首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The temperature and density are obtained for coronal plasma in thermal and hydrostatic equilibrium and located in a force-free magnetic arcade. The isotherms are found to be inclined to the magnetic field lines and so care should be taken in inferring the magnetic structure from observed emission.When the coronal pressure becomes too great, the equilibrium ceases to exist and the material cools to form a quiescent prominence. The same process can be initiated at low heating rates when the width or shear of the arcade exceeds a critical value.We suggest that the prominence should be modelled as a dynamic structure with plasma always draining downwards. Material is continually sucked up along field lines of the ambient arcade and into the region lacking a hot equilibrium, where it cools to form new prominence material.  相似文献   

2.
We present a theoretical study of the formation of a coronal cavity and its relation to a quiescent prominence. We argue that the formation of a coronal cavity is initiated by the condensation of plasma which is trapped by the coronal magnetic field in a closed streamer and which then flows down to the chromosphere along the field lines due to lack of stable magnetic support against gravity. The existence of a coronal cavity depends on the coronal magnetic field strength; with low strength, the plasma density is not high enough for condensation to occur. Furthermore, we suggest that prominence and cavity material is supplied from the chromospheric level. Whether a coronal cavity and a prominence coexist depends on the magnetic field configuration; a prominence requires stable magnetic support.We initiate the study by considering the stability of condensation modes of a plasma in the coronal streamer model obtained by Steinolfson et al. (1982) using a 2-D, time dependent, ideal MHD computer simulation; they calculated the dynamic interaction between outward flowing solar wind plasma and a global coronal magnetic field. In the final steady state, they found a density enhancement in the closed field region with the enhancement increasing with increasing strength of the magnetic field. Our stability calculation shows that if the density enhancement is higher than a critical value, the plasma is unstable to condensation modes. We describe how, depending on the magnetic field configuration, the condensation may produce a coronal cavity and/or initiate the formation of a prominence.NRC Research Associate.  相似文献   

3.
We describe the results of a model dynamic simulation of the formation and support of a narrow prominence at the apex of a coronal magnetic loop or arcade. The condensation process proceeds via an initial radiative cooling and pressure drop, and a secondary siphon flow from the dense chromospheric ends. The anti-buoyancy effect as the prominence forms causes a bending of the confining magnetic field, which propagates toward the semi-rigid ends of the magnetic loop. Thus, a wide magnetic hammock or well (of the normal-polarity Kippenhahn-Schlüter-type) is formed, which supports the prominence at or near the field apex. The simplicity of this 1.5-dimensional model, with its accompanying diagnostics, allows one to comprehend the various contributions to the nonlinear dynamics of prominence condensation and levitation.  相似文献   

4.
Bardakov  V. M. 《Solar physics》1998,179(2):327-347
This paper offers an evolution scenario for a simple magnetic arcade where the frozen-in magnetic field decreases with the ascent of its arches together with the plasma. Uplift is produced by the movement of photospheric plasma with a frozen-in magnetic field, which is divergent with respect to a neutral line. A decrease in magnetic field leads to the appearance in the arcade of a height range of arches, with no high-temperature thermal equilibrium present, and to a variation of the nonequilibrium range with time. Uplift of the arcade is accompanied by the consecutive entry of new arches into this range. All arches entering the nonequilibrium range experience a transient process. Some of the earlier inquiries into the physics of this process were instrumental, in the first place, in identifying those arches which – through the production of an ascending plasma flow from the base of the arcade – are involved in the formation of a prominence (with magnetic dips appearing and evolving at the tops of these arches) and, secondly, in synthesizing a computational algorithm for the final state of the transient process, the quasi-steady-state dynamic structure of the prominence. The arcade evolution scenario, combined with the computational algorithm, constitutes a unified prominence model, a model for the transition from a simple static magnetic arcade to a quasi-steady dynamic prominence structure. The model has been used in numerical calculations of parameters of two classes of prominences: in and outside active regions. Results of the calculations are in good agreement with observations.  相似文献   

