首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 84 毫秒
1.
The D-CIXS X-ray spectrometer on ESA's SMART-1 mission will provide the first global coverage of the lunar surface in X-rays, providing absolute measurements of elemental abundances. The instrument will be able to detect elemental Fe, Mg, Al and Si under normal solar conditions and several other elements during solar flare events. These data will allow for advances in several areas of lunar science, including an improved estimate of the bulk composition of the Moon, detailed observations of the lateral and vertical nature of the crust, chemical observations of the maria, investigations into the lunar regolith, and mapping of potential lunar resources. In combination with information to be obtained by the other instruments on SMART-1 and the data already provided by the Clementine and Lunar Prospector missions, this information will allow for a more detailed look at some of the fundamental questions that remain regarding the origin and evolution of the Moon.  相似文献   

2.
The demonstration of a compact imaging X-ray spectrometer (D-CIXS), which flew on ESA's SMART-1 mission to the Moon (Racca et al., 2001; Foing et al., 2006), was designed to test innovative new technologies for orbital X-ray fluorescence spectroscopy. D-CIXS conducted observations of the lunar surface from January 2005 until SMART-1 impacted the Moon in September 2006. Here, we present scientific observations made during two solar flare events and show the first detection of Titanium Kα from the lunar surface. We discuss the geological implications of these results. We also discuss how experience from D-CIXS has aided the design of a similar instrument (Chandrayaan-1 X-ray Spectrometer (C1XS)) that was launched on the 22nd October 2008 on India's Chandrayaan-1 mission to the Moon.  相似文献   

3.
The advanced Moon micro-imager experiment (AMIE) is the imaging system on board ESA mission to the Moon SMART-1; it makes use of a miniaturised detector and micro-processor electronics developed by SPACE X in the frame of the ESA technical programme. The AMIE micro-imager will provide high resolution CCD images of selected lunar areas and it will perform colour imaging through three filters at 750, 915 and 960 nm with a maximum resolution of 46 m/pixel at the perilune of 500 km. Specific scientific objectives will include (1) imaging of high latitude regions in the southern hemisphere, in particular the South Pole Aitken basin (SPA) and the permanently shadowed regions close to the South Pole, (2) determination of the photometric properties of the lunar surface from observations at different phase angles (physical properties of the regolith), (3) multi-band imaging for constraining the chemical and mineral composition of the surface, (4) detection and characterisation of lunar non-mare volcanic units, (5) study of lithological variations from impact craters and implications for crustal heterogeneity. The AMIE micro-imager will also support a Laser-link experiment to Earth, an On Board Autonomous Navigation investigation and a Lunar libration experiment coordinated with radio science measurements.  相似文献   

4.
The SMART-1 mission has recently arrived at the Moon. Its payload includes D-CIXS, a compact X-ray spectrometer. SMART-1 is a technology evaluation mission, and D-CIXS is the first of a new generation of planetary X-ray spectrometers. Novel technologies enable new capabilities for measuring the fluorescent yield of a planetary surface or atmosphere which is illuminated by solar X-rays. During the extended SMART-1 cruise phase, observations of the Earth showed strong argon emission, providing a good source for calibration and demonstrating the potential of the technique. At the Moon, our initial observations over Mare Crisium show a first unambiguous remote sensing of calcium in the lunar regolith. Data obtained are broadly consistent with current understanding of mare and highland composition. Ground truth is provided by the returned Luna 20 and 24 sample sets.  相似文献   

5.
SMART-1 is the first of the Small Missions for Advanced Research in Technology of the ESA Horizons 2000 scientific programme. The SMART-1 mission is dedicated to testing of new technologies for future cornerstone missions, using Solar-Electric Primary Propulsion (SEPP) in Deep Space. The chosen mission planetary target is the Moon. The target orbit will be polar with the pericentre close to the South-Pole. The pericentre altitude lies between 300 and 2000 km, while the apocentre will extend to about 10,000 km. During the cruise phase, before reaching the Moon, the spacecraft thrusting profile allows extended periods for cruise science. The SMART-1 spacecraft will be launched in the spring of 2003 as an auxiliary passenger on an Ariane 5 and placed into a Geostationary Transfer Orbit (GTO). The expected launch mass is about 370 kg, including 19 kg of payload. The selected type of SEPP is a Hall-effect thruster called PPS-1350. The thruster is used to spiral out of the GTO and for all orbit maneuvers including lunar capture and descent. The trajectory has been optimised by inserting coast arcs and the presence of the Moon's gravitational field is exploited in multiple weak gravity assists.The Development Phase started in October 1999 and is expected to be concluded by a Flight Acceptance Review in January 2003. The short development time for this high technology spacecraft requires a concerted effort by industry, science institutes and ESA centres. This paper describes the mission and the project development status both from a technical and programmatic standpoint.  相似文献   

