首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A mission to Mars including two Small Stations, two Penetrators and an Orbiter was launched at Baikonur, Kazakhstan, on 16 November 1996. This was called the Mars-96 mission. The Small Stations were expected to land in September 1997 (Ls approximately 178 degrees), nominally to Amazonis-Arcadia region on locations (33 N, 169.4 W) and (37.6 N, 161.9 W). The fourth stage of the Mars-96 launcher malfunctioned and hence the mission was lost. However, the state of the art concept of the Small Station can be applied to future Martian lander missions. Also, from the manufacturing and performance point of view, the Mars-96 Small Station could be built as such at low cost, and be fairly easily accommodated on almost any forthcoming Martian mission. This is primarily due to the very simple interface between the Small Station and the spacecraft. The Small Station is a sophisticated piece of equipment. With the total available power of approximately 400 mW the Station successfully supports an ambitious scientific program. The Station accommodates a panoramic camera, an alpha-proton-x-ray spectrometer, a seismometer, a magnetometer, an oxidant instrument, equipment for meteorological observations, and sensors for atmospheric measurement during the descent phase, including images taken by a descent phase camera. The total mass of the Small Station with payload on the Martian surface, including the airbags, is only 32 kg. Lander observations on the surface of Mars combined with data from Orbiter instruments will shed light on the contemporary Mars and its evolution. As in the Mars-96 mission, specific science goals could be exploration of the interior and surface of Mars, investigation of the structure and dynamics of the atmosphere, the role of water and other materials containing volatiles and in situ studies of the atmospheric boundary layer processes. To achieve the scientific goals of the mission the lander should carry a versatile set of instruments. The Small Station accommodates devices for atmospheric measurements, geophysical and geochemical studies of the Martian surface and interior, and cameras for descent phase and panoramic views. These instruments would be able to contribute remarkably to the process of solving some of the scientific puzzles of Mars.  相似文献   

2.
December 25th 2003 will see the Beagle 2 lander arrive at the surface of Mars in the Isidis region, allowing for the first time in situ measurements of ultraviolet (UV) flux directly from the surface of Mars through the use of a sensor designed as part of a miniaturised environmental package. The expected conditions the sensor will experience are studied here, and the detection signatures for phenomenon such as dust devils, H2O clouds ands near-surface fogs are presented. The beginning and end of mission surface fluxes show little variation, though the period towards mid-nominal mission does experience a maximum in total daily dose levels. Diurnal profiles are calculated highlighting the effects of increased scattering towards shorter wavelengths. A possible dust storm scenario is presented, and the effect upon component UV fluxes is shown to reverse the relative contributions of direct and diffuse components of the total UV flux. The presence of cloud formation above the landing site will be detectable though the observation of elevated diffuse/direct flux ratios. Near-surface morning fogs show a characteristic ‘dip’ in the morning profile when compared to clear mornings, allowing their detection on cloud-free mornings through post-event analysis of long term data. Predicted Phobos eclipses are investigated at each of the sensor centre wavelengths, and show greatest reduction in relative intensity at short wavelengths. Observations of near-miss eclipse events will also be possible, through monitoring of the diffuse UV flux. Dust devil encounters are shown to create a double minima lightcurve, with the depth of the minima dependent upon the total dust loading of the vortex. The effects of these changing conditions on DNA-weighted irradiances are investigated. Possible dust storms provide the greatest increase in biological protection, whereas expected cloud formations at the Beagle 2 site are found to offer negligible protection. Within just five minutes of landing >95% of any Bacillus subtilis-like bacteria present on the surface of the craft will have lost viability.  相似文献   

3.
The study of the elements and molecules of astrobiological interest on the Moon can be made with the Gas Analysis Package (GAP) and associated instruments developed for the Beagle 2 Mars Express Payload. The permanently shadowed polar regions of the Moon may offer a unique location for the “cold-trapping” of the light elements (i.e. H, C, N, O, etc.) and their simple compounds. Studies of the returned lunar samples have shown that lunar materials have undergone irradiation with the solar wind and adsorb volatiles from possible cometary and micrometeoroid impacts. The Beagle 2’s analytical instrument package including the sample processing facility and the GAP mass spectrometer can provide vital isotopic information that can distinguish whether the lunar volatiles are indigenous to the moon, solar wind derived, cometary in origin or from meteoroids impacting on the Moon. As future Lunar Landers are being considered, the suite of instruments developed for the Mars Beagle 2 lander can be consider as the baseline for any lunar volatile or resource instrument package.  相似文献   

