首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
We present a comparison between the ionized gas and stellar kinematics for a sample of five early-to-intermediate disc galaxies. We measured the major axis V and σ radial profiles for both gas and stars, and the h 3 and h 4 radial profiles of the stars. We also derived from the R-band surface photometry of each galaxy the light contribution of their bulges and discs. In order to investigate the differences between the velocity fields of the sample galaxies we adopted the self-consistent dynamical model by Pignatelli and Galletta (1999), which takes into account the asymmetric drift effects, the projection effects along the line of sight and the non-Gaussian shape of the line profiles due to the presence of different components with distinct dynamical behaviour. We find for the stellar component a sizeable asymmetric drift effect in the inner regions of all the sample galaxies, as results from comparing their stellar rotation curves with the circular velocity predicted by the models. The galaxy sample is not wide enough to draw general conclusions. However, we have found a possible correlation between the presence of slowly rising gas rotation curves and the ratio of the bulge/disc half-luminosity radii, while there is no obvious correlation with the key parameter represented by the morphological classification, namely the bulge/disc luminosity ratio. Systems with a diffuse, dynamically hot component (bulge or lens) with a scale length comparable to that of the disc are characterized by slowly rising gas rotation curves. On the other hand, in systems with a small bulge the gas follows almost circular motions, regardless of the luminosity of the bulge itself. We noticed a similar behaviour also in the gas and stellar kinematics of the two early-type spiral galaxies modelled by Corsini et al.(1998). This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
Sivaraman  K.R.  Sivaraman  Hari  Gupta  S.S.  Howard  Robert F. 《Solar physics》2003,214(1):65-87
We find from an analysis of the Kodaikanal sunspot group data that the rotation rates of spot groups increase with their age when the rotation rates are computed after sorting the spot groups life-span-wise. We confirm these findings from an analysis of the Mt. Wilson sunspot data set too. We show that this trend is in good agreement with the internal rotation profiles from helioseismology (GONG) observations and is also consistent with the concept that the footpoints of the magnetic loops of spot groups are initially anchored in the deeper layers in the solar interior and rise to shallower layers as the spots age, and that the spots reflect the rotation rates at the respective depths at which their footpoints are temporally located. We project the `first-day rotation rates' and the `daily rotation rates' of spot groups on the rotation profiles from the GONG observations and derive the initial anchoring depths of the footpoints of the magnetic loops of the spot groups and their rates of rise as the spot groups age. Our results of the rotation rates are in antithesis to the results reported by investigators from the Greenwich spot group data that show a deceleration in rotation rates as the spot groups age which are also inconsistent with the rotation profiles from helioseismology observations.  相似文献   

3.
We present an observational evidence of the chromospheric activity on HR1099. The IUE spectra of HR 1099 were used for the ultraviolet photometry and for the intensity variation of chromospheric emission line. Ultraviolet light curves were made from the low and high dispersion IUE spectra and were compared with a optical light curve. We have analyzed the ultraviolet and optical light curves by the Wilson and Devinney computing code including dark spots. The intensity variation of Mg II emission line depends on the orbital phase. The maximum intensity of Mg II emission line occurs at the phase of light minimum where dark spot visibility is maximum due to strong chromospheric activity. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
This paper presents an extension of the method of the characteristic points by Kjurkchieva (1987, 1989). This method for the analysis of light curves of spotted stars is further developed by including spectral information. Expressions describing the variation of the rotation broadening of spectral features arising from a star spot are derived for a known spot configuration. The results are used in the solution of the inverse problem by the method of the characteristic points. It is shown that the rotation broadening of spectral features from star spots can be used to easily determine the angular size and the polar distance of a circular spot. It turns out that the equatorial velocity and radius of the spotted star can be obtained in some cases by the combined analysis of the photometric and spectral data.  相似文献   

5.
We consider the effects of projection, internal absorption, and gas-or stellar-velocity dispersion on the measured rotation curves of galaxies with edge-on disks. Axisymmetric disk models clearly show that the rotational velocity in the inner galaxy is highly underestimated. As a result, an extended portion that imitates nearly rigid rotation appears. At galactocentric distances where the absorption is low (i.e., it does not exceed 0.3–0.5m kpc?1), the line profiles can have two peaks, and a rotation curve with minimum distortions can be obtained by estimating the position of the peak that corresponds to a higher rotational velocity. However, the high-velocity peak disappears in high-absorption regions and the actual shape of the rotation curve cannot be reproduced from line-of-sight velocity estimates. In general, the optical rotation curves for edge-on galaxies are of little use in reconstructing the mass distribution in the inner regions, particularly for galaxies with a steep velocity gradient in the central region. In this case, estimating the rotation velocities for outer (transparent) disk regions yields correct results.  相似文献   