5.
The energy balance equation for the upper chromosphere or lower corona contains a radiative loss term which is destabilizing, because a slight decrease in temperature from the equilibrium value causes more radiation and hence a cooling of the plasma; also a slight increase in temperature has the effect of heating the plasma. In spite of this tendency towards thermal instability, most of the solar atmosphere is remarkably stable, since thermal conduction is very efficient at equalizing any temperature irregularity which may arise. However, the effectiveness of thermal conduction in transporting heat is decreased considerably in a current sheet or a magnetic flux tube, since heat can be conducted quickly only along the magnetic field lines. This paper presents a simple model for the thermal equilibrium and stability of a current sheet. It is found that, when its length exceeds a certain maximum value, no equilibrium is possible and the plasma in the sheet cools. The results may be relevant for the formation of a quiescent prominence.  相似文献   

6.
A coronal magnetic arcade can be thought of as consisting of an assembly of coronal loops. By solving equations of isobaric thermal equilibrium along each loop and assuming a base temperature of 2 × 104 K, the thermal structure of the arcade can be found. The possible thermal equilibria can be shown to depend on two parameters L * p * and h */p * representing the ratios of cooling (radiation) to condu and heating to cooling, respectively. Arcades can contain four types of loops: hot loops with summits hotter than 400000 K; cool loops at temperatures less than 80000 K along their lengths; hot-cool loops with cool summits and cool footpoints but hotter intermediate portions; and warm loops, cooler than 80000 K along most of their lengths but with summits as hot as 400000 K. Two possibilities for coronal heating are considered, namely a heating that is independent of magnetic field and a heating that is proportional to the square of the local magnetic field. When the arcade is sheared the thermal structure of the arcade may change, leading in some cases to non-equilibrium or in other cases to the formation of a cool core.  相似文献   

7.
A longitudinal stability is considered for the quasi-steady current sheet which is uniform along the current. In the MHD approximation, the stability problem is solved for the plane neutral sheet and small disturbances propagating along the current. The current sheet is shown to break-up into the system of cooler and more dense filaments due to radiative cooling. The filaments are parallel to magnetic field lines. This process corresponds to the condensation mode of a thermal instability and can play a trigger role for a solar flare. Moreover, at the nonlinear stage of development, it can lead to the formation of very dense cold filaments surrounded by high-temperature low-density plasma inside the current sheet. Flowing into the filaments, hot plasma is cooled by radiation and compressed. Then the cold dense plasma flows out from the current sheet along the filaments. We think that the process under consideration is responsible for the often observed picture of an arcade of cold loops in the solar corona.The text of this paper was written by B. V. Somov after the death of Prof. S. I. Syrovatskii.  相似文献   

8.
日珥的观测显示存在着强的磁场剪切分量,本文研究了剪切在日珥形成中的积极作用。首先计算一个二维偶极势场当脚根受对称剪切后产生怎样的物理现象。作了三种情形的数值模拟。计算表明产生蘑菇状流动是个普遍规律,在某些条件下将形成弧顶凹陷。为了说明蘑菇流的物理起因,我们探讨了演化初期的线性渐近解。保留一阶量下导出了剪切速度W_z和磁场剪切分量B_x的解析解,对二维流动V_x,V_y求出了近似解:流的振幅随时间指数增长。对于弧顶凹陷,给于了定性的说明:磁浮力-(1/c)J_xB_x和形变阻尼力(1/c)J_zB_x之间的相互作用导致弧预变平凹陷,并把剪切区磁力线打开成为开场。弧顶凹陷是形成日珥的重要条件。冕弧加热量的略微减小,产生初始的热不稳定性,在凹陷处物质凝聚温度降低,弧脚根处因色球受蒸发而流入的物质沿管上升进入弧顶陷阱,加剧了热不稳定性,物质进一步变密,温度再降,最终形成了日珥。  相似文献   

