首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There were climatic regime shifts over the North Pacific in 1976 and 1988 which affected the dynamics of the marine ecosystem and fisheries resources in Korean waters. Precipitation in Korean waters showed a decadal scale climatic jump, especially of Ullungdo Island, reflecting the regime shift that occurred in the North Pacific. The variation was also detected in East Asian atmospheric systems. The Aleutian Low and North Pacific High Pressure Systems showed substantial changes in 1976 and around 1987–89. 1976 was an unusually warm year for Korea; mean sea surface temperature (SST) was higher than ‘normal’ and was accompanied by a northward shift in the thermal front. Post 1976, the volume transport of the Kuroshio Current increased and higher seawater and air temperatures persisted until 1988. Other shifts occurred after 1976 such as an increase in mixed layer depth (MLD) and biological changes in the ecosystem of Korean waters including decreases in spring primary production and an increase in autumn primary production. Primary production increased again after 1988, and was followed by a significant increase in zooplankton biomass after 1991. The 1976 regime shift was manifested by a decreased biomass and production of saury, but an increase in biomass and production of sardine and filefish in Korean waters. After 1988, recruitment, biomass, and production of sardine collapsed while those of mackerel substantially increased. Based on these observations, hypotheses on the relationship between the climate-driven oceanic changes and changes in fisheries resources were developed and are discussed.  相似文献   

2.
Japanese fisheries production in the Japan/East Sea between 1958 and 2003 increased to their peak (1.76 million tons) in the late 1980s and decreased abruptly with the collapse of Japanese sardine. Catch results for 58 fisheries and various environmental time-series data sets and community indices, including mean trophic level (MTL) and Simpson’s diversity index (DI), were used to investigate the impacts of fishing and climate changes on the structure of the fish community in the Tsushima warm current (TWC) region of the Japan/East Sea. The long-term trend in fisheries production was largely dependent on the Japanese sardine that, as a single species, contributed up to 60% of the total production in the Japanese waters of the Japan/East Sea during the late 1980s. Excluding Japanese sardine, production of the small pelagic species was higher during 1960s and 1990s but lower during 1970s and 1980s. This variation pattern generally corresponds with the trend in water temperature, warmer before early 1960s and after 1990s but colder during 1970s and 1980s. The warm-water, large predatory fishes and cold water demersal species show opposite responses to the water temperature in the TWC region, indicating the significant impact of oceanic conditions on fisheries production of the Japan/East Sea. Declines in demersal fishes and invertebrates during 1970s and 1980s suggested some impact of fishing. MTL and DI show a similar variation pattern: higher during 1960s and 1990s but lower during 1970s and 1980s. In particular, the sharp decline during the 1980s resulted from the abundant sardine catches, suggesting that dominant species have a large effect on the structure of the fish community in the Japan/East Sea. Principal component analysis for 58 time-series data sets of fisheries catches suggested that the fish community varied on inter-annual to inter-decadal scales; the abrupt changes that occurred in the mid-1970s and late 1980s seemed to correspond closely with the climatic regime shifts in the North Pacific. These results strongly suggest that the structure of the fish community in the Japan/East Sea was largely affected by climatic and oceanic regime shifts rather than by fishing. There is no evidence showing “fishing down food webs” in the Japan/East Sea. However, in addition to the impacts of abrupt shifts that occurred in the late 1980s, the large predatory and demersal fishes seem to be facing stronger fishing pressure with the collapse of the Japanese sardine.  相似文献   

3.
Past studies suggested that a basin-wide regime shift occurred in 1988–1989, impacting marine ecosystem and fish assemblages in the western North Pacific. However, the detailed mechanisms involved in this phenomenon are still yet unclear. In the Ulleung basin of the East Sea, filefish, anchovy and sardine dominated the commercial fish catches in 1986–1992, but thereafter common squid comprised > 60% of the total catch in 1993–2010. To illuminate the mechanisms causing this dramatic shift in dominant fisheries species, I related changes in depth-specific oceanographic conditions from 0 to 500 m to inter-annual changes in the fish assemblage structure from 1986 to 2010. In the upper layer of 50–100 m depths, water temperature suddenly increased in 1987–1989, and consequently warm-water epi-pelagic species (anchovy, chub mackerel, and common squid) became dominant, while sardine, relatively cold-water epi-pelagic species, nearly disappeared. An annual index of the volume transport by the Korea Strait Bottom Cold Water, originating from the deep water of the Ulleung Basin, displayed a sudden intensification in 1992–1993, accompanied by decreased water temperature and increased water density in the deep water and replacement of dominant bentho-pelagic species from filefish, warm-water species, to herring and cod, cold-water species. The results suggest that climate-driven oceanic changes and the subsequent ecological impacts can occur asynchronously, often with time lags of several years, between the upper and the deep layer, and between epi-pelagic and deepwater fish assemblages.  相似文献   