6.
We present the full VRI light curves and the times of minima of TY UMa to provide a complete photometric solution and a long-term trend of period variation. The light curves show a high degree of asymmetry (the O'Connell effect). The maxima at 0.25 phase (Max I) are 0.021, 0.015, and 0.020 mag fainter than those at 0.75 phase (Max II) in V , R , and I , respectively. The period of TY UMa has varied in a sinusoidal way, superimposed on the long-term upward parabolic variation. The secularly increasing rate of the period is deduced as 1.83 s per century  ( P˙ / P =5.788×10-10 d d-1)  . The period of sinusoidal variation is about 57.4 yr. The spot model has been applied to fit the asymmetric light curves of TY UMa, to explain light variations. By changing only the spot parameters, the model light curves can fit the observed light curves for three epochs. This indicates that the variation of the spot location and size is the main reason for changing the shape of light curves, including two different maxima and the interchanging depths of occultation and transit minima.  相似文献   

7.
The subject of the paper is the problem of stellar differntial rotation in close binaries (CB) ofRS CV n type. The differential-rotation parameters we find on the basis of the migration of the depression in the light curves caused by the spot effect over the orbital phase. For that purpose, a simple model (Bussoet al., 1985) and inverse-problem procedure, based on the Marquardt (1963) algorithm, are used. To verify the obtained solutions, the SIMPLEX algorithm (Torczon, 1991) is applied, suitable for the nonlinear parameter optimisation. This algorithm enables a correct solution of the nonlinear equation system describing the differential rotation. The procedure is applied in the determination of the parameters of differential rotation forCV Cam, VV Mon andSS Boo binaries.  相似文献   

8.
An attempt has been made to bring photoelectric and dynamical properties of the system to a common focus. The photoelectric properties are exhibited by a series of light curves in the blue and infrared produced from a series of observations made by G. E. Kronet al. from 1938 to 1948. An analysis of these reveals a decrease of the period of the order of magnitude 10–5.A Fourier analysis of the light curves is employed to estimate the elements for the period represented by each curve. These results suggest a variation of the fractional radii over an eight-month period. Dynamical effects are ruled out and the result is seen to be the outcome of some photoelectric effect. A phenomenological discussion of the nature of these photoelectric effects is presented, showing that their origin may be in gas streams rather than spot effects.  相似文献   

9.
We present BVR full-light curves of V388 Cyg to provide a complete photometric solution for the first time. The light curves show a high degree of asymmetry (O'Connell effect). The maxima at 0.25 phase (Max I) are 0.023, 0.018 and 0.012 mag higher than those at 0.75 phase (Max II) in B , V and R , respectively. Three possible spot models are applied to fit the asymmetric light curves of V388 Cyg, in order to explain the O'Connell effect. We conclude that the model of the cool spot on the cooler star is the most reasonable model for V388 Cyg. The continuous period variation is confirmed by recently collected times of minima, including one minimum that is determined in this paper. The period decrease rate is estimated as d p /d t =−2.055×10−7 d yr−1 .  相似文献   

10.
Hagyard  M.J.  Adams  M.L.  Smith  J.E.  West  E.A. 《Solar physics》2000,191(2):309-324
In this paper we analyze the effects of Faraday rotation on the azimuth of a transverse magnetic field as determined from the linear polarization in the inverse Zeeman effect. Observations of a simple sunspot were obtained with the Marshall Space Flight Center's vector magnetograph over the wavelength interval of 170 mÅ redward of line center of the Fe i 5250.22 Å spectral line to 170 mÅ to the blue, in steps of 10 mÅ. These data were analyzed to produce the variation of the azimuth as a function of wavelength at each pixel over the field of view of the sunspot. At selected locations in the sunspot, curves of the observed variation of azimuth with wavelength were compared with model calculations for the azimuth at each wavelength as derived from the inverse Zeeman effect modified by Faraday rotation. From these comparisons we derived the maximum amount of rotation as functions of both the magnitude and inclination of the sunspot's field. These results show that Faraday rotation of the azimuth will be a significant problem in observations taken near the center of a spectral line for fields as low as 1200 G and inclinations of the field in the range 20–80 deg. Conversely, they show that measurements taken in the wing of a spectral line are relatively free of the effects of Faraday rotation.  相似文献   