9.
Pneuman  G. W. 《Solar physics》1983,88(1-2):219-239
A model for solar quiescent prominences nested in a Figure 8 magnetic field topology is developed. This topology is argued to be the natural consequence of the distention of bipolar regions upward into the corona. If this distention is slow enough so that hydrostatic equilibrium holds approximately along the field lines, the transverse gas pressure forces fall exponentially with height whereas the inward Lorentz forces fall as a power law. At a low height in the corona, the pressure forces cannot balance the Lorentz forces provided the field lines remain tied to the photosphere and an inward collapse with subsequent reconnection at the point of closest approach should occur. Because of initial shear in the magnetic field, the reconnection would produce isolated helices above the point of reconnection since field lines would not interact with themselves but with their neighbors. This resulting topology produces a field above the elevated neutral line which is opposite in polarity to that of the photospheric field as in the current sheet models of Kuperus and Tandberg-Hanssen (1967). Raadu and Kuperus (1973), Kuperus and Raadu (1974), and Raadu (1979) and in agreement with recent observations of Leroy (1982), and Leroy et al. (1983).Assuming the isolated helices formed by reconnection are insulated from coronal thermal conduction and heating, the radiative cooling process and condensation is considered for the temperature range of 104-6000 K. This condensation results in a steady downflow to the bottom of the helices as the temperature scale-height falls, thus forming a dense, cool, prominence at the bottom of the helical configuration resting on the elevated neutral line with the remainder of the helix being essentially evacuated of material. We identify this neutral line at the bottom of the prominence with the sharp lower edge often seen when viewing quiescent prominences side-on and the evacuated helix with the coronal cavity observed around prominences when seen during total eclipses.Downflow speeds associated with the condensation process are calculated for prominence temperatures and yield velocities in the range of the observed downflows of about 1 km s–1.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

10.
Observations show that small-amplitude prominence oscillations are usually damped after a few periods. This phenomenon has been theoretically investigated in terms of non-ideal magnetoacoustic waves, non-adiabatic effects being the best candidates to explain the damping in the case of slow modes. We study the attenuation of non-adiabatic magnetoacoustic waves in a slab prominence embedded in the coronal medium. We assume an equilibrium configuration with a transverse magnetic field to the slab axis and investigate wave damping by thermal conduction and radiative losses. The magnetohydrodynamic equations are considered in their linearised form and terms representing thermal conduction, radiation and heating are included in the energy equation. The differential equations that govern linear slow and fast modes are numerically solved to obtain the complex oscillatory frequency and the corresponding eigenfunctions. We find that coronal thermal conduction and radiative losses from the prominence plasma reveal as the most relevant damping mechanisms. Both mechanisms govern together the attenuation of hybrid modes, whereas prominence radiation is responsible for the damping of internal modes and coronal conduction essentially dominates the attenuation of external modes. In addition, the energy transfer between the prominence and the corona caused by thermal conduction has a noticeable effect on the wave stability, radiative losses from the prominence plasma being of paramount importance for the thermal stability of fast modes. We conclude that slow modes are efficiently damped, with damping times compatible with observations. On the contrary, fast modes are less attenuated by non-adiabatic effects and their damping times are several orders of magnitude larger than those observed. The presence of the corona causes a decrease of the damping times with respect to those of an isolated prominence slab, but its effect is still insufficient to obtain damping times of the order of the period in the case of fast modes.  相似文献   

