particles and their arrangement in matrix samples at scanning electron microscopy scale. Although a microtexture classification exists for micritic limestone, it cannot be directly applied to chalk. This study therefore proposes a classification of chalk microtextures and discusses the origin of microtexture variability. Chalk was sampled at thirteen spatio‐temporal locations along the coastline of northern France (Cenomanian–Santonian). Four criteria are defined to describe, characterize and determine chalk matrix microtexture: (i) mineralogical content; (ii) biogenic fraction; (iii) micritic fraction; and (iv) cement fraction. From these criteria, two major groups are defined: Pure Chalk Microtexture Group, with seven classes, and Impure Chalk Microtexture Group, divided into two subgroups: Argillaceous Microtexture with four classes and Siliceous Microtexture with two classes. Microtexture variability is related both to initial sedimentation and to diagenesis. Sedimentological conditions (for example, climate and distance from shore) affect chalk composition (carbonate content and type of insoluble particles), thus influencing microtexture. Changes in Pure Chalk Microtexture are the result of increasing diagenetic intensity. This classification can also be used to characterize the microtexture of subsurface chalk reservoirs. Reservoir quality depends on the petrophysical and mechanical properties of reservoir rocks, which can be better understood by exploring their sedimentary and diagenetic history, revealed by the study of chalk microtexture variability.  相似文献   

8.
New material of pterasterid asteroids from the UK chalk is described on the basis of ossicles recovered from washed residues. A new species, Pteraster lyddenensis sp. nov., is erected for oral and adambulacral ossicles and a primary radial ossicle from the Cenomanian Grey Chalk Subgroup of Dover (Kent), and the first UK record of Pteraster kutscheri Gale, 2022 is described from the upper Campanian Chalk of Norwich (Norfolk); both taxa belong to extant groups of Pteraster. Pteraster lyddenensis sp. nov. is the oldest known representative of the genus. The benthic invertebrate fauna of the Cretaceous chalk facies includes a number of extant genera which at the present day dwell in the deep sea. However, their presence was probably due to the low-productivity oceanic palaeoenvironment of the Chalk Sea, simulating deep-ocean conditions, rather than its depth.  相似文献   

9.
Foraminiferal biostratigraphy has been used extensively in the re-survey of the Chalk Group of southern England since the 1990s and a biozonation based on 21 zones and numerous subzones has been developed. The scheme is closely related to, and extensively tested against, the new lithostratigraphy for the Chalk Group based on examination of well described key chalk exposures, from significant borehole cores, many additional short sequences in chalk exposures and a large number of field samples taken throughout southern England, including the Isle of Wight. The BGS zonal scheme is defined in its entirety for the first time herein and correlated with the existing United Kingdom benthonic foraminiferal scheme.  相似文献   

10.
The Goldsworthy Chalk Stones, 14 roughly shaped balls of chalk, each approximately 2 m in diameter, were installed in June 2002. Initial assessments by the artist, Andy Goldsworthy, and the Strange Partners commissioning team concluded that they would last for about 2 years. The balls’ disintegration has been measured as part of an ongoing scientific monitoring programme designed to assess their durability and to study controls on rates of chalk weathering. Preliminary assessment of the first 3 years of data shows that 76% of the total mass loss occurred during year 1, 19% during year 2 and 5% during year 3. This might reflect the fact that winter rainfall amounts decreased substantially over the period of study. The west facing sides of the balls have tended to show greater mass loss than those facing east, which might also be a function of exposure to rain. Judging from their present slow rates of weathering, the balls will last for over 200 years but an exceptionally cold wet winter might cause sudden and massive breakdown. Three models of chalk mass weathering are presented. The ongoing scientific monitoring programme will focus experimental work on four key research themes: process, lithology, environment and stress history.  相似文献   