11.
A short overview is given of some recent progress in the theory of spectropolarimetry as a diagnostic of axisymmetric hot star wind density and velocity structure, covering the inferences possible from broad band polarimetry, from polarimetric light curves and simultaneous absorption line data, and from spectropolarimetric line profiles. Recent work on joint spectro-, photo-, and polari-metric study of the properties of wind inhomogeneities is also summarised. One of the most important conclusions is that the blobs necessary in WR winds to produce narrow emission line features cannot also produce polarimetric light curve features unless they originate in enhanced mass loss sources at the stellar surface rather than solely in density redistribution processes, such as turbulence, in the wind itself.  相似文献   

12.
The separation of the leading and following portions of plages and (multi-spot) sunspot groups is examined as a parameter in the analysis of plage and spot group rotation. The magnetic complexity of plages affects their average properties in such a study because it tends to make the polarity separations of the plages less than they really are (by the definition of polarity separation used here). Correcting for this effect, one finds a clear and very significant dependence of the total magnetic flux of a region on its polarity separation. Extrapolating this relationship to zero total flux leads to an X intercept of about 25 Mm in polarity separation. The average residual rotation rates of regions depend upon the polarity separation in the sense that larger separations correspond to slower rotation rates (except for small values of separation, which are affected by region complexity). In the case of sunspots, the result that smaller individual spots rotate faster than larger spots is confirmed and quantified. It is shown also that smaller spot groups rotate faster than larger groups, but this is a much weaker effect than that for individual spots. It is suggested that the principal effect is for spots, and that this individual spot effect is responsible for much or all of the group effect, including that attributed in the past to group age. Although larger spot groups have larger polarity separations, it is shown that the rotation rate-polarity separation effect is the opposite in groups than one finds in plages: groups with larger polarity separations rotate faster than those with smaller separations. This anomalous effect may be related to the evolution of plages and spot groups, or it may be related to connections with subsurface toroidal flux tubes. It is suggested that the polarity separation is a parameter of solar active regions that may shed some light on their origin and evolution.Operated by the Association of Universities for Research in Astronomy, Inc., under Cooperative Agreement with the National Science Foundation.  相似文献   

13.
We present the results of a long-term photometric monitoring of the young single main-sequence star HD134319. It shows short-term variability of the optical-band continuum flux with a period of 4.448 days. The variability is attributed to dark spots or spots groups unevenly distributed in longitude on the star's photosphere, whose visibility is modulated by the star's rotation. Maps of the photospheric spot pattern have been obtained with light curve inversion techniques based on the Maximum Entropy and the Tikhonov regularization criteria. The overall spot pattern shows evidence for two long-lasting active longitudes located about 180° apart, with a total area of at least 16% of the stellar surface (assuming an inclination of the stellar rotation axis of 90° on the line of sight). The longitude distribution of the spot pattern and its total area do not show any clear evidence for a long-term variation along the five years of observations. A comparison with recent mean field dynamo models is also addressed, suggesting a possible interpretation of such a behaviour. Singularity, spectral type, youth and a high level of photospheric and chromospheric activity make HD134319 a suitable proxy for studying the magnetic activity of the young Sun not far after its arrival on the zero age main sequence.  相似文献   

14.
An attempt is made to interpret the variations of the light curve of VW Cephei in terms of a spot model. A light curve which is (hopefully) free from starspot effects is constructed from Kwee's (1966a) observations, and is analysed by the light-curve synthesis method. Then, Kwee's individual light curves are further analysed by assuming that starspots exist on the surface of the primary component. Properties of starspots are briefly discussed.  相似文献   

15.
The aim of the present paper has beento analyse the light changes of the close eclipsing system SX Aurigae in the frequency-domain. This analysis is based on Kopal's new theory recently developed for the study of light variations, between minima as well as within eclipses, of close eclipsing binaries whose components are distorted by axial rotation and mutual tidal action.A method for the separation of the photometric proximityand eclipse effects directly from the observed data is also presented. In this method no rectification is needed. The automated method has been tested on the light curves of SX Aurigae. Finally, a comparative discussion is given of Kopal and Kitamura methods of thelight curves analysis.  相似文献   

16.
A general expression for the gravity darkening of the tidally and non-uniformly rotating Roche components of close binary systems is used to calculate the uniform rotational effects on line profiles in an expanding atmosphere. We consider a non-local thermodynamic equilibrium (non-LTE) two-level atom approximation in an extended atmosphere, and use Von Zeipel's theorem for the incident radiation at the maximum optical depth  (τ=τmax)  in the atmosphere. These calculations are performed with uniform rotational velocities of 1, 4 and 8 mtu (mean thermal units). It is found that rotation dilutes the radiation field which is similar to the expansion velocity.
We also study rotational aspects, which make the outer layers of the star distorted. The equation of line transfer is solved in the comoving frame of the expanding atmosphere of the primary using complete redistribution in the line. We use a linear law for the velocity of expansion such that the density varies as r −3, where r is the radius of the star, satisfying the law of conservation of mass. It is found that rotation broadens the line profile, and P-Cygni-type line profiles are obtained.  相似文献   