11.
Summary Conclusion This colloquium on solar prominences - the first ever held - has shown that a major part of activity in prominence research in recent years concentrated on both observation and computation of the magnetic conditions which were found to play a crucial role for the development and the maintainance of prominences. Remarkable progress was made in fine-scale measurements of photospheric magnetic fields around filaments and in internal field measurements in prominences. In addition, important information on the structure of the magnetic fields in the chromosphere adjacent to the filaments may be derived from high resolution photographs of the H fine structure around filaments which have become available recently; unfortunately, an unambiguous determination of the vector field in the chromosphere is not yet possible.It is quite clear, now, that stable filaments extend along neutral lines which divide regions of opposite longitudinal magnetic fields. Different types of neutral lines are possible, depending on the history and relationship of the opposite field regions. There is convincing evidence that the magnetic field in the neighbouring chromosphere may run nearly parallel to the filament axis and that there are two field components in stable prominences: an axial field dominant in the lower parts and a transverse field dominant in the higher parts.Methods for the computation of possible prominence field configurations from measured longitudinal photospheric fields were developed in recent years. In a number of cases (e.g. for loop prominences) the observed configuration could be perfectly represented by a force-free or even a potential field; poor agreement was found between computed and measured field strengths in quiescent prominences. In order to reconcile both of them it is necessary to assume electric currents. Unambiguous solutions will not be found until measurements of the vector field in the photosphere and in the prominences are available.The two-dimensional Kippenhahn-Schlüter model is still considered a useful tool for the study of prominence support and stability. However, a more refined model taking into account both field components and considering also thermal stability conditions is available now. It was proposed that quiescent prominences may form in magnetically neutral sheets in the corona where fields of opposite directions meet.As for the problem of the origin of the dense prominence material there are still two opposite processes under discussion. The injection of material from below, which was mainly applied to loop prominences, has recently been considered also a possible mechanism for the formation of quiescent prominences. On the other hand, the main objections against the condensation mechanism could be removed: it was shown that (1) sufficient material is available in the surrounding corona, and that (2) coronal matter can be condensed to prominence densities and cooled to prominence temperatures in a sufficiently short time.The energy balance in prominences is largely dependent on their fine structure. It seems that a much better radiative loss function for optically thin matter is now available. The problem of the heat conduction can only be treated properly if the field configuration is known. Very little is known on the heating of the corona and the prominence in a complicated field configuration. For the optically thick prominences the energy balance becomes a complicated radiative transfer problem.Still little is known on the first days of prominence development and on the mechanism of first formation which, both, are crucial for the unterstanding of the prominence phenomenon. As a first important step, it was shown in high resolution H photographs that the chromospheric fine structure becomes aligned along the direction of the neutral line already before first filament appearance. More H studies and magnetic field measurements are badly needed.Recent studies have shown that even in stable prominences strong small-scale internal rotational or helical motions exist; they are not yet understood. On the other hand, no generally agreed interpretation of large-scale motions of prominences seems to exist. A first attempt to explain the ascendance of prominences, the Disparitions Brusques, as the result of a kink instability was made recently.New opportunities in prominence research are offered by the study of invisible radiations: X-rays and meterwaves provide important information, not available otherwise, on physical conditions in the coronal surroundings of prominences; EUV observations will provide data on the thin transition layer between the cool prominence and the hot coronal plasma.Mitt. aus dem Fraunhofer Institut No. 111.  相似文献   

12.
Two possible limiting scenarios are proposed for the production of a coronal mass ejection. In the first the magnetic field around a prominence evolves until it loses equilibrium and erupts, which drives reconnection below the prominence and an eruption of the overlying magnetic arcade. In the second a large-scale magnetic arcade evolves until it loses equilibrium and erupts, thereby causing a prominence to erupt. In general it is likely to be the non-equilibrium of the coupled system which creates the eruption. Furthermore, large quiescent prominences are expected to be centred within the magnetic bubble of a coronal mass ejection whereas when active-region prominences erupt they are likely to be located initially to one side of the bubble.A model is set up for the eruption of a magnetically coupled prominence and coronal mass ejection. This represents a development of the Anzer and Pneuman (1982) model by overcoming two limitations of it, namely that: it is not globally stable initially and so one wonders how it can be set up in a stable way before the eruption; it has reconnection driving the CME whereas recent observations suggest that the reverse may be happening. In our model we assume that magnetic reconnection below the prominence is driven by the eruption and the driver is magnetic non-equilibrium in the coupled prominence-mass ejection system. The prominence is modelled as a twisted flux tube and the mass ejection as an overlying void and magnetic bubble. Two different models of the prominence are considered. In one a globally stable equilibrium becomes unstable when a threshold magnetic flux below the prominence is exceeded and, in the other, equilibrium ceases to exist. In both cases, the prominence and mass-ejection accelerate upwards before reaching constant velocities in a manner that is consistent with observations. It is found that the greater the reconnection that is driven by the eruption, the higher is the final speed.  相似文献   