4.
For planetary landing missions, the capability to acquire samples of soil and rock is of high importance whenever complex analyses (e.g. isotopic studies) on these materials are to be carried out, or when samples are to be returned to Earth. Not only surface samples are of relevance, but in recent concepts at least for Mars landing missions also subsurface samples are required. Subsurface material on Mars is believed to have been protected from the inferred oxidants at the immediate surface while also being protected from the UV influx. Therefore, there is considerable hope that in subsurface soil samples on Mars, at least organic matter delivered by meteorites may be detected, and possibly also relics of earlier simple microbial life on the planet. Likewise, samples from the inside of Martian surface rocks promise to have been protected from weathering and for the same reason they are important for organic chemistry studies. In this paper, an overview is given of the development and science of two different subsurface sampling devices for the Beagle 2 lander of ESA's Mars Express mission, being a “Mole” subsurface soil sampler and a small rock coring and sampling mechanism. Besides their sampling function, both the Mole and the Corer/Grinder will provide data on physical properties of Martian soils and rock, respectively, through the way they interact with the sampled materials. Details of the Mole and Corer/Grinder design are presented, along with results of recent tests with prototypes in the laboratory on physically analogous sample materials.  相似文献   

5.
The Isidis Planitia region on Mars usually is regarded as a comparably attractive site for landing missions based on engineering constraints such as elevation and smooth regional topography. The Mars Express landed element Beagle 2 was deployed to this area, and the southern margin of the basin was selected as one of the backup landing sites for the NASA Mars Exploration Rovers.Especially in the context of the Beagle 2 mission, Isidis Planitia has been discussed as a place which might have experienced a volatile-rich history with associated potential for biological activity [e.g. Bridges et al., 2003. Selection of the landing site in Isidis Planitia of Mars Probe Beagle 2. J. Geophys. Res. 108(E1), 5001, doi: 10.1029/2001JE001820]. However the measurements of by the GRS instrument on Mars Odyssey indicate a maximum inferred water abundance of only 3 wt% in the upper few meters of the surface [Feldman et al., 2004. Global distribution of near-surface hydrogen on Mars. J. Geophys. Res. 109, E09006, doi: 10.1029/2003JE002160]. Based on these measurements this area seems to be one of the driest spots in the equatorial region of Mars.To support future landing site selections we took a more detailed look at the minimum burial depth of stable ice deposits in this area, focusing as an example on the planned Beagle 2 landing site. We are especially interested in the likelihood of ground ice deposits within the range of proposed subsurface sampling tools as drills or ‘mole’-like devices [Richter et al., 2002. Development and testing of subsurface sampling devices for the Beagle 2 Lander. Planet. Space Sci. 50, 903-913] given reasonable physical constraints for the surface and near surface material.For a mission like ExoMars [Kminek, G., Vago, J.L., 2005. The Aurora Exploration Program—The ExoMars Mission. In: Proceedings of the 35th Lunar and Planetary Science Conference, abstract no. 1111, 15-19 March 2004, League City, TX] with a focus on finding traces of fossil life the area might be of potential interest, because these traces would be better conserved in the dry soil. Modeling and measurement indicate that Isidis Planitia is indeed a dry place and any hypothetical ground ice deposits in this region are out of range of currently proposed sampling devices.  相似文献   

6.
To approach basic scientific questions on the origin and evolution of planetary bodies such as planets, their satellites and asteroids, one needs data on their chemical composition. The measurements of gamma-rays, X-rays and neutrons emitted from their surface materials provide information on abundances of major elements and naturally radioactive gamma-ray emitters. Neutron spectroscopy can provide sensitive maps of hydrogen-and carbon-containing compounds, even if buried, and can uniquely identify layers of carbon-dioxide frost. Nuclear spectroscopy, as a means of compositional analysis, has been applied via orbital and lander spacecraft to extrater-restrial planetary bodies:the Moon, Venus, Mars, Mercury and asteroids. The knowledge of their chemical abundances, especially concerning the Moon and Mars, has greatly increased in recent years. This paper describes the principle of nuclear spectroscopy, nuclear planetary instruments carried on planetary missions so far, and the nature of observational results and findings of the Moon and Mars, recently obtained by nuclear spectroscopy.  相似文献   