4.
An overview of the Oyashio ecosystem   总被引:3,自引:0,他引:3  
The Oyashio shelf region and the seasonally ice-covered areas north of Hokkaido are highly productive, supporting a wide range of species including marine mammals, seabirds and commercially important species in the western subarctic Pacific. The fishes include gadids, such as walleye pollock and Pacific cod, and subarctic migratory pelagic fishes such as chum salmon and pink salmon. It is also an important summer feeding ground for subtropical migrants such as the Japanese sardine, Japanese anchovy, Pacific saury, mackerels, Japanese common squid, whales and seabirds. In recent decades, some components of the Oyashio ecosystem (i.e., phytoplankton, mesozooplankton, gadid fish, and subtropical migrants) have shown changes in species abundance or distribution that are correlated with environmental changes such as the 1976/1977 and 1988/1989 regime shifts. The First Oyashio Intrusion moved northward from the mid-1960s until the late 1970s, when it moved southward until the 1980s, after which it returned to the north again after the mid-1990s. The sea-surface temperature in spring decreased after the late 1970s, increased after the late 1980s, and remained high during the 1990s. The extent of ice cover in the Sea of Okhostk also decreased during the latest warming in the 1980–1990s but has increased again since the late 1990s. This and other variabilities affect the Oyashio ecosystem and the surrounding region.  相似文献   

5.
Recent studies in the western North Pacific reported a declining standing stock biomass of anchovy (Engraulis japonicus) in the Yellow Sea and a climate-driven southward shift of anchovy catch in Korean waters. We investigated the effects of a warming ocean on the latitudinal shift of anchovy catch by developing and applying individual-based models (IBMs) based on a regional ocean circulation model and an IPCC climate change scenario. Despite the greater uncertainty, our two IBMs projected that, by the 2030s, the strengthened Tsushima warm current in the Korea Strait and the East Sea, driven by global warming, and the subsequent confinement of the relatively cold water masses within the Yellow Sea will decrease larval anchovy biomass in the Yellow Sea, but will increase it in the Korea Strait and the East Sea. The decreasing trend of anchovy biomass in the Yellow Sea was reproduced by our models, but further validation and enhancement of the models is required together with extended ichthyoplankton surveys to understand and reliably project range shifts of anchovy and the impacts such range shifts will have on the marine ecosystems and fisheries in the region.  相似文献   