17.
Our recent search for the presence of a magnetic field in the bright early A‐type supergiant HD 92207 using FORS 2 in spectropolarimetric mode revealed the presence of a longitudinal magnetic field of the order of a few hundred Gauss. However, the definite confirmation of the magnetic nature of this object remained pending due to the detection of shortterm spectral variability probably affecting the position of line profiles in left‐ and right‐hand polarized spectra. We present new magnetic field measurements of HD 92207 obtained on three different epochs in 2013 and 2014 using FORS 2 in spectropolarimetric mode. A 3σ detection of the mean longitudinal magnetic field using the entire spectrum, 〈Bzall = 104 ± 34 G, was achieved in observations obtained in 2014 January. At this epoch, the position of the spectral lines appeared stable. Our analysis of spectral line shapes recorded in opposite circularly polarized light, i.e. in light with opposite sense of rotation, reveals that line profiles in the light polarized in a certain direction appear slightly split. The mechanism causing such a behaviour in the circularly polarized light is currently unknown. Trying to settle the issue of short‐term variability, we searched for changes in the spectral line profiles on a time scale of 8–10 min using HARPS polarimetric spectra and on a time scale of 3–4 min using time series obtained with the CORALIE spectrograph. No significant variability was detected on these time scales during the epochs studied. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
Observations of rotational modulation of continuum brightness and photospheric and chromospheric spectral-line profiles of late-type stars indicate the presence of very inhomogeneous surface temperature distributions. We present three stellar examples (VY Ari, HR 7275, HU Vir) where time-series photometry is used to trace the evolution of spotted regions. Simultaneous spectroscopy and Doppler imaging for one of the three stars (HU Virgo, Fig. 1) makes it possible to compute the temperature distribution of the photosphere and the relative intensity distribution of parts of the chromosphere (from CaII K and H line profiles). The combination of time-series spot modeling and Doppler imaging enabled us to determine thesign and amount of differential surface rotation on HU Vir. We found a big, cool polar spot (see figure below) and a differential (surface) rotation law where higher-latitude regions rotate faster than lower-latitude regions (opposite to what we see on the Sun). Currently, this ensemble of techniques - time-series photometry and photospheric and chromospheric Doppler imaging - is only applicable to stars overactive by approximately a factor of 100 as compared to the active Sun, e.g. the evolved components in RS CVn-type binaries and some rapidly-rotating, single, pre-main sequence stars or giant stars. Stellar rotation is a fundamental parameter for (magnetic) activity. Starspots, or any other surface inhomogeneities, allow one to derive very precise stellar rotation rates and, if coupled with seismological observations of solar-type stars, could provide information on the internal angular momentum distribution in overactive late-type stars.To be published in Astronomy & Astrophysics.  相似文献   

19.
We present the first light curves of V505 Sgr in the infrared (IR) J and K bands. The light curves are analysed with a code based on Roche geometry and stellar model atmosphere fluxes in order to determine a new set of stellar and orbital parameters. From the visual–IR photometry we find no evidence of IR excess in the system. We study the effect of the non-synchronous rotation of the primary star in the light and radial velocity curves. The distance of the system is estimated as  112 ± 4 pc  , in close agreement with the Hipparcos parallax.  相似文献   

20.
The light outside the eclipses of the totally eclipsing RS CVn binary SV Camelopardalis (SV Cam) is Fourier analysed and the amplitudes of the distortion waves have been derived. The distribution of the percentage contributions of these amplitudes inV, B andU colours with respect to the luminosities of the binary components indicates that the hotter component is the source of the distortion waves. These distortion waves, attributed to star spots, are modelled according to Budding (1977) and spot parameters like longitude, latitude, temperature and size are obtained. From this study it is noticed that while symmetric waves with two minima could be fitted satisfactorily, asymmetric waves with more than two minima could not be fitted well. From the longitudes of the minima of the best fitted curves, migration periods of four spot groups are determined. Assuming synchronism between rotation and orbital periods, the rotation periods of the four spot groups are derived from their migration periods. The period of rotation of one of the spot groups having direct motion is found to be 0d.5934209 while the periods of the other three spot groups having retrograde motion are 0d.5926588, 0d.592607 and 0d.5924688. As the latitudes of these spots are known from modelling parameters, the latitude having a rotation period equal to that of the orbital period (co-rotating latitude) is found to be about 30°  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号