7.
The Chang'e-3(CE-3) lander and rover mission to the Moon was an intermediate step in China's lunar exploration program, which will be followed by a sample return mission. The lander was equipped with a number of remote-sensing instruments including a pair of cameras(Landing Camera and Terrain Camera) for recording the landing process and surveying terrain, an extreme ultraviolet camera for monitoring activities in the Earth's plasmasphere, and a first-ever Moon-based ultraviolet telescope for astronomical observations. The Yutu rover successfully carried out close-up observations with the Panoramic Camera, mineralogical investigations with the VIS-NIR Imaging Spectrometer, study of elemental abundances with the Active Particle-induced X-ray Spectrometer, and pioneering measurements of the lunar subsurface with Lunar Penetrating Radar. This special issue provides a collection of key information on the instrumental designs, calibration methods and data processing procedures used by these experiments with a perspective of facilitating further analyses of scientific data from CE-3 in preparation for future missions.  相似文献   

8.
The thermo-mechanical properties of planetary surface and subsurface layers control to a high extent in which way a body interacts with its environment, in particular how it responds to solar irradiation and how it interacts with a potentially existing atmosphere. Furthermore, if the natural temperature profile over a certain depth can be measured in situ, this gives important information about the heat flux from the interior and thus about the thermal evolution of the body. Therefore, in most of the recent and planned planetary lander missions experiment packages for determining thermo-mechanical properties are part of the payload. Examples are the experiment MUPUS on Rosetta's comet lander Philae, the TECP instrument aboard NASA's Mars polar lander Phoenix, and the mole-type instrument HP3 currently developed for use on upcoming lunar and Mars missions. In this review we describe several methods applied for measuring thermal conductivity and heat flux and discuss the particular difficulties faced when these properties have to be measured in a low pressure and low temperature environment. We point out the abilities and disadvantages of the different instruments and outline the evaluation procedures necessary to extract reliable thermal conductivity and heat flux data from in situ measurements.  相似文献   

9.
The stereo camera system (SCS) was designed to provide wide-angle multi-spectral stereo imaging of the Beagle 2 landing site. Based on the Space-X micro-cameras, the primary objective was to construct a digital elevation model of the area in reach of the lander's robot arm. The SCS technical specifications and scientific objectives are described; these included panoramic 3-colour imaging to characterise the landing site; multi-spectral imaging to study the mineralogy of rocks and soils beyond the reach of the arm and solar observations to measure water vapour absorption and the atmospheric dust optical density. Also envisaged were stellar observations to determine the lander location and orientation, multi-spectral observations of Phobos & Deimos and observations of the landing site to monitor temporal changes.  相似文献   

10.
Remote observations of the atmospheric water vapour from the Mars orbit were usually carried out to study its global distribution and variability. Measurements of the water vapour abundance onboard the landers have recently become an important complement to the orbital sounding. Narrow-band filter photometry and spectroscopy of the solar radiation from the surface of the planet proved to be a powerful tool in the study of atmospheric water. The Imager for Mars Pathfinder (IMP) was the first instrument to measure its amount from the surface. The Surface Stereo Imager (SSI) onboard the Mars Polar Lander (MPL) was to follow but the spacecraft was lost at landing. Nevertheless significant expertise in the optical measurements of atmospheric H2O was gained during these missions. This paper summarizes this experience emphasizing the radiative transfer aspects of the problem. The results of this study could be of importance for future missions to Mars.  相似文献   

11.
The conditions for video transmission from the panoramic camera of the Mars-3 lander are analyzed. The latter is known to have made the first soft landing on Mars in 1973 during a severe dust storm resulting in damage to the lander. This damage is believed to have reduced the lander’s operation time to 20 s and, apparently, prevented it from achieving the necessary orientation on the surface. If we assume that the lander is lying on its side, then the camera’s panoramic axis would be not vertical, but nearly horizontal. In such a case, we can reproduce, by removing the noise and interferences from the video signal by modern methods, a panoramic fragment, which can help assess the structure of the surface near the landing site of Mars-3.  相似文献   