11.
During the Late Cretaceous, high global sea‐level meant that most of the NW European craton was flooded by the deep epeiric ‘chalk sea’. The classical paradigm for chalk deposition envisages a quiet rain of minute skeletal debris of coccolithophorid algae and other pelagic organisms deposited as horizontal, flat‐lying pelagic oozes with local redeposition by slumps, slides and debris flows along faults and other structural features. Seismic data from the Danish Basin and elsewhere necessitate a revision of this paradigm. These demonstrate that the chalk sea floor had a considerable relief, commonly of more than a hundred metres amplitude, comprising moats, drifts, mounds and channels. Seismic sections from the Kattegat sea illustrate the development in the Maastrichtian of a deep moat adjacent to a topographic ridge formed over the inverted NW–SE‐trending Sorgenfrei–Tornquist Zone. The moat was up to 120 m deeper than its SW flank which was formed by an internally complex elongate drift, up to 20 km wide with an estimated length of ca 200 km. Smaller mound‐like features, channels and clinoform beds are superimposed on the large‐scale relief. The sea floor relief is interpreted to have formed in response to persistent bottom currents, flowing parallel to bathymetric contours. The initial build‐up of the broad, gently convex‐up sheeted drift was controlled by relatively low‐velocity bottom currents. The region of highest current velocity was gradually shifted NE‐wards towards the inversion zone ridge, resulting in the formation of the deep moat flanked by the elongate drift. The current is interpreted to have flowed from the SE towards NW on the basis of the internal architecture of the elongate drift and the NW‐ward branching and decrease in moat relief. The architecture and morphology of the moat drift and other features of the chalk sea floor are in all aspects similar to contourite systems of modern continental margins. It is accordingly proposed that the fundamental physical oceanographic concept – contour currents and their resulting contourite drifts – is extended to include the deep epeiric seas which covered NW Europe during the Late Cretaceous.  相似文献   

12.
Chalk is a variable material, the properties of which are dependent upon its composition, textural features and diagenetic history. With the exception of certain horizons in the Lower Chalk that contain appreciable amounts of clayey material, the English Chalk is a remarkably pure micritic carbonate rock that generally can be divided into coarse and fine fractions. The latter comprises 70–80% of chalk. Cementation took place more or less contemporaneously with deposition so that the sediment was able to support relatively high overburden pressures. Hence, high values of porosity were retained. Chalk varies appreciably in density and hardness. The harder chalks are the result of diagenetic processes and bioturbation that brought about densification. In soft chalks the grains are only bound together at the points of contact by thin films of calcite.

The latest classification of chalk is based on an assessment of intact dry density, discontinuity aperture and discontinuity spacing. Chalk tends to vary from moderately weak to moderately strong and its strength is significantly reduced on saturation. Under triaxial loading conditions diagonal shear failure tends to occur at lower confining pressures but at higher confining pressures barrel-shaped failure occurs indicating plastic deformation and textural disaggregation. Similarly, at low loading, chalk exhibits low volume compressibility but much more significant consolidation occurs if the yield stress is exceeded.

Chalk undergoes dissolution and so solution features are found throughout its outcrop.

Mineworkings in the Chalk extend back into the distant past, the most ancient being those excavated in the Neolithic Age for flint. Several types of workings exist. Collapse of old mineworkings, most of which are unrecorded, is difficult to predict. The potential for subsidence, caused by the collapse of both mineworkings and dissolution features, affects development and its occurrence can lead to the abandonment of property or, worse, the loss of lives.  相似文献   


