首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The release of stored dissolved contaminants from low permeability zones contributes to plume persistence beyond the time when dense nonaqueous phase liquid (DNAPL) has completely dissolved. This is fundamental to successfully meeting acceptable low concentrations in groundwater that are driven by site‐specific cleanup goals. The study goals were to assess the role of DNAPL entrapment morphology on mass storage and plume longevity. As controlled field studies are not feasible, two‐dimensional (2D) test tanks were used to quantify the significance of mass loading processes from source dissolution and stored mass rebound. A simple two‐layer soil domain representing a high permeable formation sand overlying a zone of lower permeability sand was used in the tests. DNAPL mass depletion through dissolution was monitored via X‐ray photon attenuation, and effluent samples were used to monitor the plume. These data enabled analysis of the DNAPL distribution, the dissolved plume, and the dissolved phase distribution within the low permeability layer. Tests in an intermediate tank showed that mass storage contributes substantially to plume longevity. Detectable effluent concentrations persisted long after DNAPL depletion. The small tank results indicated that the DNAPL morphology influenced the flow field and caused distinctive transport mechanisms contributing to mass storage. Zones of high DNAPL saturation at the interface between the low and high permeability layers exhibited flow bypassing and diffusion dominated transport into the low permeability layer. In the absence of a highly saturated DNAPL zone near the soil interface the contaminant penetrated deeper into the low permeability layer caused by a combination of advection and diffusion.  相似文献   

2.
At three industrial sites in Ontario, New Hampshire, and Florida, tetrachloroethylene (PCE) and trichloroethylene (TCE), released decades ago as dense nonaqueous phase liquids (DNAPLs), now form persistent source zones for dissolved contaminant plumes. These zones are suspended below the water table and above the bottoms of their respective, moderately homogeneous, unconfined sandy aquifers. Exceptionally detailed, depth-discrete, ground water sampling was performed using a direct-push sampler along cross sections of the dissolved-phase plumes, immediately downgradient of these DNAPL source zones. The total plume PCE or TCE mass-discharge through each cross section ranged between 15 and 31 kg/year. Vertical ground water sample spacing as small as 15 cm and lateral spacing typically between 1 and 3 m revealed small zones where maximum concentrations were between 1% and 61% of solubility. These local maxima are surrounded by much lower concentration zones. A spacing no larger than 15 to 30 cm was needed at some locations to identify high concentration zones, and aqueous VOC concentrations varied as much as four orders of magnitude across 30 cm vertical intervals. High-resolution sampling at these sites showed that three-quarters of the mass-discharge occurs within 5% to 10% of the plume cross sectional areas. The extreme spatial variability of the mass-discharge occurs even though the sand aquifers are nearly hydraulically homogeneous. Depth-discrete field techniques such as those used in this study are essential for finding the small zones producing most of the mass-discharge, which is important for assessing natural attenuation and designing remedial options.  相似文献   

3.
A systematic hydrogeologic site characterization has been completed in a fractured rock flow system, with the objective of identifying contaminant migration and fate pathways from a historical release of 1,1,1-trichloroethane (TCA). The study integrated hydrogeologic analysis techniques such as borehole geophysical logging, pumping test analysis, and hydrochemical facies analysis to study the impact of a dense nonaqueous phase liquid (DNAPL) in a sparsely fractured crystalline bedrock. The assessment methodology can be divided into two parts: (1) characterization of the source area, where DNAPL is acting as a residual source of TCA, and (2) characterization of the downgradient plume. Reduction in DNAPL mass in the source area has resulted in significant and sustained reductions in downgradient concentrations, suggesting that remediation of fractured crystalline bedrock contaminated with DNAPL is possible and not "technically infeasible."  相似文献   

