首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reactive torques, due to anisotropic sublimation on a comet nucleus surface, produce slow variations of its rotation. In this paper the secular effects of this sublimation are studied. The general rotational equations of motion are averaged over unperturbed fast rotation around the mass center (Euler-Poinsot motion) and over the orbital comet motion. We discuss the parameters that define typical properties of the rotational evolution and discover different classifications of the rotational evolution. As an example we discuss some possible scenarios of rotational evolution for the nuclei of the comets Halley and Borrelly.  相似文献   

2.
Rotational Properties of Cometary Nuclei   总被引:1,自引:0,他引:1  
We review several techniques used to retrieve rotational parameters from observations. The spin period of a dozen of comets retrieved with these techniques are summarized. We describe how the spin period of comet Hale-Bopp (C/1995 O1) has been calculated with a high accuracy (11.30–11.34 h). Although several authors converged to a spin axis orientation at (α,δ) = (275 ± 15°, -55 ± 5°), detailed studies indicate that the dust jets morphology in 1996–1997 may be incompatible with this orientation. Comet 19P/Borrelly has been recently observed by the Deep Space 1 spacecraft. At the same time, its spin axis orientation and period have been determined by several authors to be respectively (α,δ) = (225 ± 15°, -10 ± 10°)and 26h. These two comets are likely to be in (or close to) a principal axis spin state. We discuss new modeling of the spin state of comet 46P/Wirtanen, the target of the Rosetta mission. The model involves a three-dimensional shape and thermal model, from which the torque of the non gravitational force is calculated at each time step. The moments of inertia are computed for each irregular shape. The results from numerical integrations show that this comet can remain in a principal axis spin state during more than 10 orbits if the spin period does not get above~6 h. If the spin period increases, its nucleus gets rapidly into excited spin states. It shows that even small and very active short-period comets are not necessarily in non principal axis spin states. In the last section, the consequences of recent observations and modeling of the rotational parameters of comet nuclei are discussed, and unsolved problems are presented.  相似文献   

3.
The comet 67P/Churyumov-Gerasimenko is the current target of the mission Rosetta, initially planned to investigate comet 46P/Wirtanen. These two comets have similar orbits, except the distance to the Sun at perihelion, but different orbital histories and different masses. Thus, structures of the nuclei can be significantly different. The evolution of comet Wirtanen was simulated by several authors, while comet Churyumov-Gerasimenko became an object of high interest only recently and is not well investigated. In the present work we simulate the evolution of the nucleus, down to tens of meters below the surface, using an extended version of the model previously applied for comet Wirtanen [Kossacki et al., 1999. Comet 46P/Wirtanen: evolution of the subsurface layer. Icarus 142, 202-218.]. The model includes strengthening of the nucleus due to sintering of the ice grains. Simulations are performed for different latitudes, accounting for the evolution of the orbit and for changes of the nucleus orientation, as well as diurnal and seasonal changes of insolation. The calculated loss of water vapor from the comet is integrated over the nucleus surface and is compared with the observational data. We have found, that the sublimation through the dust mantle can be large enough to reproduce the profile of the total water production as a function of time from perihelion. The required dependence of thickness of the dust layer on latitude qualitatively matches present distribution of the absorbed solar flux. The non-gravitational acceleration in the comet motion together with the simulated sublimation flux are used in order to estimate the mass and the bulk density of the nucleus.  相似文献   

4.
It is demonstrated how globally distributed outgassing activity on a triaxial comet nucleus bridges the gap between the intuitive Sekanina model, used for comet orbit solutions, and the physics of the problem. In this activity and shape limit, it is shown how a recoil force component, which originates from a day-side restricted sublimation process, is necessary to describe the comet's rotational evolution. Modifications of the non-gravitational force cosines are suggested, with a fundamentally different interpretation than before. Applications to asteroid rotation yield that the ability of specular reflection, of solar photons on an asteroid's surface, to change the asteroid's rotation period and equatorial obliquity, is not dependent on the overall shape of the asteroid.  相似文献   