13.
Remapping the Chalk of the Central Chalk Mass of the Isle of Wight between Carisbrooke (Newport), Calbourne and Shalcombe, including the Bowcombe Valley, has identified a complex series of tectonic ‘rolls’ and ‘flats’ in a region that has been interpreted to be a relay ramp between the Needles and the Sandown faults. A major new WNW trending fault at Cheverton throws the Chalk down by >50 m to the SW in a 80-100 m wide zone of faulting within which some chalk blocks have near vertical dips. The fault location and trend closely follows the edge of the Cranbourne-Fordingbridge High and could also reflect, for the first time, the surface expression of part of the Needles Fault, a major inversion reverse fault. Located along this fault zone deep Quaternary weathering of the Chalk and Quaternary gravel deposits are present. The trend of the Cheverton Fault brings it towards Gotten Leaze where a groundwater pumping station is located and groundwater springs regularly cause flooding on the Brighstone-Calbourne Road. Analyses of the jointing in the Chalk show that stratabound fracture patterns typical of the Chalk formations elsewhere in Southern England are present in the Central Mass. In addition, there are numerous small faults along which valleys have formed. Tectonic structure and lithology have had a profound influence on the geomorphology and groundwater flow in the Chalk in the Central Mass.  相似文献   

14.
The Chalk is one of the most extensively distributed series in England. It is essentially a soft limestone principally consisting of the remains of marine organisms, deposited in shallow water.The Upper Chalk of Kent, in particular, is characterized by a high porosity and relatively low dry density. The porosity and dry density of the Lower Chalk of Yorkshire and the Middle Chalk of Norfolk are lower and higher respectively, because of the higher content of interstitial secondary calcite. Porosity is not a significant factor as far as the gross permeability of the Chalk is concerned.The Upper Chalk of Kent is moderately weak, when tested in unconfined compression, whilst the Lower and Middle Chalk are moderately strong. All three groups of Chalk suffer a substantial reduction in strength when saturated, in the case of the Upper Chalk the loss in strength is dramatic. The indirect tensile strength is usually less than one twentieth that of the unconfined compressive strength. When subjected to undrained triaxial tests the Upper Chalk first underwent brittle failure at lower confining pressures but above 4.9 MN/m2 significant plastic deformation occurred leading to barrel-shaped failures.Young's modulus is not a simple constant but varies with stress, increasing somewhat with increasing stress in the Chalk from Yorkshire and Norfolk. This did not happen in the Upper Chalk since plastic deformation began much earlier.  相似文献   

15.
The Cretaceous age Chalk of south east England forms an important aquifer. Within chalk the storage and transmission of groundwater is enhanced by subsurface karstic weathering. The case study presented in this paper demonstrates that current approaches to assessing groundwater vulnerability to pollution and delineating source protection zones are flawed, as they do not take proper account of the karstic nature of chalk.Improved techniques, based on understanding the geological and geomorphological controls of karst development in chalk, are proposed to overcome the shortcomings of published groundwater vulnerability maps. The results also demonstrate the inadequacies of current groundwater modelling approaches for defining source protection zones. The techniques follow European Commission research recommendations by taking account of recharge, presence of overlying cover deposits, the nature of chalk karst and the way in which it influences the flow of groundwater. The approach described allows for better informed decisions to be made about chalk aquifer management to ensure adequate protection and conservation of groundwater. For example, the published groundwater vulnerability map shows Lambeth Group deposits classified as being a minor aquifer of low groundwater vulnerability in the chosen study area. However, by applying the new techniques, they are classified as having an Aquifer Vulnerability Rating of moderate to very high, when taking the karstic development of the underlying chalk into account.  相似文献   

16.
水泥土固化过程中Ca2+浓度会随水化反应的进行而逐步降低,导致水泥颗粒未完全水化,固化土强度增长受限,而水泥基渗透结晶型防水材料(CCCW)中活性物质能催化未水化水泥颗粒反应。选择硫铝酸盐水泥(SAC)为胶凝材料、CCCW为添加剂,通过单掺与复掺的方式,结合X射线衍射(XRD)、电镜扫描(SEM)表征,分析了固化土的无侧限抗压强度、水稳定性、耐干湿循环性能及微观结构。结果表明,复掺16%混合料(4%CCCW+12%SAC)的固化土强度是同掺量下单掺SAC固化土强度的1.5倍,且比单掺20%SAC的固化土强度高1.41 MPa;复掺16%混合料(4%CCCW+12%SAC)的固化土泡水2~8 d软化系数平均达0.97,而同掺量下SAC固化土平均仅为0.73;单掺的固化土强度随干湿循环次数增加逐级降低,而复掺混合料的固化土强度呈波浪式发展;CCCW中活性物质能增加固化土中钙矾石生成量并修复微裂缝,钙矾石长径比显著增大,可直接连接两个甚至多个土颗粒,形成三维网状结构,显著提高结晶体的微观加筋、骨架及填充作用,改善SAC固化土强度、水稳定性及耐干湿循环性能。  相似文献   