6.
We propose a new hypothesis, the Oscillating Control Hypothesis (OCH), which predicts that pelagic ecosystem function in the southeastern Bering Sea will alternate between primarily bottom-up control in cold regimes and primarily top-down control in warm regimes. The timing of spring primary production is determined predominately by the timing of ice retreat. Late ice retreat (late March or later) leads to an early, ice-associated bloom in cold water (e.g., 1995, 1997, 1999), whereas no ice, or early ice retreat before mid-March, leads to an open-water bloom in May or June in warm water (e.g., 1996, 1998, 2000). Zooplankton populations are not closely coupled to the spring bloom, but are sensitive to water temperature. In years when the spring bloom occurs in cold water, low temperatures limit the production of zooplankton, the survival of larval/juvenile fish, and their recruitment into the populations of species of large piscivorous fish, such as walleye pollock (Theragra chalcogramma), Pacific cod (Gadus macrocephalus) and arrowtooth flounder (Atheresthes stomias). When continued over decadal scales, this will lead to bottom-up limitation and a decreased biomass of piscivorous fish. Alternatively, in periods when the bloom occurs in warm water, zooplankton populations should grow rapidly, providing plentiful prey for larval and juvenile fish. Abundant zooplankton will support strong recruitment of fish and will lead to abundant predatory fish that control forage fish, including, in the case of pollock, their own juveniles. Piscivorous marine birds and pinnipeds may achieve higher production of young and survival in cold regimes, when there is less competition from large piscivorous fish for cold-water forage fish such as capelin (Mallotus villosus). Piscivorous seabirds and pinnipeds also may be expected to have high productivity in periods of transition from cold regimes to warm regimes, when young of large predatory species of fish are numerous enough to provide forage. The OCH predicts that the ability of large predatory fish populations to sustain fishing pressure will vary between warm and cold regimes.The OCH points to the importance of the timing of ice retreat and water temperatures during the spring bloom for the productivity of zooplankton, and the degree and direction of coupling between zooplankton and forage fish. Forage fish (e.g., juvenile pollock, capelin, Pacific herring [Clupea pallasii]) are key prey for adult pollock and other apex predators. In the southeastern Bering Sea, important changes in the biota since the mid-1970s include a marked increase in the biomass of large piscivorous fish and a concurrent decline in the biomass of forage fish, including age-1 walleye pollock, particularly over the southern portion of the shelf. Populations of northern fur seals (Callorhinus ursinus) and seabirds such as kittiwakes (Rissa spp.) at the Pribilof Islands have declined, most probably in response to a diminished prey base. The available evidence suggests that these changes are unlikely the result of a decrease in total annual new primary production, though the possibility of reduced post-bloom production during summer remains. An ecosystem approach to management of the Bering Sea and its fisheries is of great importance if all of the ecosystem components valued by society are to thrive. Cognizance of how climate regimes may alter relationships within this ecosystem will facilitate reaching that goal.  相似文献   

7.
Despite a human presence in the Benguela region for at least one million years, exploitation of marine resources by European seafarers only began in earnest in the 1400s. Ecopath with Ecosim was used to construct and compare mass-balanced foodweb models of the southern Benguela ecosystem, representing the following eras of human influence: aboriginal (10 000 BP–1651), pre-industrial (1652–1909), industrial (1910–1974) and post-industrial (1975–present). Biomass at higher trophic levels (TLs) decreased over the periods examined, whereas that of sardine and anchovy increased in the early 2000s, reflected by the decline in weighted TL of the community (excluding plankton). Fishing became an important predatory impact, taking over consumption of small pelagics and horse mackerel from declined natural predators such as hake. Harvesting of apex predators such as seals and seabirds during the pre-industrial era meant that the mean TL of the catch declined markedly between the pre-industrial (1900) and industrial (1960) models. Biomass removals by fishing have increased substantially over time. Total biomass, consumption, respiration, production and throughput decreased from the pristine model to 1960 and then increased again in the 2000s, probably influenced by the abnormally high small pelagic biomass in the early 2000s. Three additional alternate scenarios were examined for each of the retrospective models, in particular to explore the effects of removing large fish and forage fish from the system. Although biomasses and consumption of various groups in these scenarios differed from base models, indicators such as TL of the community and piscivore groups, and the diversity indices, were not altered much, suggesting that outputs from such retrospective models in the form of derived, relative indicators, may be more robust than comparisons of absolute flows, although the latter provide supplementary inferences. Although South African fisheries have certainly impacted ecosystem structure since their commencement, these effects are in addition to natural (specifically environmental) forcing that has always been influencing the system. Fishing stress at the ecosystem level and the collapse of small pelagic stocks may lead to a shift toward a bottom-up trophic control mechanism becoming the dominant driver of ecosystem dynamics, increasing the impact of environmental events including climate change. It is thus possible that pristine systems were not as severely affected by environmental anomalies as are modern systems.  相似文献   

8.
A regime shift is considered to be a sudden shift in structure and functioning of a marine ecosystem, affecting several living components and resulting in an alternate state. According to this definition, regime shifts differ from species replacement or alternation of species at similar trophic levels, whereby the ecosystem is not necessarily significantly altered in terms of its structure and function; only its species composition changes. This paper provides an overview of regime shifts, species replacements and alternations that have been observed in the northern and southern Benguela ecosystems over the past few decades. Bottom-up control, initiating and sustaining regime shifts or species replacements via environmental forcing, is documented for both the southern and the northern Benguela ecosystems. Fishing (a case of top-down control) appears to have played an important role in regime shift processes in the Namibian ecosystem. Very low biomass levels of exploited fish stocks associated with less efficient energy transfer in the northern Benguela are indicative of a regime shift. Very high biomass levels have been reached in the southern Benguela in the 2000s. However the alternation between sardine and anchovy that has been observed in the southern Benguela over the last two decades appears not to have had major effects on the overall functioning of the ecosystem. The consequences of regime shifts for exploitation are highlighted, suggesting that fisheries managers should move towards a more effective ecosystem approach to fisheries.  相似文献   