6.
The UK-built Chandrayaan-1 X-ray Spectrometer (C1XS) is flying as an ESA instrument on India's Chandrayaan-1 mission to the Moon. The Chandrayaan-1 mission launched on the 22nd October 2008 and entered a 100 km polar lunar orbit on the 12th November 2008. C1XS builds on experience gained with the earlier D-CIXS instrument on SMART-1, but will be a technically much more capable instrument. Here we describe the instrument design.  相似文献   

7.
The Chang'e-3(CE-3) lander and rover mission to the Moon was an intermediate step in China's lunar exploration program, which will be followed by a sample return mission. The lander was equipped with a number of remote-sensing instruments including a pair of cameras(Landing Camera and Terrain Camera) for recording the landing process and surveying terrain, an extreme ultraviolet camera for monitoring activities in the Earth's plasmasphere, and a first-ever Moon-based ultraviolet telescope for astronomical observations. The Yutu rover successfully carried out close-up observations with the Panoramic Camera, mineralogical investigations with the VIS-NIR Imaging Spectrometer, study of elemental abundances with the Active Particle-induced X-ray Spectrometer, and pioneering measurements of the lunar subsurface with Lunar Penetrating Radar. This special issue provides a collection of key information on the instrumental designs, calibration methods and data processing procedures used by these experiments with a perspective of facilitating further analyses of scientific data from CE-3 in preparation for future missions.  相似文献   

8.
The UK-built Chandrayaan-1 X-ray Spectrometer (C1XS) will fly as an ESA instrument on India's Chandrayaan-1 mission to the Moon, launched in October 2008. C1XS builds on experience gained with the earlier D-CIXS instrument on SMART-1, but will be a scientifically much more capable instrument. Here we describe the scientific objectives of this instrument, which include mapping the abundances of the major rock-forming elements (principally Mg, Al, Si, Ti, Ca and Fe) in the lunar crust. These data will aid in determining whether regional compositional differences (e.g., the Mg/Fe ratio) are consistent with models of lunar crustal evolution. C1XS data will also permit geochemical studies of smaller scale features, such as the ejecta blankets and central peaks of large impact craters, and individual lava flows and pyroclastic deposits. These objectives all bear on important, and currently unresolved, questions in lunar science, including the structure and evolution of any primordial magma ocean, as revealed by vertical and lateral geochemical variations in the crust, and the composition of the lunar mantle, which will further constrain theories of the Moon's origin, thermal history and internal structure.  相似文献   

9.
The D-CIXS Compact X-ray Spectrometer will provide high quality spectroscopic mapping of the Moon, the primary science target of the ESA SMART-1 mission. D-CIXS consists of a high throughput spectrometer, which will perform spatially localised X-ray fluorescence spectroscopy. It will also carry a solar monitor, to provide the direct calibration needed to produce a global map of absolute lunar elemental abundances, the first time this has been done. Thus it will achieve ground breaking science within a resource envelope far smaller than previously thought possible for this type of instrument, by exploiting two new technologies, swept charge devices and micro-structure collimators. The new technology does not require cold running, with its associated overheads to the spacecraft. At the same time it will demonstrate a radically novel approach to building a type of instrument essential for the BepiColombo mission and potential future planetary science targets.  相似文献   

10.
We describe the future SMART-1 European Space Mission whose objective is to study the lunar surface from a polar lunar orbit. In particular, it is anticipated that selected regions of the Moon will be photographed using the AMIE camera with a mean spatial resolution of about 100 m in three spectral channels (0.75, 0.92, and 0.96 m) over a wide range of phase angles. Since these spectral channels and the AMIE resolution are close to those of the UVVIS camera onboard the Clementine spacecraft, the simultaneous processing of SMART-1 and Clementine data can be planned, for example, to obtain phase-ratio images. These images carry information on the structural features of the lunar surface. In particular, UVVIS/Clementine data revealed a photometric anomaly at the Apollo-15 landing site associated with the blowing of the lunar regolith by the lander engine. Anomalies were found in the ejection zones of several fresh craters.  相似文献   