13.
Arch systems lying above quiescent prominences in the solar corona have long drawn the attention of eclipse observers, and such formations have been investigated since the end of the last century. Almost every eclipse photograph shows one or more arches, and in most cases the arch system is accompanied by a quiescent prominence below it and a helmet streamer above it. Also, in some cases there is a dark cavity between the arch system and the prominence.On large-scale photographs obtained at the November 12, 1966 eclipse, detailed photometry has been carried out on a formation in the corona composed of a helmet streamer straddling two multiple-arch systems each with a dark cavity and a quiescent prominence. The excess of electrons in the arches and the deficiency in the cavities are evaluated. We find that the formation of a prominence requires much more material than available in the cavity before depletion. Consequently the condensation theory of coronal matter into prominences seems to have difficulties explaining the necessary amount of matter in the cases where coronal arches - delineating magnetic field lines above the cavity - may exclude inflow of material from the corona. We comment on the low velocity of solar wind in the helmet streamer.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

14.
Previous studies of a thermal (radiative) instability in a sheared magnetic field have shown that, under solar coronal conditions, cool condensations can form in a small neighborhood about the shear layer. Such results have served to model the formation of solar filaments (or prominences) observed to occur above photospheric magnetic polarity-inversion lines. A surprising conclusion of these studies is that the width of the condensation does not depend on the thermal conductivity (). By examining the mass-flow patterns of two-dimensional condensations in the absence of thermal conduction, we demonstrate that local plasma dynamics and the constraints imposed by boundary conditions are together sufficient to explain the size of the condensation width. In addition we present the results of a series of numerical calculations which illustrate the characteristic mode structure of sheared-field condensations.  相似文献   

15.
Heyvaerts和Priest最近提出了一个线性无力场演化的简化模型来定量计算磁拱脚点做缓慢的剪切运动所引起的日冕加热。由于他们在能量的计算中漏掉了一些二阶项,并且保留了导致位移无界的磁场的线性演化项,本文对他们的工作进行了修正,同时还对脚点运动引起的磁拱无力场演化进行了进一步探讨。本文主要结果如下:(1)得到的加热效率(即耗散能量在光球供给能量中所占比例)比Heyvaerts和Priest所得结果大。(2)磁拱无力场的无耗散线性演化是不可能的。(3)由磁场位形具体说明了非线性无力场发生磁力线重联的可能性,并指出最容易发生磁力线重联的高度大约为一个磁拱宽度。  相似文献   

16.
A model of filament formation based on the condensation of coronal arches is described. The condensation results from initiating the radiative instability within an arch by superimposing a transient energy supply upon the steady state heating mechanism. The transient energy supply increases the density within the arch so that when it is removed the radiative losses are sufficient to lead to cooling below the minimum in the power loss curve.Times from the initial formation of the condensation to its temperature stabilization as a cool filament have been calculated for various initial conditions. They lie in the range 104 to 105 s with the majority of the time spent above a temperature of 1 × 106 K.Under the assumption that the condensation of a single arch forms an element of the filament, a complete filament requires the condensation of an arcade of loops. Using experimentally derived parameters, filament densities of 1011 to 1012 cm–3 can be obtained.  相似文献   