9.
西白令海狭鳕渔场与环境因子关系研究   总被引:1,自引:0,他引:1  
根据2013~2018年白令海海域拖网作业的狭鳕( Theragra chalcogramma)渔获数据以及环境数据,利用GAM模型对CPUE进行了标准化,建立了三个基于不同环境因子的剩余产量模型:(1)基于SST因子的剩余产量模型;(2)基于SST和Chl-a因子的剩余产量模型;(3)基于SST、Chl-a和SSHA因子的剩余产量模型,分析了环境因子对西白令海狭鳕资源的影响。研究表明:基于SST和Ch-a因子的剩余产量模型拟合程度最好,表达式为Cm=0. 9343f-0. 0003 fm^2+0.155Tmfm +0.325 4cam fm,狭鳕资源量的变动受捕捞努力量、渔场SST以及Chl-a控制。分析认为:SST是导致西白令海狭鳕CPUE产生月间波动的最重要的环境因子,Chl-a对狭鳕CPUE也有一定的影响,而SSHA的影响则相对较小。建议将SST以及Chl-a作为狭鳕渔场分析与渔情预报研究的重要环境因子。  相似文献   

10.
This study uses a comparative approach to examine responses of marine ecosystems to climatic regime shifts. The three seas surrounding the Korean peninsula, the Japan/East Sea, the East China Sea and the Yellow Sea represent three contiguous but distinct ecosystems. Sampling has been carried out by the National Fisheries Research and Development Institute of South Korea since 1965, using the same methods in all three seas. Sampling was generally synoptic. Amplitude time series of 1st EOF modes for temperature, salinity, zooplankton biomass and concentrations of four major zooplankton taxa were used to determine whether the three marine ecosystems respond in a similar manner to climate variations. Temporal patterns of the variables were strongly similar among the three seas at decadal time scales, but very weakly similar at interannual scales. All three seas responded to a climatic regime shift that occurred in 1989. Temperature, zooplankton biomass and copepod concentrations increased in the late 1980s or early 1990s in all three seas. Concentrations of amphipods, chaetognaths and euphausiids also increased in the Japan/East Sea and the East China Sea, but not the Yellow Sea. The Yellow Sea ecosystem differs strongly from the other two seas, and water exchange between the Yellow Sea and the East China Sea is much weaker than that between the East China Sea and Japan/East Sea. Spatial patterns of zooplankton determined by the EOF analysis were closely related to currents and fronts in each of the three seas.  相似文献   

11.
To understand the variations of ecosystem components in response to changing environment, especially relating to a shift in the climate regime during mid 1970s, we analyzed the physical and biological time-series data collected from the eastern part of the Korean Peninsula during 1960–1990. The Northeast Pacific Pressure Index (NEPPI) in winter seasons showed a negative correlation (r=−0.384, p<0.05) with SOI in summer. The standardized chronologies of tree ring-width showed high correlations with precipitation of Ulleung Island and Kangrung city (r=0.408, p<0.05; r=0.410, p<0.05) and seawater temperatures (r=0.407, p<0.05). Sharp increases in tree growth appeared in 1969, 1973, 1979, 1983, and 1987. Among these years, all except 1979 seem to have a close connection with the El Niño which had persisted more than five seasons. Air temperatures in spring at Ulleung Island and Kangrung area appeared comparatively higher during the intense Aleutian low period after 1976. The Mixed Layer Depth (MLD) was shallower (18.2 m) and less variable during 1961–1975 compared to that (26.1 m) of 1976–1990. The shallower MLD in spring during the earlier period resulted in the higher chl a concentration than in the later years. Consequently, estimated zooplankton biomass in spring tended to decrease from the 1960s to the late 1980s in accordance with the phytoplankton decreases. In the East Sea, composition changes in fish species as well as fish catches were observed. Catches of pollock, sardine, and saury had good correlations with annual NEPPI.  相似文献   

