首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
We present CCD photometric observations of 23 main-belt asteroids, of which 8 have never been observed before; thus, the data of these objects are the first in the literature. The majority showed well-detectable light variations, exceeding 0m1. We have determined synodic periods for 756 Lilliana (936), 1270 Datura (34), 1400 Tirela (1336), 1503 Kuopio (998), 3682 Welther (359), 7505 Furushu (414) and 11436 1969 QR (123), while uncertain period estimates were possible for 469 Argentina (123), 546 Herodias (104) and 1026 Ingrid (53). The shape of the lightcurves of 3682 Welther changed on a short time-scale and showed dimmings that might be attributed to eclipses in a binary system. For the remaining objects, only lower limits of the periods and amplitudes were concluded.  相似文献   

2.
3.
4.
5.
Conventional meteoroid theory assumes that the dominant mode of ablation (which we will refer to as thermal ablation) is by evaporation following intense heating during atmospheric flight. Light production results from excitation of ablated meteoroid atoms following collisions with atmospheric constituents. In this paper, we consider the question of whether sputtering may provide an alternative disintegration process of some importance. For meteoroids in the mass range from 10-3 to and covering a meteor velocity range from 11 to , we numerically modeled both thermal ablation and sputtering ablation during atmospheric flight. We considered three meteoroid models believed to be representative of asteroidal ( mass density), cometary () and porous cometary () meteoroid structures. Atmospheric profiles which considered the molecular compositions at different heights were use in the sputtering calculations. We find that while in many cases (particularly at low velocities and for relatively large meteoroid masses) sputtering contributes only a small amount of mass loss during atmospheric flight, in some cases sputtering is very important. For example, a porous meteoroid at will lose nearly 51% of its mass by sputtering, while a asteroidal meteoroid at will lose nearly 83% of its mass by sputtering. We argue that sputtering may explain the light production observed at very great heights in some Leonid meteors. We discuss methods to observationally test the predictions of these computations. A search for early gradual tails on meteor light curves prior to the commencement of intense thermal ablation possibly represents the most promising approach. The impact of this work will be most dramatic for very small meteoroids such as those observed with large aperture radars. The heights of ablation and decelerations observed using these systems may provide evidence for the importance of sputtering.  相似文献   

6.
7.
We detected a volcanic outburst in Io's northern hemisphere on 17 April 2006 with the OSIRIS imaging spectrometer at Keck, and confirmed it was still erupting on 2 June 2006. The eruption, which we name 060417A, was located in Tvashtar Paterae, ∼100 km southeast of the February 2000 eruption. The observed temperature was , over a surface area of , providing a total thermal output of .  相似文献   

8.
Beebe et al. [Beebe, R.F., et al., 1980. Geophys. Res. Lett. 17, 1-4] and Ingersoll et al. [Ingersoll, A.P., et al., 1981. J. Geophys. Res. 86, 8733-8743] used images from Voyagers 1 and 2 to analyze the interaction between zonal winds and eddies in Jupiter's atmosphere. They reported a high positive correlation between Jupiter's eddy momentum flux, , and the variation of zonal velocity with latitude, . This correlation implied a surprisingly high rate of conversion of energy from eddies to zonal flow: , a value more than 10% of Jupiter's thermal flux emission. However, Sromovsky et al. [Sromovsky, L.A., et al., 1982. J. Atmos. Sci. 39, 1413-1432] argued that possible biases in the analysis could have caused an artificially high correlation. In addition, significant differences in the derived eddy flux between datasets put into question the robustness of any one result. We return to this long-standing puzzle using images of Jupiter from the Cassini flyby of December 2000. Our method is similar to previous analyses, but utilizes an automatic feature tracker instead of the human eye. The number of velocity vectors used in this analysis is over 200,000, compared to the 14,000 vectors used by Ingersoll et al. We also find a positive correlation between and and derive a global average power per unit mass, , ranging from . Utilizing Ingersoll et al.'s estimate of the mass per unit area involved in the transport, this would imply a rate of energy conversion of . We discuss the implications of this result and employ several tests to demonstrate its robustness.  相似文献   