11.
Differential very-long-baseline interferometric observations of signals from Apollo Lunar Surface Experiment Package telemetry transmitters will yield the relative projected positions of the transmitters with uncertainty of only 1-3 m, set mainly by uncertainty of the lunar ephemeris. Noise and systematic instrumental errors which in the past affected similar observations have been reduced to the equivalent of a few centimeters on the lunar surface by the development of a new type of differential receiver. Continued observations should yield a determination of the motion of the Moon about its center of mass with uncertainty less than 1 s of selenocentric arc. Improvements (by other means) in our knowledge of the Moon's orbital motion would allow a further order-of-magnitude refinement in the libration and relative position results obtainable by differential VLBI.Communication presented at the conference on Lunar Dynamics and Observational Coordinate Systems held January 15–17, 1973 at the Lunar Science Institute, Houston, Tex. U.S.A.  相似文献   

12.
Preparing for future human exploration of the Moon and beyond is an interdisciplinary exercise, requiring new technologies and the pooling of knowledge and expertise from many scientific areas. The European Space Agency is working to develop a Lunar Lander, as a precursor to future human exploration activities. The mission will demonstrate new technologies and perform important preparatory investigations. In the biological sciences the two major areas requiring investigation in advance of human exploration are radiation and its effects on human physiology and the potential toxicity of lunar dust. This paper summarises the issues associated with these areas and the investigations planned for the Lunar Lander to address them.  相似文献   

13.
14.
The chemical reactivity of lunar dust is an important topic of inquiry, of fundamental scientific value and of practical relevance to human exploration of the Moon. Lunar specimens brought back to Earth by the Apollo astronauts provide a key resource for ground-based studies which help to define the initial avenues of inquiry. Even among the limited samples obtained from equatorial exploration sites, however, chemical reactivity analyses indicates that lunar dust is heterogeneous, a finding that parallels heterogeneity revealed by remote sensing studies. The region-to-region variability of lunar dust argues that a full understanding of its chemical reactivity will require in situ analysis, on a region-to-region basis. The data from such investigations will help to shape our understanding of the potential for lunar dust toxicity, and will provide insight into the types of reactions that may occur with when lunar dust interacts with organic molecules on the surface of the Moon.  相似文献   

15.
The Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft will orbit the Moon at an altitude of ≈50 km with a payload that includes the Ultraviolet Spectrometer (UVS) instrument, which will obtain high spectral resolution measurements at near-ultraviolet and visible wavelengths (≈231-826 nm). When LADEE/UVS observes the lunar limb from within the shadow of the Moon it is anticipated that it will detect a lunar horizon glow (LHG) due to sunlight scattered from submicron exospheric dust, as well as emission lines from exospheric gases (particularly sodium), in the presence of the bright coronal and zodiacal light (CZL) background. A modularized code has been developed at NMSU for simulations of scattered light sources as observed by orbiting instruments in lunar shadow. Predictions for the LADEE UVS and star tracker cameras indicate that LHG, sodium (Na) emission lines, and CZL can be distinguished based on spatial morphology and spectral characteristics, with LHG dominant at blue wavelengths (∼250-450 nm) and small tangent heights. If present, LHG should be readily detected by LADEE/UVS and distinguishable from other sources of optical scattering. Observations from UVS and the other instruments aboard LADEE will significantly advance our understanding of how the Moon interacts with the surrounding space environment; these new insights will be applicable to the many other airless bodies in the solar system.  相似文献   

16.
近年来月球探测已经进入了一个全新的时代。特别是 1 990年以来 ,多个月球探测计划已经被成功实现 ,而且另外还有多个探测计划也在准备当中 ,并将在未来的几年内发射升空。在这种背景之下 ,中国的航天机构和有关的科学家也开始积极酝酿和开发自己的月球探测计划。这些月球探测计划将利用卫星上搭载的各种仪器探测和测量月球的地质和地理特性、化学成分和矿物组成、月球物理学特征以及包含地球大气在内的地月空间环境和行星际空间环境 ;进一步研究月球的起源和演化 ,探明月面环境 ,研究太阳等离子体物理 ,提供月面天文台和月面长期科研基地的候选地址 ,调查月球上的可利用资源 ,为将来开发月球提供充实的背景资料。参与新一轮的月球探测同样也为中国天文学研究带来了新的机会。  相似文献   