12.
By reviewing the history of fishery exploitation in the coastal waters of west Canada and east Korea, related with contrasting life history strategies of the dominant species, the fishery management challenges that each country would face in the upcoming decades were outlined. In the ecosystem of the Canadian western coastal waters, the dominant oceanographic feature is the coastal upwelling domain off the west coast of Vancouver Island, the northernmost extent of the California Current System in the eastern North Pacific. In the marine ecosystem of the eastern coasts of Korea (the Japan/East Sea), a major oceanographic feature is the Tsushima Warm Current, a branch of the Kuroshio Current in the western North Pacific. Fishes in the Canadian ecosystem are dominated by demersal, long-lived species such as flatfish, rockfish, sablefish, and halibut. During summer, migratory pelagic species such as Pacific hake, Pacific salmon, and recently Pacific sardine, move into this area to feed. In the late 1970s, Canada declared jurisdiction for 200 miles from their coastline, and major fisheries species in Canadian waters have been managed with a quota system. The overall fishing intensity off the west coast of Vancouver Island has been relatively moderate compared to Korean waters. Fishes in the ecosystem of the eastern Korean waters are dominated by short-lived pelagic and demersal fish. Historically, Korea has shared marine resources in this area with neighbouring countries, but stock assessments and quotas have only recently (since the late-1990s) been implemented for some major species. In the Korean ecosystem, fisheries can be described as intensive, and many stocks have been rated as overfished. The two ecosystems responded differently to climate impacts such as regime shifts under different exploitation histories. In the future, both countries will face the challenge of global warming and subsequent impacts on ecosystems, necessitating developing adaptive fisheries management plans. The challenges will be contrasting for the two countries: Canada will need to conserve fish populations, while Korea will need to focus on rebuilding depleted fish populations.  相似文献   

13.
Two Bering Sea marine research programs collaborated during the final years of the 1990s to forge advances in understanding the southeastern Bering Sea pelagic ecosystem. Southeast Bering Sea Carrying Capacity, sponsored by NOAA Coastal Ocean Program, investigated processes on the middle and outer shelf and the continental slope. The Inner Front Program, sponsored by NSF, investigated processes of the inner domain and the front between the inner and middle domains. The purposes of these programs were to (1) increase understanding of the southeastern Bering Sea ecosystem, including the roles of juvenile walleye pollock, (2) investigate the hypothesis that elevated primary production at the inner front provides a summer-long energy source for the food web, and (3) develop and test annual indices of pre-recruit pollock abundance. The observations occurred during a period of unusually large variability in the marine climate, including a possible regime shift. Sea-ice cover ranged from near zero to one of the heaviest ice years in recent decades. Sea-surface temperatures reached record highs during summer 1997, whereas 1999 was noted for its low Bering Sea temperatures. Moreover, the first recorded observations of coccolithophore blooms on the shelf were realized in 1997, and these blooms now appear to be persistent. The programs’ results include an archive of physical and biological time series that emphasize large year-to-year regional variability, and an Oscillating Control Hypothesis that relates marine productivity to climate forcing. Further investigations are needed of the confluences of interannual and even intra-seasonal variability with low-frequency climate variability as potential producers of major, abrupt changes in the southeastern Bering Sea ecosystem.  相似文献   

14.
东海南部海洋净初级生产力与鲐鱼资源量变动关系的研究   总被引:6,自引:3,他引:3  
官文江  陈新军  高峰  李纲 《海洋学报》2013,35(5):121-127
海洋初级生产力决定海洋渔业资源的潜在产量,我国应用海洋初级生产力方法估算渔业资源量亦已取得不少研究成果,但海洋生态系统中的营养控制机制复杂多样,将影响海洋初级生产力与鱼类资源量的关系。本文利用中国大型灯光围网渔业在东海南部渔场的鲐鱼(Scomber japonicus)捕捞数据与海洋净初级生产力的遥感资料分析了鲐鱼资源量变化与净初级生产力的关系,探讨了其生态系统营养控制机制。研究结果表明,净初级生产力与标准化CPUE(Catch Per Unit Effort)不存在显著的线性关系(P>0.05),但呈显著非线性关系(P<0.05),且这种非线性关系表现为倒抛物线,即鲐鱼资源量随净初级生产力的增加而提高,但当净初级生产力进一步增加,鲐鱼资源量则呈下降趋势。净初级生产力与标准化CPUE呈显著的倒抛物线关系表明生态系统存在上行控制机制,但并非受该机制完全控制。种间竞争或浮游动物资源量的变动均可能引起鲐鱼资源的相对丰度与净初级生产力呈倒抛物线关系。  相似文献   