5.
刘灿  赵玉晖  季江徽 《天文学报》2023,64(1):11-125
彗星是太阳系遗留的原始星子,研究彗星彗核的演化对理解太阳系其他天体的形成和演化历史具有重要意义.在太阳的辐射作用下,彗星携带的挥发性成分会发生升华,并带动尘埃运动,造成彗核物质的损失.因此,彗核的升华活动对其表面形貌甚至整体形状演化都会产生影响.从IAU (International Astronomical Union) MPC (Minor Planet Center)获取轨道数据,并考虑了彗核的自转以及进动,利用MONET (Mass lossdriven shape evolution model)形状演化模型对短周期彗星做数值模拟,计算得到了短周期彗星1P/Halley、9P/Tempel 1、 19P/Borrelly、 67P/C-G (Churyumov-Gerasimenko)、 81P/Wild 2和103P/Hartley 2在一个轨道周期内的太阳辐射能量以及表面侵蚀深度的分布,结合其动力学参数讨论了自转、进动和公转等特性对其表面水冰升华分布的影响以及造成南北侵蚀差异的可能性.  相似文献   

6.
The new target of the Rosetta mission is comet 67P/Churyumov-Gerasimenko (hereafter 67P/C-G). In order to support the planning of the mission, in particular the strategy during the mapping and landing phases, we have performed numerical simulations of the rotational evolution of a comet in the orbit of 67P/C-G. In these simulations, the currently known observational constraints have been taken into account and a large set of initial conditions were considered. For most of the simulations, we observe that the sublimation-induced torques produce significant changes in the rotational parameters of a 67P/C-G-like comet. Typical rates of change for the spin period from the rendezvous up to the end of the nominal mission range from 0.001 to depending on different circumstances as described in the text. At perihelion, rates of change of the orientation of the angular momentum vector amount to about 0.01-. These simulations suggest that a specific strategy should be defined in order to monitor likely variations of the rotational parameters. As an example we show a possible optimized schedule for observations with the OSIRIS instrument to determine the rotational parameters of comet 67P/C-G and their possible evolution.  相似文献   

7.
Of the currently over 300 identified Jupiter family comets (JFCs), we have estimated nucleus sizes and shapes for fewer than 70 and have detailed nucleus observations arising from spacecraft fly-bys for just 3: 19P/Borrelly (Deep Space 1), 81P/Wild 2 (Stardust), and 9P/Tempel 1 (Deep Impact). These observations reveal similarities but also significant diversity. In this review, we make a critical assessment of our knowledge of JFC nuclei and suggest a priority list for observations of the nucleus of the JFC, 67P/Churyumov-Gerasimenko, the Rosetta target comet.  相似文献   

8.
We consider the secular effect of outgassing torques on the rotation of a comet nucleus. An averaging method is applied to obtain evolutionary equations which allow us to study the long-term variations in the nucleus spin state. Since the spin axis direction of 19P/Borrelly’s nucleus is close to the line of apsides direction, a simplified version of these equations can be written to analytically study the most important qualitative effects. In particular, a correlation between the drift of the rotation axis direction and the possible spin up/spin down of the nucleus is revealed.  相似文献   

9.
The aim of this modelling work is to assess shape changes of cometary nuclei caused by sublimation of ices. The simplest possible model is assumed with the nucleus being initially spherical and its thermal conductivity being neglected. We have calculated the time-dependent sublimation flux versus cometographic latitude. If the rotation axis of the comet is inclined to the orbital plane, then sublimation leads to non-symmetrical changes of the nucleus shape. Calculations were performed for the nuclei of comets Hale–Bopp and Wirtanen.  相似文献   

