首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We propose an interpretation of the composition of volatiles observed in comets based on their trapping in the form of clathrate hydrates in the solar nebula. The formation of clathrates is calculated from the statistical thermodynamics of Lunine and Stevenson (1985, Astrophys. J. Suppl. 58, 493-531), and occurs in an evolutionary turbulent solar nebula described by the model of Hersant et al. (2001, Astrophys. J. 554, 391-407). It is assumed that clathrate hydrates were incorporated into the icy grains that formed cometesimals. The strong depletion of the N2 molecule with respect to CO observed in some comets is explained by the fact that CO forms clathrate hydrates much more easily than does N2. The efficiency of this depletion, as well as the amount of trapped CO, depends upon the amount of water ice available in the region where the clathration took place. This might explain the diversity of CO abundances observed in comets. The same theory, applied to the trapping of volatiles around 5 AU, explains the enrichments in Ar, Kr, Xe, C, and N with respect to the solar abundance measured in the deep troposphere of Jupiter [Gautier et al 2001a] and [Gautier et al 2001b].  相似文献   

2.
Spectral observations of Saturn from the far infrared spectrometer aboard the Cassini spacecraft [Flasar, F.M., et al., 2005. Temperatures, winds, and composition in the Saturnian system. Science 307, 1247-1251] have revealed that the C/H ratio in the planet is in fact about twice higher than previously derived from ground based observations and in agreement with the C/H value derived from Voyager IRIS by Courtin et al. [1984. The composition of Saturn's atmosphere at northern temperate latitudes from Voyager IRIS spectra - NH3, PH3, C2H2, C2H6, CH3D, CH4, and the Saturnian D/H isotopic ratio. Astrophys. J. 287, 899-916]. The implications of this measurement are reanalyzed in the present report on the basis that volatiles observed in cometary atmospheres, namely CO2, CH4, NH3 and H2S may have been trapped as solids in the feeding zone of the planet. CH4 and H2S may have been in the form of clathrate hydrates while CO2 presumably condensed in the cooling solar nebula. Carbon may also have been incorporated in organics. Conditions of temperature and pressure ease the hydratation of NH3. Such icy grains were included in planetesimals which subsequently collapsed into the hydrogen envelope of the planet, then resulting in C, N and S enrichments with respect to the solar abundance. Our calculations are consistent, within error bars, with observed elemental abundances on Saturn provided that the carbon trapped in planetesimals was mainly in the form of CH4 clathrate and CO2 ice (and maybe as organics) while nitrogen was in the form of NH3 hydrate. Our approach has implications on the possible pattern of noble gases in Saturn, since we predict that contrary to what is observed in Jupiter, Ar and Kr should be in solar abundance while Xe might be strongly oversolar. The only way to verify this scenario is to send a probe making in situ mass spectrometer measurements. Our scenario also predicts that the 14N/15N ratio should be somewhat smaller in Saturn than measured in Jupiter by Galileo.  相似文献   

3.
Yuan Lian  Adam P. Showman 《Icarus》2010,207(1):373-393
Three-dimensional numerical simulations show that large-scale latent heating resulting from condensation of water vapor can produce multiple zonal jets similar to those on the gas giants (Jupiter and Saturn) and ice giants (Uranus and Neptune). For plausible water abundances (3-5 times solar on Jupiter/Saturn and 30 times solar on Uranus/Neptune), our simulations produce ∼20 zonal jets for Jupiter and Saturn and 3 zonal jets on Uranus and Neptune, similar to the number of jets observed on these planets. Moreover, these Jupiter/Saturn cases produce equatorial superrotation whereas the Uranus/Neptune cases produce equatorial subrotation, consistent with the observed equatorial-jet direction on these planets. Sensitivity tests show that water abundance, planetary rotation rate, and planetary radius are all controlling factors, with water playing the most important role; modest water abundances, large planetary radii, and fast rotation rates favor equatorial superrotation, whereas large water abundances favor equatorial subrotation regardless of the planetary radius and rotation rate. Given the larger radii, faster rotation rates, and probable lower water abundances of Jupiter and Saturn relative to Uranus and Neptune, our simulations therefore provide a possible mechanism for the existence of equatorial superrotation on Jupiter and Saturn and the lack of superrotation on Uranus and Neptune. Nevertheless, Saturn poses a possible difficulty, as our simulations were unable to explain the unusually high speed (∼) of that planet’s superrotating jet. The zonal jets in our simulations exhibit modest violations of the barotropic and Charney-Stern stability criteria. Overall, our simulations, while idealized, support the idea that latent heating plays an important role in generating the jets on the giant planets.  相似文献   