17.
Evaluation of mechanical and petrophysical properties of the karst limestone became essential to avoid future risks in the construction of new urban cities built on limestones. Therefore, this study aims to evaluate the impact of karsts phenomena on engineering properties of limestone foundation bed at Ar Riyadh in Saudi Arabia. Three hundred core plugs were obtained by rotary drilling at depths ranging from the ground surface to 20 m collected from 24 boreholes in two sites: (1) karst limestone (KL) at Al Aziziyah district and (2) massive hard limestone (HL) at Hittin district in Ar Riyadh city, Saudi Arabia. Petrographic, SEM, EDX, and XRD analyses are used to identify the mineralogical composition and microstructures of limestone samples. The petrophysical properties included the ovendry density, P-wave, and porosity where the mechanical properties covered the uniaxial compressive strength (UCS), point load strength index (PLI), and rock quality designation (RQD) for the karst and hard limestone samples. KL is characterized by 17.11% total porosity, 14.71% water absorption, 32.1 MPa UCS, 1.70 g/cm3 ovendry density (γ dry), 51% weathered RQD, 5.49 MPa medium shear strength, and low modulus of deformation of the plate loading test. HL showed 11.63% total porosity, 9.45% water absorption 43.1 MPa UCS, 2.50 g/cm3 ovendry density (γ dry), 78% hard to fresh rock affinity RQD, and 9.93 MPa high strength and high modulus of deformation of the plate loading test. For the water absorption (%), KL at Al Aziziyah district showed a range of 12.85–17.80% averaged 14.71%. HL at Hittin district varied between 7.04 and 11.29% with an average of 9.45%. KL proved to be dense with ovendry density (γ dry) averaged at 1.70 g/cm3 while HL showed very dense affinity of 2.50 g/cm3. KL clarified a UCS range from 22.5 to 40.1 MPa and an average of 32.1 MPa while HL showed a range from 35.4 t o 48.1 MPa with an average of 43.1 MPa. KL is moderately weathered with RQD average of 51% while HL showed a hard to fresh rock affinity of 78%. Point load test clarified a medium shear strength with 5.49 MPa for KL and high strength of 9.93 MPa for HL. Plate loading tests indicated low and high modulus of deformation for KL and HL, respectively. Results of petrographical analyses and XED of limestone samples showed that the strength parameters of samples mostly composed of micrite (mudstone/wackestone) and dolomite in hard limestone of Hittin district. In Al Aziziyah district (KL), the samples mostly consist of foraminifera and high amount of calcite as in karst limestone (wackestone/packstone). Rock mechanical tests with combination of fabric analyses have shown that strength parameters depend not only on the amount of karst but also on the amount of allochem. Major geomechanical differences between the two types of limestone provide the proper base for prioritizing areas to alleviate future risks and sustainable urban planning for decision makers. The karstic limestone, therefore, is considered as an acceptable foundation bed for light engineering structures. However, for heavy structures and buildings, improving the foundation bed strength by grouting, cement injection, and mat foundations is necessary to avoid future failure risks.  相似文献   