10.
By considering model comet nuclei with a wide range of sizes, prolate ellipsoidal shapes, spin axis orientations, and surface activity patterns, constraints have been placed on the nucleus properties of the primary Rosetta target, Comet 67P/Churyumov-Gerasimenko. This is done by requiring that the model bodies simultaneously reproduce the empirical nucleus rotational lightcurve, the water production rate as function of time, and non-gravitational changes (per apparition) of the orbital period (ΔP), longitude of perihelion (Δ?), and longitude of the ascending node (ΔΩ). Two different thermophysical models are used in order to calculate the water production rate and non-gravitational force vector due to nucleus outgassing of the model objects. By requiring that the nominal water production rate measurements are reproduced as well as possible, we find that the semi-major axis of the nucleus is close to 2.5 km, the nucleus axis ratio is approximately 1.4, while the spin axis argument is either 60°±15° or 240°±15°. The spin axis obliquity can only be preliminarily constrained, indicating retrograde rotation for the first argument value, and prograde rotation for the second suggested spin axis argument. A nucleus bulk density in the range 100-370 kg m−3 is found for the nominal ΔP, while an upper limit of 500 kg m−3 can be placed if the uncertainty in ΔP is considered. Both considered thermophysical models yield the same spin axis, size, shape, and density estimates. Alternatively, if calculated water production rates within an envelope around the measured data are considered, it is no longer possible to constrain the size, shape, and spin axis orientation of the nucleus, but an upper limit on the nucleus bulk density of 600 kg m−3 is suggested.  相似文献   

11.
Abstract— Understanding the nature of the cometary nucleus remains one of the major problems in solar system science. Whipple's (1950) icy conglomerate model has been very successful at explaining a range of cometary phenomena, including the source of cometary activity and the nongravitational orbital motion of the nuclei. However, the internal structure of the nuclei is still largely unknown. We review herein the evidence for cometary nuclei as fluffy aggregates or primordial rubble piles, as first proposed by Donn et al. (1985) and Weissman (1986). These models assume that cometary nuclei are weakly bonded aggregations of smaller, icy‐conglomerate planetesimals, possibly held together only by self‐gravity. Evidence for this model comes from studies of the accretion and subsequent evolution of material in the solar nebula, from observations of disrupted comets, and in particular comet Shoemaker‐Levy 9, from measurements of the ensemble rotational properties of observed cometary nuclei, and from recent spacecraft missions to comets. Although the evidence for rubble pile nuclei is growing, the eventual answer to this question will likely not come until we can place a spacecraft in orbit around a cometary nucleus and study it in detail over many months to years. ESA's Rosetta mission, now en route to comet 67P/Churyumov‐Gerasimenko, will provide that opportunity.  相似文献   

12.
We present a new method to study the long-term evolution of cometary nuclei in order to estimate their original size, and we consider the case of comets 46P/Wirtanen (hereafter 46P) and 67P/Churyumov–Gerasimenko (hereafter 67P). We calculate the past evolution of the orbital elements of both comets over 100 000 yr using a Bulirsch–Stoer integrator and over 450 000 yr using a Radau integrator, and we incorporate a realistic model of the erosion of their nucleus. Their long-term orbital evolution is prominently chaotic, resulting from several close encounters with planets, and this result is independent of the choice of the integrator and of the presence or not of non-gravitational forces. The dynamical lifetime of comet 46P is estimated at ∼133 000 yr and that of comet 67P at ∼105 000 yr. Our erosion model assumes a spherical nucleus composed of a macroscopic mixture of two thermally decoupled components, dust and pure water ice. Erosion strongly depends upon the active fraction and the density of the nucleus. It mainly takes place at heliocentric distances <4 au and lasts for only ∼7 per cent of the lifetime. Assuming a density of 300 kg m−3 and an average active fraction over time of 10 per cent, we find an initial radius of ∼1.3 km for 46P and ∼2.8 km for 67P. Upper limit are obtained assuming a density of 100 kg m−3 and an active fraction of 100 per cent, and amounts to 21 km for 46P and 25 km for 67P. Erosion acts as a rejuvenating process of the surface so that exposed materials on the surface may only contain very little quantities of primordial materials. However, materials located just under it (a few centimetres to metres) may still be much less evolved. We will apply this method to several other comets in the future.  相似文献   