4.
J.A. Fernández  W.-H. Ip 《Icarus》1981,47(3):470-479
The dynamical evolution of bodies under the gravitational influence of the accreting proto-Uranus and proto-Neptune is investigated. The main aim of this study is to analyze the interrelations between the accretion of Uranus and Neptune with other processes of cosmological importance as, for example, the formation of a cometary reservoir from bodies placed into near-parabolic orbits by planetary perturbations and the scattering of bodies to the region of the terrestrial planets. Starting with a mass ratio (initial mass/present mass) of 0.1, Uranus and Neptune acquire masses close to their present ones in a time scale of 108 years. Neptune is found to be the most important contributor of comets to the cometary reservoir. The time scale of bodies scattered by Neptune to reach near-parabolic orbits (semimajor axes a > 104 AU)is about 109 years. The contribution of Uranus was partially inhibited because a large part of the residual bodies of its accretion zone fell under the strong gravitational influence of Jupiter and Saturn. A significant fraction of the bodies dispersed by Uranus and Neptune reached the region of the terrestrial planets in a time scale of some 108 years.  相似文献   

5.
Statistical aspects of the question of the dynamical relationship of long-period comets to giant planets (Saturn, Uranus, Neptune), dwarf planets (Pluto, 2003 EL61, 2003 UB313), and five hypothetical planets are investigated. Data for 859 and 888 comets (2005, 2006) with periods P > 200 years are used in the statistics. No comets of the Kreutz, Marsden, Kracht, and Meyer groups are considered. The minimum interorbital distances of comets from the listed planetary bodies are mainly analyzed. Effects testifying to the kinematical relationship of some of the comets to planets have been established by testing the cometary data relative to 67 planes. The distribution of the perihelia of long-period comets is also discussed.  相似文献   

6.
J.A. Fernández  W.-H. Ip 《Icarus》1984,58(1):109-120
The final stage of the accretion of Uranus and Neptune is numerically investigated. The four Jovian planets are considered with Jupiter and Saturn assumed to have reached their present sizes, whereas Uranus and Neptune are taken with initial masses 0.2 of their present ones. Allowance is made for the orbital variation of the Jovian planets due to the exchange of angular momentum with interacting bodies (“planetesimals”). Two possible effects that may have contributed to the accretion of Uranus and Neptune are incorporated in our model: (1) an enlarged cross section for accretion of incoming planetesimals due to the presence of extended gaseous envelopes and/or circumplanetary swarms of bodies; and (2) intermediate protoplanets in mid-range orbits between the Jovian planets. Significant radial displacements are found for Uranus and Neptune during their accretion and scattering of planetesimals. The orbital angular momentum budgets of Neptune, Uranus, and Saturn turn out to be positive; i.e., they on average gain orbital angular momentum in their interactions with planetesimals and hence they are displaced outwardly. Instead, Jupiter as the main ejector of bodies loses orbital angular momentum so it moves sunward. The gravitational stirring of planetesimals caused by the introduction of intermediate protoplanets has the effect that additional solid matter is injected into the accretion zones of Uranus and Neptune. For moderate enlargements of the radius of the accretion cross section (2–4 times), the accretion time scale of Uranus and Neptune are found to be a few 108 years and the initial amount of solid material required to form them of a few times their present masses. Given the crucial role played by the size of the accretion cross section, questions as to when Uranus and Neptune acquired their gaseous envelopes, when the envelopes collapsed onto the solid cores, and how massive they were are essential in defining the efficiency and time scale of accretion of the two outer Jovian planets.  相似文献   

7.
S.K. Atreya  T.M. Donahue 《Icarus》1975,24(3):358-362
Model ionospheres are calculated for Saturn, Uranus, and Neptune. Protons are the major ions above 150 km altitude measured from a reference level where the hydrogen density is 1 × 1016 molecules cm?3, while below 150 km quick conversion of protons to H3+ ions by a three-body association mechanism leads to a rapid removal of ionization in dissociative recombination of H3+. Electron density maxima are found at about 260 km for Saturn and Uranus and 200 km for Neptune. Present knowledge of the physical and chemical processes in the atmospheres of these planets suggests that their ionospheres probably will not be Jupiter-like.  相似文献   