4.
Dense nonaqueous phase liquid (DNAPL) source areas containing chlorinated volatile organic compounds (cVOCs) such as trichloroethene (TCE) and perchloroethene (PCE) often give rise to significant dissolved plumes in groundwater, leading to the closure of downgradient water supply wells and creating vapor intrusion issues in buildings located above the plume. Hydraulic containment via pump‐and‐treat has often been implemented to limit migration but must continue indefinitely. Removal of the DNAPL source area by means such as in situ thermal remediation (ISTR) offers the potential to diminish or end the need for hydraulic containment if the associated dissolved plume attenuates sufficiently following source removal. A question often raised is whether this occurs or whether the back diffusion of contaminants from secondary sources such as low‐permeability lenses in the dissolved plume precludes it. The authors conducted DNAPL source removal using ISTR at dozens of sites. This paper presents a compilation of cases—10 separate DNAPL source areas at five project sites—where data indicate that the implementation of a thorough ISTR in a DNAPL source area can result in the attenuation of the associated dissolved plume, such that in several cases, long‐standing pump‐and‐treat systems could be turned off. Our findings contrast with recent assertions that aggressive source remediation may not be justifiable because dissolved plume concentrations will not decline sufficiently. We show that the application of ISTR can result in the thorough removal of the DNAPL source, effective diminution of dissolved plume groundwater concentrations, and achievement of drinking water standards.  相似文献   

5.
Organic solvent (i.e., dense nonaqueous phase liquid, DNAPL) migration in the subsurface is known to be extremely sensitive to geologic heterogeneity. There is often a focus on heterogeneity that results from changing depositional conditions over short spatial scales. Similar or even more extreme spatial heterogeneity can result postdeposition due to erosional processes. This study applies a synergistic approach based on a combination of high‐resolution lithologic logs of continuous cores, borehole geophysical logs, surface electrical resistivity, and seismic refraction tomography models to assess spatial heterogeneity in a shallow bedrock sequence subject to multiple unconformities and contaminated with a mixture of organic chemicals. The persistence of DNAPL in the source zone and an associated dissolved‐phase plume led to variable impacts on formation resistivity across the study site. Seismic refraction in combination with electrical resistivity tomography improved interpretation of highly irregular erosional boundaries by delineating sharp lateral transitions in lithologic composition near the source zone and across the dissolved‐phase plume. Electrical resistivity was effective at differentiating between clean and mud‐rich sandstones and their unconformable contact with an underlying dolostone. Geophysical measurements revealed eroded dolostone mounds encased by a network of younger mud‐rich sandstones channelized by clean semi‐lithified sand, all of which was buried beneath variable glacial drift. Our synergistic multidimensional approach resulted in the development of a detailed three‐dimensional shallow bedrock geospatial model, which has led to an improved understanding of DNAPL migration and contaminant plume heterogeneity.  相似文献   

6.
Estimates of contaminant fluxes from DNAPL sources as a function of time and DNAPL mass reduction are important to assess the long-term sustainability and costs of monitored natural attenuation and to determine the benefits of partial source removal. We investigate the accuracy of the upscaled mass transfer function (MTF) proposed by Parker and Park [Parker JC, Park E. Modeling field-scale dense nonaqueous phase liquid dissolution kinetics in heterogeneous aquifers. WRR 2004;40:W05109] to describe field-scale dissolved phase fluxes from DNAPL sources for a range of scenarios generated using high-resolution 3-D numerical simulations of DNAPL infiltration and long-term dissolved phase transport. The results indicate the upscaled MTF is capable of accurately describing field-scale DNAPL dissolution rates as a function of time. For finger-dominated source regions, an empirical mass depletion exponent in the MTF takes on values greater than one which results in predicted mass flux rates that decrease continuously with diminishing DNAPL mass over time. Lens-dominated regions exhibit depletion exponents less than one, which results in more step-function like mass flux versus time behavior. Mass fluxes from DNAPL sources exhibiting both lens- and finger-dominated subregions were less accurately described by the simple MTF, but were well described by a dual-continuum model of the same form for each subregion. The practicality of calibrating a dual-continuum model will likely depend on the feasibility of obtaining spatially resolved field measurements of contaminant fluxes or concentrations associated with the subregions using multilevel sampling or some other means.  相似文献   

7.
The performance of cyclodextrin (CD)‐enhanced push‐pull (PP) and line‐drive (LD) approaches to remediation of a site contaminated with a multicomponent dense nonaqueous phase liquid (DNAPL) present in a surficial sandy aquifer was evaluated in this field study. The treatment techniques were compared to each other and to the projected performance of a conventional water‐flushing system. Performance was assessed based on contaminant mass removed per unit volume of extraction solution and per unit time of operation. As expected, the CD‐enhanced LD and PP approaches to remediation were more efficient than conventional flushing with water. Between the two techniques, the PP approach performed 1.5 to 2 times better than the LD approach, particularly for higher DNAPL saturation of the source zone. This result suggests that forcing the flushing solution directly into and through the DNAPL source zone minimized flow bypassing and consequently resulted in a more efficient transfer of contaminant mass between the DNAPL phase and the flushing solution. Nonuniform treatment zone contaminant concentrations and changes in contaminant composition influenced the treatment performances, but these effects were small and still permitted the comparison of successive tests. Although CD was used as the solubility‐enhancing flushing agent in this study, it is likely that the results can be transferred to other chemically enhanced flushing technologies that use, for example, surfactants or alcohols.  相似文献   