9.
10.
11.
12.
We have obtained numerically integrated orbits for Saturn's coorbital satellites, Janus and Epimetheus, together with Saturn's F-ring shepherding satellites, Prometheus and Pandora. The orbits are fit to astrometric observations acquired with the Hubble Space Telescope and from Earth-based observatories and to imaging data acquired from the Voyager spacecraft. The observations cover the 38 year period from the 1966 Saturn ring plane crossing to the spring of 2004. In the process of determining the orbits we have found masses for all four satellites. The densities derived from the masses for Janus, Epimetheus, Prometheus, and Pandora in units of g cm−3 are , , , and , respectively.  相似文献   

13.
14.
A measured calibrated solar radiance in the range 1.2-, with the spectral sampling of does not exist. When studying the measured Planetary Fourier Spectrometer (PFS) spectra of the Earth's or Mars's atmosphere we discover that the most used solar spectrum contains several important errors. Here we present a “calibrated” solar radiance in the wavelength range 1.2-, with the spectral resolution of PFS , which we are going to use for studying Martian spectra. This spectrum has been assembled using measurements from Kitt Peak and from ATMOS Spacelab experiment (uncalibrated high resolution) and theoretical results, together with low resolution calibrated continuum. This is the best we can have in this moment to be used with PFS, while waiting to have good solar calibrated radiances. Examples of solar lines at Mars are given.  相似文献   

15.
We have obtained full-disk spatially resolved spectra of the Venus nightside at near-infrared wavelengths during July 2007 using the Anglo-Australian Telescope and Infrared Imager and Spectrograph 2 (IRIS2). The data have been used to map the intensity and rotational temperature of the O2(a1Δg) airglow band at . The temperatures agree with those obtained in earlier IRIS2 observations and are significantly higher than expected from the Venus International Reference Atmosphere (VIRA) profile. We also report the detection of the corresponding ν=0-1O2 airglow band at with a similar spatial distribution to the ν=0-0 band. Observations in the thermal window have been used to image surface topography using two different methods of cloud correction. We have also obtained images that can be used to study cloud motion.  相似文献   

16.
17.
The reaction kinetics of the butadinyl radical, C4H, with various hydrocarbons detected in the atmosphere of Titan (methane, ethane, propane, acetylene, ethene and methylacetylene) are studied over the temperature range of 39-298 K using the Rennes CRESU (Cinétique de Réaction en Ecoulement Supersonique Uniforme) apparatus. Kinetic measurements were made using the pulsed laser photolysis—laser induced fluorescence technique. The rate coefficients, except for the reaction with methane, all show a negative temperature dependence and can be fitted with the following expressions over the temperature range of this study: ; ; , , . These expressions are not intended to be physically meaningful but rather to provide an easy way to introduce experimental results in photochemical models. They are only valid over the temperature range of the experiments. Possible channels of these reactions are discussed as well as possible consequences of these results for the production of large molecules and hazes in the atmosphere of Titan. These results should also be considered for the photochemistry of Giant Planets.  相似文献   

18.
19.
Solar light gets scattered at cloud top level in Venus’ atmosphere, in the visible range, which corresponds to the altitude of 67 km. We present Doppler velocity measurements performed with the high resolution spectrometer MTR of the Solar telescope THEMIS (Teide Observatory, Canary Island) on the sodium D2 solar line . Observations lasted only 49 min because of cloudy weather. However, we could assess the instrumental velocity sensitivity, per pixel of 1 arcsec, and give a value of the amplitude of zonal wind at equator at .  相似文献   

20.
Darrell F. Strobel 《Icarus》2006,182(1):251-258
Tidal waves driven by Titan's orbital eccentricity through the time-dependent component of Saturn's gravitational potential attain nonlinear, saturation amplitudes (|T|>10 K, , and ) in the upper atmosphere (?500 km) due to the approximate exponential growth as the inverse square root of pressure. The gravitational tides, with vertical wavelengths of ∼100-150 km above 500 km altitude, carry energy fluxes sufficient in magnitude to affect the energy balance of the upper atmosphere with heating rates in the altitude range of 500-900 km.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号