12.
The absolute chronology of Mars is poorly known and, as a consequence, a key science aim is to perform accurate radiometric dating of martian geological materials. The scientific benefits of in situ radiometric dating are significant and arguably of most importance is the calibration of the martian cratering rate, similar to what has been achieved for the Moon, to reduce the large uncertainties on absolute boundary ages of martian epochs. The Beagle 2 Mars lander was capable of performing radiometric date measurements of rocks using the analyses from two instruments in its payload: (i) the X-ray Spectrometer (XRS) and (ii) the Gas Analysis Package (GAP). We have investigated the feasibility of in situ radiometric dating using the K-Ar technique employing flight-like versions of Beagle 2 instrumentation. The K-Ar ages of six terrestrial basalts were measured and compared to the ‘control’ Ar-Ar radiometric ages in the range 171-1141 Ma. The K content of each basalt was measured by the flight spare XRS and the 40Ar content using a laboratory analogue of the GAP. The K-Ar ages of five basalts broadly agreed with their corresponding Ar-Ar ages. For one final basalt, the 40Ar content was below the detection limit and so an age could not be derived. The precision of the K-Ar ages was ∼30% on average. The conclusions from this study are that careful attention must be paid to improving the analytical performance of the instruments, in particular the accuracy and detection limits. The accuracy of the K and Ar measurements are the biggest source of uncertainty in the derived K-Ar age. Having investigated the technique using flight-type planetary instrumentation, we conclude that come of the principle challenges of conducting accurate in situ radiometric dating on Mars using instruments of these types include determining the sample mass, ensuring all the argon is liberated from the sample given the maximum achievable temperature of the mass spectrometer ovens, and argon loss and non-radiogenic argon in the analysed samples.  相似文献   

13.
The surface of Mars is covered by weathered material. Mars' rusty red colour in particular is commonly ascribed to ferric iron-bearing minerals. The planet's surface is generally iron rich. Mössbauer spectroscopy is a powerful tool for quantitative mineralogical analysis of Fe-bearing minerals. Consequently, the miniaturized Mössbauer spectrometer MIMOS II is part of the payload of NASA's twin Mars Exploration Rovers “Spirit” and “Opportunity”, and ESA's ill-fated Mars Express lander “Beagle 2”. Both Mars Exploration Rovers are currently conducting successful surface operations on Mars. In this paper, we give a brief insight into mission operations with respect to the reconstruction of local weathering scenarios at the landing sites, which in turn will help to illuminate the climatic history of the planet. Mössbauer spectra obtained in preparation of the mission from the SNC meteorites Nakhla, Dar al Gani 476, and Sayh al Uhaymir, show weathering and other alteration features. Preliminary results of laboratory weathering experiments on Fe-bearing minerals (olivine and pyroxene) show the importance of analysing individual minerals to understand weathering of more complex mineral assemblages like, e.g., basalt.  相似文献   

14.
In the frame of a comparison between Earth, Venus, and Mars, a vision on future geodesy missions to Mars is discussed with particular focus on furthering our understanding of the interior, rotation, and orientation of this terrestrial planet. We explain how radioscience instruments can be used to observe the rotation and orientation and therewith to study the deep interior of Mars and its global atmosphere dynamics. Transponders in X-band and Ka-band are proposed with radio links between a lander or a rover and an orbiter around Mars and/or directly to the Earth. The radio budget links are studied in the frame of possible mission constraints and simulations are performed, which show that important information on the interior of Mars can be obtained from the radioscience data. From the observation of Mars’ orientation in space and of tidal effects on a spacecraft orbiting around Mars we show that it is possible for instance to constrain the dimension and composition of the core, the percentage of light element within the core, and to determine the presence of a pressure-induced mineral-phase transition at the bottom of the mantle.  相似文献   

15.
16.
While steady thruster jets caused only modest surface erosion during previous spacecraft landings on the Moon and Mars, the pulsed jets from the Phoenix spacecraft led to extensive alteration of its landing site on the martian arctic, exposed a large fraction of the subsurface water ice under the lander, and led to the discovery of evidence for liquid saline water on Mars. Here we report the discovery of the ‘explosive erosion’ process that led to this extensive erosion. We show that the impingement of supersonic pulsed jets fluidizes porous soils and forms cyclic shock waves which propagate through the soil and produce erosion rates more than an order of magnitude larger than that of other jet-induced processes. The understanding of ‘explosive erosion’ allows the calculation of bulk physical properties of the soils altered by it, provides insight into a new behavior of granular flow at extreme conditions and explains the rapid alteration of the Phoenix landing site’s ground morphology at the northern arctic plains of Mars.  相似文献   