8.
Spatial interpolation methods for nonstationary plume data   总被引:1,自引:0,他引:1  
Plume interpolation consists of estimating contaminant concentrations at unsampled locations using the available contaminant data surrounding those locations. The goal of ground water plume interpolation is to maximize the accuracy in estimating the spatial distribution of the contaminant plume given the data limitations associated with sparse monitoring networks with irregular geometries. Beyond data limitations, contaminant plume interpolation is a difficult task because contaminant concentration fields are highly heterogeneous, anisotropic, and nonstationary phenomena. This study provides a comprehensive performance analysis of six interpolation methods for scatter-point concentration data, ranging in complexity from intrinsic kriging based on intrinsic random function theory to a traditional implementation of inverse-distance weighting. High resolution simulation data of perchloroethylene (PCE) contamination in a highly heterogeneous alluvial aquifer were used to generate three test cases, which vary in the size and complexity of their contaminant plumes as well as the number of data available to support interpolation. Overall, the variability of PCE samples and preferential sampling controlled how well each of the interpolation schemes performed. Quantile kriging was the most robust of the interpolation methods, showing the least bias from both of these factors. This study provides guidance to practitioners balancing opposing theoretical perspectives, ease-of-implementation, and effectiveness when choosing a plume interpolation method.  相似文献   

9.
Field data at six former manufactured gas plant sites in New Jersey were used to estimate the biodegradation rate constants for the anaerobic processes naturally occurring within the ground water contaminant plumes (primarily iron and sulfate reduction). Those rate constants turned out to be about an order of magnitude smaller than values reported for the same contaminants (primarily benzene and naphthalene) at fuel sites. At four of the sites, there appeared to be sufficient electron acceptor present to eventually degrade the contaminants in the plume. However, the presence of nonaqueous phase liquids tends to offset that capacity by continuing to act as a source of contaminants that can dissolve in the ground water.  相似文献   

10.
Alight nonaqueous phase liquid (LNAPL) ground water contaminant plume has been discovered by purely geophysical means at the former Wurtsmith Air Force Base (AFB) near Oscoda, Michigan. It is located near another plume called FT-02, which is a well-studied area undergoing natural bioremediation. The plume was discovered by ground penetrating radar (GPR) profiling while extending a long line from FT-02 to establish background variability around that plume. The new plume was apparent because of a high-conductivity "shadow' or GPR reflection attenuation observed below the conductive zone at the top of the aquifer, identical to the pattern observed at the FT-02 plume. Further GPR surveys were conducted by students of a Western Michigan University geophysics field course to outline the proximal part of the plume. The GPR survey was supplemented by an electromagnetic induction (EM) survey which showed a group of four cables crossing the area. Finally, a magnetometer survey was conducted to search for any buried steel objects which might have been missed by the EM survey. The results of the three geophysical surveys were then used by students of a University of Michigan field course to guide subsurface soil and fluid sampling, which verified the presence of residual LNAPL product and ground water with conductivities 2.5 to 3.3 times above background. The plume source is in the vicinity of a vaulted underground storage tank (UST) formerly used for the collection of waste solvents and fuels for subsequent use in the fire training exercises at FT-02. This newly discovered LNAPL plume, along with other "mature' plumes, fits the electrical model which predicts conductive ground water below the decomposing but electrically resistive LNAPLs. Finally, this is a fine example of the cooperative use of a dedicated research site for training by students of two different universities.  相似文献   