18.
A laboratory test program, which simulated reservoir conditions of pressure and temperature, was conducted on outcrop and reservoir chalk samples of various porosities. All the samples experienced a stress path following uniaxial strain condition K 0 that led to compaction failure, i.e. pore collapse. The experiments were loaded by depletion of pore pressure conducted under load controlled conditions. This depletion phase was followed by a creep period, where time-dependent deformation was monitored. The intention of creating such reservoir condition in these laboratory experiments was to gain knowledge of the nature of chalk compaction. Chalk is an important reservoir rock for the oil and gas industry with unique storage capability with porosities up toward 50%. However, this rock is also very weak which has resulted in significant reservoir compaction and in turn severe seabed subsidence and casing failure. Mapping of the mechanical behavior of chalk in terms of deformation is thus decisive for a proper understanding of these reservoirs. The results of this study show that chalk is indeed a rate-dependent material under laboratory loading conditions as time effects were revealed as the loading rate was varied. However, the results raise uncertainty about the importance of rate dependency for chalk under completely drained conditions. Further, such high-porosity chalk suffers for substantial plastic strains and obvious strain hardening. Indeed, a relation between deformation/porosity and hardening is proposed by the introduction of real-time modulus values. Time-dependent deformation, also called creep was influenced by the depletion phase, as consolidation or transient creep influenced the deformation response for as much as 175 h after a change in load. This indicates that transient creep is dependent on the stress history. However, observations suggest the existence of a universal mechanism for steady state creep, governed by neither the initial porosity nor the stress history or chalk type, which thus seems to be an independent strain contributor. Finally, time dependence is found on the K 0 development for chalk tested at typically laboratory rates, which has been discussed as a reflection of the nature of the grain re-arrangement during failure and plastic deformation. Ultimately, such time dependence of the K 0 may contribute to the understanding of stress path data deduced from field data.  相似文献   

19.
In order to isolate the effect of grain size and cementation on the mechanical behaviour of poorly consolidated granular rock, we prepared synthetic rock samples in which these two parameters were varied independently. Various proportions of sand, Portland cement and water were mixed and cast in a mold. The mixture was left pressure-free during curing, thus ensuring that the final material was poorly consolidated. We used two natural well-sorted sands with grain sizes of 0.22 and 0.8 mm. The samples were mechanically tested in a uniaxial press. Static Young's modulus was measured during the tests by performing small stress excursions at discrete intervals along the stress–strain curves. All the samples exhibited nonlinear elasticity, i.e., Young's modulus increased with stress. As expected, we found that the uniaxial compressive strength increased with increasing cement content. Furthermore, we observed a transition from grain size sensitivity of strength at cement content less than 20–30% to grain size independence above this value. The measured values of Young's modulus are well explained by models based on rigid inclusions embedded in a soft matrix, at high cement content, and on cemented grain-to-grain contacts, at low cement content. Both models predict grain size independence in well-sorted cemented sands. The observed grain size sensitivity at low cement content is probably due to microstructural differences between fine- and coarse-grained materials caused by small differences in grain sorting quality.  相似文献   

20.
Cavernous weathering is commonly found on sandstone slopes in different environments. Either a single dominant process or polygenetic agents require to be invoked in order to interpret the development. The Yongningshan hill of the central Loess Plateau is representative of cliff dwellings in Northwest China, which is characterized by well-developed cavernous weathering features and provides a good opportunity for the better understanding of sandstone weathering in the Loess Plateau. Multiple methods, including field survey, in-situ rock strength measurement, along with experiments on samples for microscopic observation, element composition and salt chemistry, were employed to investigate the controlling factors of cavernous weathering. The results show that cavern development is different on the four slopes with the western slope hosting massive honeycombs, tafoni and hardened surfaces. The porous and permeable aeolian sandstones are fundamental, because they provide space and pathways for the transportation of water and salt, honeycombs dominantly aligning within the lamination of cross-beds. The environmental factors such as the seasonal wetting and drying cycle, aeolian salt, moisture and water vapor are key factors for the development of cavernous weathering forms. The northern and northwestern wind-blown dust storms have brought abundant salts, the lengthier dry periods of the wetting and drying cycle being beneficial for salt accumulation within caverns, favoring salt weathering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号