8.
A.R.W. McKellar 《Icarus》1974,22(2):212-219
The effects of pressure shifts on the formation of H2 quadrupole absorption lines in the atmospheres of the major planets have not previously been considered. It is shown that, although pressure shifts have not been measured for the 3-0 and 4-0 H2 bands, they can be estimated from existing experimental and theoretical knowledge. Using these estimates, it is shown that the effect of pressure shifts is negligible for Jupiter and small for Saturn, but quite large for Uranus. Consideration of the shifts reduces H2 abundances determined for Uranus by from 25% to 50% as compared to calculations in which the shifts are ignored. The effect may be even larger for Neptune.  相似文献   

9.
We investigated the stable area for fictive Trojan asteroids around Neptune’s Lagrangean equilibrium points with respect to their semimajor axis and inclination. To get a first impression of the stability region we derived a symplectic mapping for the circular and the elliptic planar restricted three body problem. The dynamical model for the numerical integrations was the outer Solar system with the Sun and the planets Jupiter, Saturn, Uranus and Neptune. To understand the dynamics of the region around L 4 and L 5 for the Neptune Trojans we also used eight different dynamical models (from the elliptic problem to the full outer Solar system model with all giant planets) and compared the results with respect to the largeness and shape of the stable region. Their dependence on the initial inclinations (0° < i < 70°) of the Trojans’ orbits could be established for all the eight models and showed the primary influence of Uranus. In addition we could show that an asymmetry of the regions around L 4 and L 5 is just an artifact of the different initial conditions.  相似文献   

10.
Th. Encrenaz  M. Combes 《Icarus》1982,49(1):27-34
A method for deriving mixing ratios in the outer planets, mostly independent of scattering processes, is applied to Uranus. It is shown that scattering processes play a major role in the line formation in the atmospheres of Uranus and Neptune; consequently, abundance ratios derived from a reflecting-layer model can be questionable. Using our method, we derive for Uranus DC < 6 × 10?3, which is significantly smaller than our result on Jupiter. The simplest explanation implies a C/H enrichment by at least a factor of 6 relative to the solar value.  相似文献   

11.
Both Uranus and Neptune are thought to have strong zonal winds with velocities of several 100 m s−1. These wind velocities, however, assume solid-body rotation periods based on Voyager 2 measurements of periodic variations in the planets’ radio signals and of fits to the planets’ magnetic fields; 17.24 h and 16.11 h for Uranus and Neptune, respectively. The realization that the radio period of Saturn does not represent the planet’s deep interior rotation and the complexity of the magnetic fields of Uranus and Neptune raise the possibility that the Voyager 2 radio and magnetic periods might not represent the deep interior rotation periods of the ice giants. Moreover, if there is deep differential rotation within Uranus and Neptune no single solid-body rotation period could characterize the bulk rotation of the planets. We use wind and shape data to investigate the rotation of Uranus and Neptune. The shapes (flattening) of the ice giants are not measured, but only inferred from atmospheric wind speeds and radio occultation measurements at a single latitude. The inferred oblateness values of Uranus and Neptune do not correspond to bodies rotating with the Voyager rotation periods. Minimization of wind velocities or dynamic heights of the 1 bar isosurfaces, constrained by the single occultation radii and gravitational coefficients of the planets, leads to solid-body rotation periods of ∼16.58 h for Uranus and ∼17.46 h for Neptune. Uranus might be rotating faster and Neptune slower than Voyager rotation speeds. We derive shapes for the planets based on these rotation rates. Wind velocities with respect to these rotation periods are essentially identical on Uranus and Neptune and wind speeds are slower than previously thought. Alternatively, if we interpret wind measurements in terms of differential rotation on cylinders there are essentially no residual atmospheric winds.  相似文献   

12.
In this paper, we use a statistical thermodynamic approach to quantify the efficiency with which clathrates on the surface of Titan trap noble gases. We consider different values of the Ar, Kr, Xe, CH4, C2H6 and N2 abundances in the gas phase that may be representative of Titan's early atmosphere. We discuss the effect of the various parameters that are chosen to represent the interactions between the guest species and the ice cage in our calculations. We also discuss the results of varying the size of the clathrate cages. We show that the trapping efficiency of clathrates is high enough to significantly decrease the atmospheric concentrations of Xe and, to a lesser extent, of Kr, irrespective of the initial gas phase composition, provided that these clathrates are abundant enough on the surface of Titan. In contrast, we find that Ar is poorly trapped in clathrates and, as a consequence, that the atmospheric abundance of argon should remain almost constant. We conclude that the mechanism of trapping noble gases via clathration can explain the deficiency in primordial Xe and Kr observed in Titan's atmosphere by Huygens, but that this mechanism is not sufficient to explain the deficiency in Ar.  相似文献   