11.
Cone penctrometer test (CPT) based Raman spectroscopy was used to identify separate phase tetrachloroethylene (PCE) and trichlorocthylene (TCE) contamination in the subsurface at two locations during field tests conducted at the U.S. Department of Energy's (DOE) Savannah River site. Clear characteristic Raman spectral peaks for PCE and TCE were observed at two sites and several depths during CPT deployment. Because of the uniqueness of a Raman spectrum for a given compound, these data are compelling evidence of the presence of the two compounds. The Raman spectral results correlated with high PCE and TCE concentrations in soil samples collected from the same subsurface zones, confirming that the method is a viable dense nonaqueous phase liquid (DNAPL) characterization technique. The Raman spectroscopic identification of PCE and TCE in these tests represents the first time that DNAPLs have been unequivocally located in the subsurface by an in situ technique.
The detection limit of the Raman spectroscopy is related to the probability of contaminant droplets appearing on the optical window in the path of the probe light. Based on data from this fieldwork the Raman technique may require a threshold quantity of DNAPL to provide an adequate optical cross section for spectroscopic response. The low aqueous solubility of PCE and TCE and relatively weak optical intensity of the Raman signal precludes the detection of aqueous phase contaminants by this method, making it selective for DNAPL contaminants only.  相似文献   

12.
Spatial and temporal variations in a trichloroethylene (TCE) plume at an industrial complex in Wonju, Korea, were examined based on hydrogeological data and seven rounds of groundwater quality data collected over a year. The site has considerable vertical heterogeneities; the top layer of soil is covered by impermeable paving material at several locations, followed by a series of reclaimed or residual soil layers, and with weathered rocks to the crystalline biotite granite at the bottom. Areal heterogeneity in the surface conditions plays an important role in controlling groundwater recharge. The heterogeneity structure is influenced by complex surface conditions paved with asphalt and concrete. Owing to the presence of limited recharge area and concentrated summer precipitation events, the effects of seasonal variations on groundwater hydraulics tend to diminish with distance from the recharge area. This result was established by analysing the influence of the contrasting surface recharge conditions between the near‐source zone and the far zone, and the seasonally concentrated precipitation on the transport patterns of a TCE plume. In addition, variations in the plume's downstream contaminant flux levels were also analysed along a transect line near the source zone. The results show that the general tendency of the TCE plume contaminant concentration and mass discharges were reproducible if we account for seasonal recharge variations and the associated changes in the groundwater level. During recharge events, the TCE concentration variations appear to be influenced by leaching of the residual dense non‐aqueous‐phase liquid (DNAPL) TCE trapped in the unsaturated zone. This result shows that seasonal variations in contaminant plume near the source zone is inevitable at this site, and that these variations indicate the presence of residual DNAPL at or above the water table, at least in some isolated locations. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
Electrical, seismic, and electromagnetic methods can be used for noninvasive determination of subsurface physical and chemical properties. In particular, we consider the evaluation of water salinity and the detection of surface contaminants. Most of the relevant properties are represented by electric conductivity, P-wave velocity, and dielectric permittivity. Hence, it is important to obtain relationships between these measurable physical quantities and soil composition, saturation, and frequency. Conductivity in the geoelectric frequency range is obtained with Pride's model for a porous rock. (The model considers salinity and permeability.) White's model of patchy saturation is used to calculate the P-wave velocity and attenuation. Four cases are considered: light nonaqueous phase liquid (LNAPL) pockets in water, dense nonaqueous phase liquid (DNAPL) pockets in water, LNAPL pockets in air, and DNAPL pockets in air. The size of the pockets (or pools), with respect to the signal wavelength, is modeled by the theory. The electromagnetic properties in the GPR frequency range are obtained by using the Hanai–Bruggeman equation for two solids (sand and clay grains) and two fluids (LNAPL or DNAPL in water or air). The Hanai–Bruggeman exponent (1/3 for spherical particles) is used as a fitting parameter and evaluated for a sand/clay mixture saturated with water.Pride's model predicts increasing conductivity for increasing salinity and decreasing permeability. The best-fit exponent of the Hanai–Bruggeman equation for a sand/clay mixture saturated with water is 0.61, indicating that the shape of the grains has a significant influence on the electromagnetic properties. At radar frequencies, it is possible to distinguish between a water-saturated medium and a NAPL-saturated medium, but LNAPL- and DNAPL-saturated media have very similar electromagnetic properties. The type of contaminant can be better distinguished from the acoustic properties. P-wave velocity increases with frequency, and has dissimilar behaviour for wet and dry soils.  相似文献   