17.
Tyan Yeh  S. T. Wu 《Solar physics》1991,132(2):335-351
Model calculations are presented for the rising motion of the top section of a prominence loop, which is represented by a straight flux rope immersed in a coronal medium permeated with a bipolar magnetic field. Initially the prominence is at rest, in equilibrium with the surrounding coronal medium. When the magnetic monopoles that account for the source current for the bipolar field strengthen, the upward hydromagnetic buoyancy force overcomes the downward gravitational force so that the prominence is initiated into rising motion. The illustrative examples show that prominences can move away from the solar surface by the action of the hydromagnetic buoyancy force, which is preponderant with the diamagnetic force due to the current carried by the prominence interacting with the coronal magnetic field produced by the photospheric currents, if the changes in the photospheric magnetic field are sufficiently large.  相似文献   

18.
Hildner  E. 《Solar physics》1974,35(1):123-136
We model the formation of solar quiescent prominences by solving numerically the non-linear, time-dependent, magnetohydrodynamic equations governing the condensation of the corona. A two-dimensional geometry is used. Gravitational and magnetic fields are included, but thermal conduction is neglected. The coronal fluid is assumed to cool by radiation and to be heated by the dissipation of mechanical energy carried by shock waves. A small, isobaric perturbation of the initial thermal and mechanical equilibrium is introduced and the fluid is allowed to relax. Because the corona with the given energy sources is thermally unstable, cooling and condensation result.When magnetic and gravitational fields are absent, condensation occurs isotropically with a strongly time-dependent growth rate, and achieves a density 18 times the initial density in 3.5 × 104 s. The rapidity of condensation is limited by hydrodynamical considerations, in contrast to the treatment of Raju (1968). When both magnetic and gravitational fields are included, the rate of condensation is inhibited and denser material falls.We conclude that: (1) condensation of coronal material due to thermal instability is possible if thermal conduction is inhibited; (2) hydrodynamical processes determine, in large part, the rate of condensation; (3) condensation can occur on a time scale compatible with the observed times of formation of quiescent prominences.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

19.
For stable equilibrium, prominences must be supported with magnetic lines of force leaning upon the photosphere and concave in their tops; however the general structure may be more complicated. If such a field appears in the corona, the heating of the gas near the upper pit should be low, because Alfvén and slow waves do not propagate across magnetic lines and fast mode waves attenuate because of refraction. The gas of the corona, distributed along the magnetic lines tube, cannot keep balance, it should flow down in the pit, condense there and fall down into the chromosphere in some places. The prominence, therefore, originates in the matter of the chromosphere which is situated at the other end of the magnetic lines and flows through the corona under the effect of a siphon-type mechanism. A similar mechanism for chromospheric structures was earlier suggested by Meyer and Schmidt. A stationary stream along the tube has been calculated with allowance for the heat conductivity and radiative cooling of the corona gas. The stream is subsonic and is about 1015 cm−2 sec−1 which corresponds to the prominence formation time of the order of a day.  相似文献   

20.
Slow-mode shocks produced by reconnection in the corona can provide the thermal energy necessary to sustain flare loops for many hours. These slow shocks have a complex structure because strong thermal conduction along field lines dissociates the shocks into conduction fronts and isothermal subshocks. Heat conducted along field lines mapping from the subshocks to the chromosphere ablates chromospheric plasma and thereby creates the hot flare loops and associated flare ribbons. Here we combine a non-coplanar compressible reconnection theory with simple scaling arguments for ablation and radiative cooling, and predict average properties of hot and cool flare loops as a function of the coronal vector magnetic field. For a coronal field strength of 100 G the temperature of the hot flare loops decreases from 1.2 × 107 K to 4.0 × 106 K as the component of the coronal magnetic field perpendicular to the plane of the loops increases from 0% to 86% of the total field. When the perpendicular component exceeds 86% of the total field or when the altitude of the reconnection site exceeds 106km, flare loops no longer occur. Shock enhanced radiative cooling triggers the formation of cool H flare loops with predicted densities of 1013 cm–3, and a small gap of 103 km is predicted to exist between the footpoints of the cool flare loops and the inner edges of the flare ribbons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号