13.
Stephen J. Kortenkamp 《Icarus》2005,175(2):409-418
Numerical simulations of the gravitational scattering of planetesimals by a protoplanet reveal that a significant fraction of scattered planetesimals can become trapped as so-called quasi-satellites in heliocentric 1:1 co-orbital resonance with the protoplanet. While trapped, these resonant planetesimals can have deep low-velocity encounters with the protoplanet that result in temporary or permanent capture onto highly eccentric prograde or retrograde circumplanetary orbits. The simulations include solar nebula gas drag and use planetesimals with diameters ranging from ∼1 to ∼1000 km. Initial protoplanet eccentricities range from ep=0 to 0.15 and protoplanet masses range from 300 Earth-masses (M) down to 0.1M. This mass range effectively covers the final masses of all planets currently thought to be in possession of captured satellites—Jupiter, Saturn, Neptune, Uranus, and Mars. For protoplanets on moderately eccentric orbits (ep?0.1) most simulations show from 5-20% of all scattered planetesimals becoming temporarily trapped in the quasi-satellite co-orbital resonance. Typically, 20-30% of the temporarily trapped quasi-satellites of all sizes came within half the Hill radius of the protoplanet while trapped in the resonance. The efficiency of the resonance trapping combined with the subsequent low-velocity circumplanetary capture suggests that this trapped-to-captured transition may be important not only for the origin of captured satellites but also for continued growth of protoplanets.  相似文献   

14.
This paper is concerned with the interior structure of Uranus and Neptune. Our approach is three-fold. First, a set of three-layer models for both Uranus and Neptune are constructed using a method similar to that used in the study of the terrestrial planets. The variations of the mass density (s) and flattening e(s) with fractional mean radius s for two representative models of Uranus and Neptune are calculated. The results are tabulated. A comparison of these models shows that these two planets are probably very similar to each other in their basic dynamical features. Such similarity is very seldom seen in our solar system. Secondly, we check the conformance between the theoretical results and observational data for the two planets. And thirdly, the 6th degree Stokes zonal parameters for Uranus and for Neptune are predicted, based on the interior models put forward in this paper.  相似文献   

15.
M. Podolak  A.G.W. Cameron 《Icarus》1974,22(2):123-148
Models of the giant planets were constructed based on the assumption that the hydrogen to helium ratio is solar in these planets. This assumption, together with arguments about the condensation sequence in the primitive solar nebula, yields models with a central core of rock and possibly ice surrounded by an envelope of hydrogen, helium, methane, ammonia, and water. These last three volatiles may be individually enhanced due to condensation at the period of core formation. Jupiter was found to have a core of about 40 earth masses and a water enhancement in the atmosphere of about 7.5 times the solar value. Saturn was found to have a core of 20 earth masses and a water enhancement in the atmosphere of about 25 times the solar value. Rock plus ice constitute 75–85% of the mass of Uranus and Neptune. Temperatures in the interiors of these planets are probably above the melting points, if there is an adiabatic relation throughout the interiors. Some aspects of the sensitivities of these results to uncertainties in rotational flattening are discussed.  相似文献   

16.
Using current concepts for the origin of the Jovian planets and current constraints on their interior structure, we argue that the presence of large amounts of “ice” (H2O, CH4, and NH3) in Uranus and Neptune indicates temperatures low enough to condense these species at the time Uranus and Neptune formed. Yet such low temperatures imply orders-of-magnetude fractionation effects for deuterium into the “ice” component if isotopic equilibration can occur. Our models thus imply that Uranus and Neptune should have a D/H ratio at least four times primordial, contrary to observation for Uranus. We find that the Jovian and Saturnian D/H should be close to primordial regardless of formation scenario. The Uranus anomaly could indicate that there was a strong initial radial gradient in D/H in the primordial solar nebula, or that Uranus is so inactive that no significant mixing of its interior has occurred over the age of the solar system. Observation of Neptune's atmospheric D/H may help to resolve the problem.  相似文献   