14.
The spontaneous expansion and mobilization of discontinuous gas above dense non-aqueous-phase liquid (DNAPL) pools can affect the aqueous-phase concentrations of the DNAPL constituents above the pool. The results of an intermediate-scale, two-dimensional flow cell experiment showed that the discontinuous gas flow produced by spontaneous expansion, driven by the partitioning of 1,1,1-TCA from the surface of a DNAPL pool, resulted in detectable aqueous-phase concentrations of 1,1,1-TCA well above the pool surface. In comparison to a conventional model for DNAPL pool dissolution in the absence of a discontinuous gas phase, these concentrations were greater than expected, and were present at greater than expected elevations. Additionally, this study showed that the discontinuous gas flow produced transient behavior in the aqueous-phase concentrations, where the elevated concentrations occurred as short-term, pulse-like events. These results suggest that the spontaneous expansion and mobilization of discontinuous gas in DNAPL source zones could lead to the misdiagnosis of source zone architecture using aqueous concentration data, and that the transient nature of the elevated concentrations could further complicate the difficult task of source zone characterization.  相似文献   

15.
The site characterization and analysis cone penetrometer system (SCAPS), equipped with realtime fluorophore detection capabilities, was used to delineate subsurface contaminant releases in an area where plating shop waste was temporarily stored. Records indicated that various nonaqueous phase liquids (NAPLs) were released at the site. The investigators advanced the SCAPS laser-induced fluorescence (LIF) sensor to depths beneath the water table of the principal water-bearing zone. The water table was located approximately 6 feet (1.8 m) below ground surface (bgs) across the site. Fluorescence, attributed to fuel compounds commingled with chlorinated solvents, was observed at depths ranging from 4.0 to 11.5 feet (1.2 to 3.5 m) bgs. Fluorescence, attributed to naturally occurring organic materials (by process of elimination and spectral characteristics) commingled with chlorinated solvent constituents, was observed at depths ranging from approximately 13 to 40 feet (4.0 to 12.2 m) bgs. Fluorescence responses from compounds confirmed to be commingled with chlorinated solvents indicates that the SCAPS fluorophore detection system is capable of indirectly delineating vadose zone and subaqueous chlorinated solvents and other dense nonaqueous phase liquids (DNAPLs) at contaminant release sites. This confirmation effort represents the first documented account of the successful application of LIF to identify a mixed DNAPL/LNAPL source zone.  相似文献   

16.
The influence of aquifer property correlation on multiphase fluid migration, entrapment and recovery was explored by incorporating correlated and uncorrelated porosity, permeability, and capillary pressure-saturation (Pc-Sat) parameter fields in a cross-sectional numerical multiphase flow model. Comparison of two-dimensional entrapped organic saturation distributions for a simulated tetrachloroethylene (PCE) spill in ensembles of aquifer realizations suggests that the degree of spatial correlation in Pc-Sat parameters exerts a controlling influence on dense nonaqueous phase liquid (DNAPL) spreading and redistribution in saturated aquifers. The predicted evolution of DNAPL source zones and resultant remediation efficiency under surfactant enhanced aquifer remediation (SEAR) also appear to be strongly influenced by the spatial correlation of aquifer parameters and multiphase flow constitutive relationships. Results for a limited number of realizations selected from each ensemble showed that removal of 60% to 99% of entrapped PCE could reduce dissolved contaminant concentration and mass flux by approximately two orders of magnitude under natural gradient conditions. Aqueous phase contaminant mass flux did not vary uniformly as a function of % DNAPL removed, however, and notable differences in behavior were observed for models incorporating correlated versus uncorrelated Pc-Sat and permeability fields. Although these results must be confirmed through analysis of additional realizations, it is likely that similar or larger differences between correlated and uncorrelated system behavior will be observed in aquifers with greater spatially variability than that of the nonuniform, homogeneous sand aquifer studied here. Funding for this research was provided by the United States Environmental Protection Agency, Great Lakes and Mid-Atlantic Center for Hazardous Substance Research under Grant No. R-825540, the Michigan Department of Environmental Quality under Contract No. Y80011, and the Strategic Environmental Research and Development Program under Project No. CU-1293. The content of this publication does not necessarily represent the views of these agencies and has not been subject to agency review.  相似文献   