13.
This work is intended to investigate the influence of temperature-dependent metamorphism of ice on the shape of small depressions in the surface of cometary nuclei. We are mainly interested in the role of initial cohesivity of a nucleus. For this purpose we simulate sublimation of ice from the facets of initially cylindrical depressions in ice of different initial structure. The simulations account for the diurnal and orbital changes of insolation and its dependence on the current shape of the depressions. Our model includes heat transport in the cometary material and metamorphism of ice. We present the results obtained for the nucleus of the Comet 67P/Churyumov-Gerasimenko, target of the ESA cornerstone mission Rosetta.  相似文献   

14.
Direct sublimation of a comet nucleus surface is usually considered to be the main source of gas in the coma of a comet. However, evidence from a number of comets including the recent spectacular images of Comet 103P/Hartley 2 by the EPOXI mission indicates that the nucleus alone may not be responsible for all, or possibly at times even most, of the total amount of gas seen in the coma. Indeed, the sublimation of icy grains, which have been injected into the coma, appears to constitute an important source. We use the fully-kinetic Direct Simulation Monte Carlo model of Tenishev et al. (Tenishev, V.M., Combi, M.R., Davidsson, B. [2008]. Astrophys. J., 685, 659?677; Tenishev, V.M., Combi, M.R., Rubin, M. [2011]. Astrophys. J., 732) to reproduce the measurements of column density and rotational temperature of water in Comet 73P-B/Schwassmann–Wachmann 3 obtained with a very high spatial resolution of ~30 km using IRCS/Subaru in May 2006 (Bonev, B.P., Mumma, M.J., Kawakita, H., Kobayashi, H., Villanueva, G.L. [2008]. Icarus, 196, 241?248). For gas released solely from the cometary nucleus at a heliocentric distance of 1 AU, modeled rotational temperatures start at 110 K close to the surface and decrease to only several tens of degrees by 10–20 nucleus radii. However, the measured decay of both rotational temperature and column density with distance from the nucleus is much slower than predicted by this simple model. The addition of a substantial (distributed) source of gas from icy grains in the model slows the decay in rotational temperature and provides a more gradual drop in column density profiles. Together with a contribution of rotational heating of water molecules by electrons, the combined effects allow a much better match to the IRCS/Subaru observations. From the spatial distributions of water abundance and temperature measured in 73P/SW3-B, we have identified and quantified multiple mechanisms of release. The application of this tool to other comets may permit such studies over a range of heliocentric and geocentric distances.  相似文献   

15.
Evolution of Comet Nucleus Rotation   总被引:1,自引:0,他引:1  
The secular evolution of comet nucleus rotation states subject to outgassing torques is studied. The dynamical model assumes that the nucleus inertia ellipsoid is axially symmetric. The outgassing torques acting on the surface are modeled using standard cometary activity formulae. The general rotational equations of motion are derived and separately averaged over the fast rotational dynamics terms and the comet orbit. Special cases where the averaging assumptions cannot be applied are evaluated separately. The modification of the comet orbit due to comet outgassing is neglected. Resulting from this analysis is a system of secular differential equations that describes the dynamics of the comet nucleus angular momentum and rotation state. We find that the qualitative secular evolution of the rotation state is controlled by a single parameter that combines parameters related to the comet orbit and parameters related to the nucleus surface geometry and activity. From this solution, we find qualitatively different evolutionary paths for comet nuclei whose entire surface is active, as compared to nuclei with only a single active region. For surface activity models between these extremes, we show that certain evolutionary paths are more likely than others. Additionally, our solution indicates that a comet nucleus' rotational angular momentum will tend to increase over time, potentially contributing to the observed phenomenon of comet nucleus splitting.  相似文献   