17.
NASA and ESA have outlined visions for solar system exploration that will include a series of lunar robotic precursor missions to prepare for, and support a human return to the Moon, and future human exploration of Mars and other destinations, including possibly asteroids. One of the guiding principles for exploration is to pursue compelling scientific questions about the origin and evolution of life. The search for life on objects such as Mars will require careful operations, and that all systems be sufficiently cleaned and sterilized prior to launch to ensure that the scientific integrity of extraterrestrial samples is not jeopardized by terrestrial organic contamination. Under the Committee on Space Research’s (COSPAR’s) current planetary protection policy for the Moon, no sterilization procedures are required for outbound lunar spacecraft, nor is there a different planetary protection category for human missions, although preliminary COSPAR policy guidelines for human missions to Mars have been developed. Future in situ investigations of a variety of locations on the Moon by highly sensitive instruments designed to search for biologically derived organic compounds would help assess the contamination of the Moon by lunar spacecraft. These studies could also provide valuable “ground truth” data for Mars sample return missions and help define planetary protection requirements for future Mars bound spacecraft carrying life detection experiments. In addition, studies of the impact of terrestrial contamination of the lunar surface by the Apollo astronauts could provide valuable data to help refine future Mars surface exploration plans for a human mission to Mars.  相似文献   

18.
The Mars climate database (MCD) is a database of statistics based on output from physically consistent numerical model simulations which describe the climate and surface environment of Mars. It is used here to predict the meteorological environment of the Beagle 2 lander site. The database was constructed directly on the basis of output from multiannual integrations of two general circulation models, developed jointly at Laboratoire de Météorologie Dynamique du Centre National de la Recherche Scientifique, France, and the University of Oxford, UK. In an atmosphere with dust opacities similar to that observed by Mars Global Surveyor, the predicted surface temperature at the time of landing (Ls=322°, 13:00 local time), is , and varying between ∼186 and over the Martian day. The predicted air temperature at above the surface, the height of the fully extended Beagle 2 robot arm, is at the time of landing. The expected mean wind near the surface on landing is north-westerly in direction, becoming more southerly over the mission. An increase in mean surface pressure is expected during the mission. Heavy global dust storm predictions are discussed; conditions which may only occur in the extreme as the expected time of landing is around the end of the main dust storm period. Past observations show approximately a one in five chance of a large-scale dust storm in a whole Mars year over the landing region, Isidis Planitia. This statistic results from observations of global, encircling, regional and local dust storms but does not include any small-scale dust “events” such as dust devils.  相似文献   

19.
The landers of the Soviet Venera series—from Venera-9 to Venera-14—designed at the Lavochkin Association are a man-made monument to spectacular achievements of Soviet space research. For more than 40 years, they have remained the uneclipsed Soviet results in space studies of the Solar System. Within the last almost half a century, the experiments carried out by the Venera-9 to Venera-14 probes for studying the surface of the planet have not been repeated by any space agency in the world, mainly due to quite substantial technical problems. Since that time, no Russian missions with landers have been sent to Venus either. On Venus, there is an anoxic carbon dioxide atmosphere, where the pressure is 9.2 MPa and the temperature is 735 K near the surface. A long-lived lander should experience these conditions for an appreciable length of time. What technical solutions could provide a longer operation time for a new probe investigating the surface of Venus, if its thermal scheme is constructed similar to that of the Venera series? Onboard new landers, there should be a sealed module, where the physical conditions required for operating scientific instruments are maintained for a long period. At the same time, new high-temperature electronic equipment that remains functional under the above-mentioned conditions have appeared. In this paper, we consider and discuss different variants of the system for a long-lived sealed lander, in particular, the absorption of the penetrating heat due to water evaporation and the thermal protection construction for the instruments with intermediate characteristics.  相似文献   

20.
The evolution of the Martian atmosphere and the potential existence of a past hydrosphere is a scientific issue of great interest in planetary research. Although the first missions to Mars had a focus on surface features and atmospheric properties, some of the missions (e.g., The Soviet Mars 2, 3 and 5) also carried instruments addressing the solar wind interaction with the Martian atmosphere and ionosphere and the potential existence of an intrinsic magnetic field on Mars. However, it took until 1989 before a spacecraft, Phobos-2, was able to carry out a more detailed investigation of the solar wind interaction with Mars. Phobos-2 gave valuable data on the Solar wind interaction with Mars during about 2 months of operations, leading to a better understanding of the solar wind impact on a weakly magnetized planet. However, Phobos-2 also raised a number of critical issues that has left science without adequate data since 1989.Investigations planned for Mars Express will cast new light on important aspects of the solar wind interaction with Mars. ASPERA-3 (Analyzer of Space Plasma and Energetic Atoms) on Mars Express will focus on the overall plasma outflow and monitor remotely the outflow and inflow of energetic neutral atoms produced by charge exchange processes. This report will discuss some of the unsolved issues about the solar wind interaction with Mars and how we plan to address these issues with Mars Express.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号