17.
A two-dimensional numerical transport model is developed to determine the effect of aquifer anisotropy and heterogeneity on mass transfer from a dense nonaqueous phase liquid (DNAPL) pool. The appropriate steady state groundwater flow equation is solved implicitly whereas the equation describing the transport of a sorbing contaminant in a confined aquifer is solved by the alternating direction implicit method. Statistical anisotropy in the aquifer is introduced by two-dimensional, random log-normal hydraulic conductivity field realizations with different directional correlation lengths. Model simulations indicate that DNAPL pool dissolution is enhanced by increasing the mean log-transformed hydraulic conductivity, groundwater flow velocity, and/or anisotropy ratio. The variance of the log-transformed hydraulic conductivity distribution is shown to be inversely proportional to the average mass transfer coefficient.  相似文献   

18.
DNAPL to LNAPL Transitions During Horizontal Cosolvent Flooding   总被引:1,自引:0,他引:1  
Cosolvent flooding is a technology with the potential to remove nonaqueous phase liquid (NAPL) sources from the subsurface. It can be used to initiate separate phase mobilization, which allows removal of NAPL within very few pore volumes. Mobilization may result in a sinking DNAPL bank during horizontal flooding of NAPLs denser than water. Reversal of phase density difference between aqueous and DNAPL phases could potentially avoid this downward migration of mobilized DNAPLs. We achieved phase density difference reversal and made DNAPLs float using two components in the cosolvent flooding solution. A low-density cosolvent partitions preferentially into the DNAPL and swells it, which causes a reduction in density of the DNAPL and reversal of the density difference between the NAPL and aqueous phases. A highdensity additive that remains in the aqueous phase allows the cosolvent flooding solution overall to have a density greater than that of water and permits control of the flooding instability. This study focused on tert-butanol as the swelling cosolvent and tetrachloroethylene as the contaminant. In batch tests with sucrose and glycerol as dense additives, phase density difference reversal occurred. To investigate the applicability of phase density difference reversal as a remediation technology, horizontal column and sandbox experiments were performed. These experiments demonstrated the occurrence of phase density difference reversal and effective remediation in horizontal cosolvent floods.  相似文献   

19.
Porous aquifer materials are often characterized by layered heterogeneities that influence groundwater flow and present complexities in contaminant transport modeling. Such flow variations also have the potential to impact the dissolution flux from dense nonaqueous phase liquid (DNAPL) pools. This study examined how these heterogeneous flow conditions affected the dissolution of a tetrachloroethene (PCE) pool in a two-dimensional intermediate-scale flow cell containing coarse sand. A steady-state mass-balance approach was used to calculate the PCE dissolution rate at three different flow rates. As expected, aqueous PCE concentrations increased along the length of the PCE pool and higher flow rates decreased the aqueous PCE concentration in the effluent. Nonreactive tracer studies at two flow rates confirmed the presence of a vertical flow gradient, with the most rapid velocity located at the bottom of the tank. These results suggest that flow focusing occurred near the DNAPL pool. Effluent PCE concentrations and pool dissolution flux rates were compared to model predictions assuming local equilibrium (LE) conditions at the DNAPL pool/aqueous phase interface and a uniform distribution of flow. The LE model did not describe the data well, even over a wide range of PCE solubility and macroscopic transverse dispersivity values. Model predictions assuming nonequilibrium mass-transfer-limited conditions and accounting for vertical flow gradients, however, resulted in a better fit to the data. These results have important implications for evaluating DNAPL pool dissolution in the field where subsurface heterogeneities are likely to be present.  相似文献   

20.
The salinization process of the Israeli Coastal aquifer has led to an average concentration of about 200 mgCl/l with a significant number of discrete salinity plumes in the middle and southern regions. The salinity of these plumes is high (500–1000 mgCl/l) and is increasing rapidly. Geochemical evidence has suggested that the salinity source in the Be'er Tuvia plume (in the south part of the aquifer) is at the bottom of the aquifer. This paper describes a solution of the source inverse problem and its application in the Be'er Tuvia plume. A transient two-dimensional finite element model was solved and the source terms were computed at each node in a 14×14 km2 area. An error analysis has shown that when no errors are introduced in the input data the reconstruction is perfect. The results of a sensitivity analysis are presented and the actual reconstruction errors are estimated. Applying the model in the Be'er Tuvia region indicates that a salinity source exists about 1 km to the west and 1.5 km to the north of the center of the salinity plume. This source is believed to be the plume source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号