17.
Age of geological units, surface mineralogical composition, volcanism, tectonics and cratering are major keys for unravelling the geodynamic and geological history of a planet. Thanks to the extensive exploration of the 1960s and 1970s and the compositional mapping of the 1990s missions (Galileo, Clementine and Luna Prospector), the Moon has a unique geological dataset among the extraterrestrial Solar System bodies. The recent and on-going missions, along with the future plans for lunar exploration, will together acquire an extraordinary amount of data. This should provide a solid basis to meet broad objectives like the constraints on the heterogeneity of Lunar composition and the presence of water deposits, the understanding of volcanic and tectonic evolution as well as more specific issues such as the genetic classification of volcanic domes, origin of the dark-halos craters, lava flow emplacement mechanisms, and the kinematics and deformational styles of tectonic structures. The Italian small mission MAGIA (Missione Altimetrica Gravimetrica geochImica lunAre) will be equipped with an integrated context camera and imaging spectrometer, a high resolution camera and a radar altimeter. The spatial and spectral resolution of these instruments will provide data products complementing past and ongoing Lunar mission data, particularly for the polar regions where a full resolution coverage is planned. A general review of some still unanswered questions on lunar surface composition, cold traps, volcanism, tectonics and cratering records is presented here in order to illustrate the potential contribution of MAGIA to these subjects.  相似文献   

18.
The C1XS X-ray Spectrometer on Chandrayaan-1   总被引:1,自引:0,他引:1  
The Chandrayaan-1 X-ray Spectrometer (C1XS) is a compact X-ray spectrometer for the Indian Space Research Organisation (ISRO) Chandrayaan-1 lunar mission. It exploits heritage from the D-CIXS instrument on ESA's SMART-1 mission. As a result of detailed developments to all aspects of the design, its performance as measured in the laboratory greatly surpasses that of D-CIXS. In comparison with SMART-1, Chandrayaan-1 is a science-oriented rather than a technology mission, leading to far more favourable conditions for science measurements. C1XS is designed to measure absolute and relative abundances of major rock-forming elements (principally Mg, Al, Si, Ca and Fe) in the lunar crust with spatial resolution ?25 FWHM km, and to achieve relative elemental abundances of better than 10%.  相似文献   

19.
Understanding the structure of and dynamic processes in the deep interior of planets is crucial for understanding their origin and evolution. An effective way to constrain them is through observation of rotation and subsequent simulation. In this paper, a numerical model of the Moon’s rotation and orbital motion is developed based on previous studies and implemented independently. The Moon is modeled as an anelastic body with a liquid core. The equations of the rotation were nonlinear and the Euler angles are cross coupled. We solve them numerically via the Runge-Kutta-Fehlberg (RKF) and multi-steps Adams-Bashforth-Moulton (ABM) predictor-corrector numerical integration. We have found that adequate accuracy is maintained by taking twelve steps per day using eleventh differences in the integrating polynomial. The lunar orbital and rotational equations are strongly coupled, so we integrated the rotation and motion simultaneously. We refer to other planetary informations from the newest planetary and lunar ephemeris INPOP17a, which is reported had fitted the longest LLR (Lunar Laser Ranging) observation data. Using the model GL660B from GRAIL (Gravity Recovery and Interior Laboratory) mission, we firstly compare our numerical results with the INPOP17a to prove the reasonability of our model. After that we apply the lunar gravity model CEGM02 determined from Chang’E-1 mission and SGM100h from SELENE mission to our model, the difference between results from CEGM02 and GL660B are less than \(-0.20 \sim0.15\) arc-second, and \(-0.25 \sim0.20\) arc-second for GL660B and SGM100h. Compared to SGM100h, the results show that the low degree and order coefficients (less than 6 from this paper) of lunar gravity field were improved in CEGM02 as expected. It is the first time to demonstrate that these models can be applied to lunar rotation model. These results manifest that a development of the gravity field measure will help us to know the rotation motion more precisely.  相似文献   

20.
The mineralogy of a planetary surface is a diagnostic product of its formation and geologic evolution. Global assessment of lunar mineralogy at high spatial resolution has been a long standing goal of lunar exploration. Currently, the only global data available for such study is multispectral imagery from the Clementine mission. We use the detailed compositional, petrographic, and spectroscopic data of lunar soils produced by the Lunar Soil Characterization Consortium to explore the use of multispectral imaging as a diagnostic tool. We compare several statistically optimized formulations of links between spectral and mineral parameters and apply them to Clementine UV-VIS data. The most reliable results are for estimations of pyroxene abundance and maturity parameters (agglutinate abundance, Is/FeO). Estimations of different pyroxene composition (low-Ca versus high-Ca) appear good in a relative sense, but absolute values are limited by residual wavelength dependent Clementine photometric calibrations. Since the signal-to-noise of Clementine multispectral data is good at the 1-km scale, almost any combination of parameters that capture inherent spectral variance can provide spatially coherent maps, although the parameters may not actually be directly related to composition. Clementine estimates are useful for identifying scientific or exploration targets for imaging spectrometer sensors of the next generation that are specifically designed to characterize mineralogy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号