16.
We compute masses and densities for 10 periodic comets with known sizes: 1P/Halley, 2P/Encke, 6P/d'Arrest, 9P/Tempel 1, 10P/Tempel 2, 19P/Borrelly, 22P/Kopff, 46P/Wirtanen, 67P/Churyumov–Gerasimenko and 81P/Wild 2. The method follows the one developed by Rickman and colleagues, which is based on the gas production curve and on the change in the orbital period due to the non-gravitational force. The gas production curve is inferred from the visual light curve. We found that the computed masses cover more than three orders of magnitude:  ≃(0.3–400) × 1012  kg. The computed densities are in all cases very low (≲0.8 g cm−3), with an average value of 0.4 g cm−3, in agreement with previous results and models of the cometary nucleus depicting it as a very porous object. The computed comet densities turn out to be the lowest among the different populations of Solar system minor bodies, in particular as compared to those of near-Earth asteroids (NEAs). We conclude that the model applied in this paper, in spite of its simplicity (as compared to more sophisticated thermophysical models applied to very few comets), is useful for a statistical approach to the mean density of the cometary nuclei. However, we cannot assess from this simple model if there is a real dispersion among the bulk densities of comets that could tell us about differences in physical structure (porosity) and/or chemical composition.  相似文献   

17.
《Planetary and Space Science》1999,47(6-7):735-744
Understanding the power balance at the surface of the nucleus is essential to study the chemical and physical evolution of a comet. Therefore, we present a detailed energy budget analysis for the surface of a model comet in the orbit of 46P/Wirtanen, target comet of the European space craft mission Rosetta, for a variety of parameters and assumptions. We will show that for a fast spinning Jupiter-family comet such as 46P/Wirtanen with a rotation period of about 6 h, a fast rotator approximation underestimates the effective energy input. This yields lower gas fluxes from the surface. For an 100% active, non-dust covered surface we obtain a water gas flux on the order of about 1.5×1028 molecules s−1 at perihelion, assuming a radius of 600 m. The calculated gas flux of water is within the order of measured values for comet 46P/Wirtanen. But our calculated values are maximum gas fluxes at noon—not averaged over one cometary day or taking the lesser insolation at the polar areas into account. Therefore, we conclude that either the radius of comet 46P/Wirtanen may be much larger than the accepted value of 600 m. A radius in the order of 2 km seems more likely to explain the measurements. Or, an other possibility could be that water-ice particles are blown off from the surface like dust particles. This may also increase the effective surface area of sublimation.  相似文献   

18.
Arguments are presented to suggest that surface layers of the nuclei of periodic comets consist of crystallized rather than amorphous water ice and thermal modelling of such nuclei is presented. The rate of sublimation of water from a rotating nucleus is found to be greater than that from a uniformly heated nucleus. When the model is applied to P/Halley, the sublimation rate at perihelion is found to be 8.1 × 1029 mol s−1 for a nucleus rotating with a period of 50 hours and 7.6 × 1029 for a uniformly heated nucleus on the premise that the effective radius of the nucleus is 2.5 km. The total sublimation of water per revolution is 5.38 × 1036 molecules for P/Halley and 3.91 × 1036 molecules per P/Crommelin. The result so obtained is discussed in relation to the observational data.  相似文献   

19.
I discuss our current understanding of the spin states of cometary nuclei. Cometary spin influences the temporal and spatial patterns of outgassing from the nucleus (through diurnal and seasonal effects) and is in turn influenced by outgassing-driven torques. The current challenge to cometary astronomers is to quantify the interactions between the spin, the outgassing, and the resultant torques on the nucleus, and to understand the role of rotation in determining the basic physical properties of the nucleus. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
We present the results of an ongoing optical/thermal infraredphotometric imaging survey of thedust mass loss and nuclear size ofcomets. We find an evolution with time of the kind of dust emittedfrom a comet's surface. Our results indicate that the mass loss ratefrom the short period comets alone is enough to supply the interplanetary dust (IPD) complexagainst losses. We conclude that the nature of the IPD cloud haschanged over time, with small particles dominating early, and largerparticles dominating in the present era. The rate of destruction of short period (SP)comets due to sublimation mass loss is found to be low compared to therate of surface mantle formation, but fast compared to the rate of their dynamical removal from the inner solar system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号