15.
Fish biomass is a critical component of fishery stock assessment and management and it is often estimated from ocean primary production(OPP). However, the relationship between the biomass of a fish stock and OPP is always complicated due to a variety of trophic controls in the ecosystem. In this paper, we examine the quantitative relationship between the biomass of chub mackerel(Scomber japonicus) and net primary production(NPP) in the southern East China Sea(SECS), using catch and effort data from the Chinese mainland large light-purse seine fishery logbook and NPP derived from remote sensing. We further discuss the mechanisms of trophic control in regulating this relationship. The results show a significant non-linear relationship exists between standardized CPUE(Catch-Per-Unit-Effort) and NPP(P〈0.05). This relationship can be described by a convex parabolic curve, where the biomass of chub mackerel increases with NPP to a maximum and then decreases when the NPP exceeds this point. The results imply that the ecosystem in the SECS is subject to complex trophic controls. We speculate that the change in abundance of key species at intermediate trophic levels and/or interspecific competition might contribute to this complex relationship.  相似文献   

16.
Understanding in climate effects on marine ecosystem is essential to utilize, predict, and conserve marine living resources in the 21s t century. In this review paper, we summariz ed t h e past history and current status of Korean fisheries as well as the changes in climate and oceanographic phenomena since the 1960s. Ocean ecosystems in Korean waters can be divided into three, based on the marine commercial fish catches; the demersal ecosystem in the Yellow Sea and the East China Sea, the pelagic ecosystem in the Tsushima Warm Current from the East China Sea to the East/Japan Sea, and the demersal ecosystem in the northern part of the East/Japan Sea. Through the interdisciplinary retrospective analysis using available fisheries, oceanographic, and meteorological information in three important fish communities, the trend patterns in major commercial catches and the relationship between climate/ environmental variability and responses of fish populations were identified. Much evidence revealed that marine ecosystems, including the fish community in Korean waters, has been seriously affected by oceanographic changes, and each species has responded differently. In general, species diversity is lessening, and mean trophic level of each ecosystem has decreased during the last 3~4 decades. Future changes in fisheries due to global warming are also considered for major fisheries and aquaculture in Korean waters.  相似文献   

17.
Walleye pollock (Gadus chalcogrammus) is one of the popular fish species in Korea and known to frequently harbor anisakid nematodes. Despite many papers regarding walleye pollock having been published, there is no information on the prevalence and distribution of anisakid nematodes from walleye pollock in Korean waters. We investigated 716 walleye pollock caught from Goseong, the East Sea of the Korean Peninsula during May 2015–December 2016. In total, 1,085 nematodes were collected and subsequently identified by PCR-RFLP analysis of internal transcribed spacer region of ribosomal DNA. The prevalence and mean intensity of anisakid nematodes was 63.6% (68/107) and 4.4 larvae/fish (297/68) in samples of 2015, and 21.5% (131/609) and 6.0 larvae/fish (788/131) in samples of 2016. The most abundantly isolated anisakid nematode was Anisakis simplex (Rudolphi, 1809) (73.5%, 798/1,085), followed by Contracaecum osculatum (Rudolphi, 1802) (3.1%, 34/1,085), Hysterothylacium aduncum (Rudolphi, 1802) (2.9%, 31/1,085), Anisakis pegreffii (Campana-Rouget and Biocca, 1955) (1.4%, 15/1,085), and a hybrid genotype (0.4%, 4/ 1,085). The mitochondrial DNA cox2 gene sequences of randomly selected A. simplex showed the highest similarity (99.5%–98.8%) with those from chub mackerel (Scomber japonicus) in Japan or from chum salmon (Oncorhynchus keta) in Korea. The mtDNA cox2 gene sequences of C. osculatum showed the highest similarity (99.0%) with those from bearded seals in Japan. All of these results give us clues to the geographical distribution, migration route and prey items of walleye pollock caught off Korea. Further extensive analyses will be necessary to get more information on the biology of Korean walleye pollock.  相似文献   