17.
We have obtained 5-μm brightness temperatures and brightness temperature upper limits for Uranus and Neptune which are substantially lower than those of Jupiter and Saturn and which correspond to a geometric albedo of approximately 0.01, in agreement with results reported by F. C. Gillet and G. H. Rieke (1977, Astrophys. J.218, L141–L144). Phospine and CH3D, which are observed at 5 μm on Jupiter and Saturn, are discussed as possible sources of opacity at 5 μm in the atmospheres of Uranus and Neptune.  相似文献   

18.
We present thermal mass loss calculations over evolutionary time scales for the investigation if the smallest transiting rocky exoplanets CoRoT-7b (∼1.68REarth) and Kepler-10b (∼1.416REarth) could be remnants of an initially more massive hydrogen-rich gas giant or a hot Neptune-class exoplanet. We apply a thermal mass loss formula which yields results that are comparable to hydrodynamic loss models. Our approach considers the effect of the Roche lobe, realistic heating efficiencies and a radius scaling law derived from observations of hot Jupiters. We study the influence of the mean planetary density on the thermal mass loss by placing hypothetical exoplanets with the characteristics of Jupiter, Saturn, Neptune, and Uranus to the orbital location of CoRoT-7b at 0.017 AU and Kepler-10b at 0.01684 AU and assuming that these planets orbit a K- or G-type host star. Our findings indicate that hydrogen-rich gas giants within the mass domain of Saturn or Jupiter cannot thermally lose such an amount of mass that CoRoT-7b and Kepler-10b would result in a rocky residue. Moreover, our calculations show that the present time mass of both rocky exoplanets can be neither a result of evaporation of a hydrogen envelope of a “Hot Neptune” nor a “Hot Uranus”-class object. Depending on the initial density and mass, these planets most likely were always rocky planets which could lose a thin hydrogen envelope, but not cores of thermally evaporated initially much more massive and larger objects.  相似文献   

19.
We present 20-μm photometry of Uranus and Neptune which confirms the presence of a temperature inversion in the lower stratospheres in both planets. We find the brightness temperature difference between 17.8 and 19.6 μm to be 0.8 ± 0.5°K for Uranus and 1.8 ± 0.6°K for Neptune. These results indicate that the temperature inversions on both planets are weaker than previously thought. Comparison to model atmospheres by J. Appleby [Ph.D. thesis, SUNY at Stony Brook 1980] indicates that the temperature inversions can be understood as arising from heating by the absorption of sunlight by CH4 and aerosols. However, the stratospheric CH4 mixing ratio on Neptune must be higher than that at the temperature minimum.  相似文献   

20.
Hitherto Jupiter's spectrum at short millimeter wavelenghts showed a clear discrepancy with model calculations (e.g., G.L. Berge and S. Gulkis, 1976, In Jupiter (T. Gehrels, Ed.), pp. 621–692. Univ. of Arizona Press, Tucson). A similar although less pronounced, discrepancy appears to exist for Uranus and Neptune. One explanation of this discrepancy is that additional absorbers not included in the model calculations are present in the atmosphere. It was suggested that uncertainties in the absorption coefficient of ammonia, especially at millimeter wavelengths, may be responsible for at least part of the discrepancy. A comparison of various model atmosphere calculations with data for all four giant planets is shown. The absorption profile of ammonia at centimeter wavelengths was assumed to be rightly represented by a Ben Reuven line profile, which enabled the derivation of information on the vertical distribution of ammonia in these planets' atmospheres. It appeared that ammonia must be depleted in the upper atmospheres of all four planets by a factor of 4–5 with respect to the solar abundance for Jupiter (and Saturn) and by a factor of 100–200 for Uranus and Neptune. At deeper layers the optical depth is larger, due either to a larger abundance of ammonia or to absorption by the presence of water. Given the vertical ammonia distribution in the atmospheres as derived from the centimeter data, a best fit to the millimeter spectra of all four planets was found by changing the high frequency tail of the ammonium lineshape profile. This, we feel, is legitimate since the profile at millimeter wavelenghts is not or is only poorly known due to the absence of laboratory spectra for ammonia as a trace constituent in an otherwise hydrogen gas. It was found that a line profile which at millimeter wavelenghts more closely resembles a Van Vleck-Weisskopf lineshape than the usually adopted Ben Reuven profile gives a rather satisfactory fit to the data of all four gaseous planets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号