18.
Walleye pollock (Theragra chalcogramma) is an ecologically and economically important groundfish in the eastern Bering Sea. Its population size fluctuates widely, driving and being driven by changes in other components of the ecosystem. It is becoming apparent that dramatic shifts in climate occur on a decadal scale, and these “regime shifts” strongly affect the biota. This paper examines quantitative collections of planktonic eggs and larvae of pollock from the southeastern Bering Sea during 1976–1979. Mortality, advection, and growth rates were estimated, and compared among the years encompassing the 1970s’ regime shift. These data indicate that pollock spawning starts in late February over the basin north of Bogoslof Island. Over the shelf, most spawning occurs north of Unimak Island near the 100 m isobath in early or mid April. Pollock eggs are advected to the northwest from the main spawning area at 5–10 cm/sec. Larvae are found over the basin north of Bogoslof Island in April, and over the shelf between Unimak Island and the Priblof Islands in May. Compared to 1977, the spawning period appeared to be later in 1976 (a cold year) and earlier in 1978 (a warm year) in the study area. At the lower temperatures in 1976, egg duration would be longer and thus egg mortality would operate over a longer period than in the other years. Mean larval growth appeared to be lower in 1976 than in 1977 and 1979. Estimated egg mortality rate in 1977 was 0.6 in April and 0.3 in early May.  相似文献   

19.
The distribution, size, length-specific weight, growth, and feeding of age-0 walleye pollock (Theragra chalcogramma) were examined along with their prey distribution patterns in two contrasting transects over a 4-year period (1994–1997) in relation to biophysical properties of frontal regions around the Pribilof Islands, Bering Sea. There were significant interannual differences in catch of age-0 pollock, but transect and habitat differences (inshore vs. front vs. offshore) were not significant for either catch or size of pollock. There were significant variations in length-specific weight and growth of pollock, but the trends were inconsistent. Copepods dominated the zooplankton biomass in all habitats and years; there were no consistent differences in the densities of the dominant zooplankton taxa among the habitats. There were, however, strong habitat and transect differences in juvenile pollock diet, particularly for the larger and presumably rarer prey taxa (euphausiids, chaetognaths, fish). We did not find any evidence that occupying a particular habitat was beneficial to young pollock, although other factors (e.g. bioenergetic advantage and predation refuge) that we did not examine here could have been more variable and critical to pollock survival. In a physically dynamic system such as the Pribilof Islands, age-0 pollock may need to continuously search for optimal conditions of high prey availability and low predation pressure.  相似文献   

20.
The Japanese Pacific walleye pollock (Theragra chalcogramma) stock is the largest stock of this species in Japanese waters. It is a key component of the Oyashio ecosystem. In southern Hokkaido waters, these fish spawn mainly during January and February near the mouth of Funka Bay (FB), and most eggs and larvae are transported into FB. During midsummer juvenile pollock migrate along the southern coast of Hokkaido to a nursery ground on the continental shelf off eastern Hokkaido (Doto area). However, some eggs and larvae are transported southward to the Tohoku region (TR). Transport depends largely on the Oyashio, which generally flows southward along the eastern coasts of Hokkaido and Tohoku. Thus, this stock has two different recruitment routes: FB–Doto and FB–TR. In the 1980s, when the southward flow of the Oyashio was strong, the number of age-2 pollock estimated from a virtual population analysis (VPA) indicated that recruitment to the entire stock remained at a medium level. In the 1990s, when the Oyashio weakened, strong year-classes occurred in 1991, 1994, and 1995, but not in the latter half of the 1990s. Juvenile catches in the TR by commercial fisheries, which can be taken as indices of recruitment level via FB–TR, were high during the 1980s and decreased in the 1990s. Although there was no significant difference in the average number of recruits between the 1980s and the 1990s as estimated from a VPA, the recruitment patterns differed between the two decades. Here, we propose that recruitment routes of this stock shifted in response to environmental changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号