首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Geochronological data, major and trace element abundances, Nd and Sr isotope ratios, δ18O whole rock values and Pb isotope ratios from leached feldspars are presented for garnet-bearing granites (locality at Oetmoed and outcrop 10 km north of Omaruru) from the Damara Belt (Namibia). For the granites from outcrop 10 km N′ Omaruru, reversely discordant U–Pb monazite data give 207Pb/235U ages of 511±2 Ma and 517±2 Ma, similar to previously published estimates for the time of regional high grade metamorphism in the Central Zone. Based on textural and compositional variations, garnets from these granites are inferred to be refractory residues from partial melting in the deep crust. Because PT estimates from these xenocrystic garnets are significantly higher (800°C/9–10 kbar) than regional estimates (700°C/5 kbar), the monazite ages are interpreted to date the peak of regional metamorphism in the source of the granites. Sm–Nd garnet–whole rock ages are between 500 and 490 Ma indicating the age of extraction of the granites from their deep crustal sources. For the granites from Oetmoed, both Sm–Nd and Pb–Pb ages obtained on igneous garnets range from 500 to 490 Ma. These ages are interpreted as emplacement ages and are significantly younger than the previously proposed age of 520 Ma for these granites based on Rb/Sr whole rock age determinations. Major and trace element compositions indicate that the granites are moderately to strongly peraluminous S-type granites. High initial 87Sr/86Sr ratios (>0.716), high δ18O values of >13.8‰, negative initial Nd values between −4 and −7 and evolved Pb isotope ratios indicate formation of the granites by anatexis of mid-crustal rocks similar to the exposed metapelites into which they intruded. The large range of Pb isotope ratios and the lack of correlation between Pb isotope ratios and Nd and Sr isotope ratios indicate heterogeneity of the involved crustal rocks. Evidence for the involvement of isotopically highly evolved lower crust is scarce and the influence of a depleted mantle component is unlikely. The crustal heating events that produced these granites might have been caused by crustal thickening and thrusting of crustal sheets enriched in heat-producing elements. Very limited fluxing of volatiles from underthrust low- to medium-grade metasedimentary rocks may have also been a factor in promoting partial melting. Furthermore, delamination of the lithospheric mantle and uprise of hot mantle could have caused localized high-T regions. The presence of coeval A-type granites at Oetmoed that have been derived at least in part from a mantle source supports this model.  相似文献   

2.
Combined Sm–Nd and Lu–Hf age and isotope data indicate that Mg- and Cr-rich ultramafic rocks at Sandvik, Western Gneiss Region (WGR), Norway, originated from depleted Archean lithospheric mantle that was chemically and physically modified in Middle Proterozoic time. The Sandvik outcrop consists of garnet peridotite and garnet-olivine pyroxenite and thin garnet pyroxenite layers. These contain two principal mineral assemblages: an earlier porphyroclastic assemblage of grt + opx + cpx ± ol (1,200–1,000°C, 40–50 kbar) and a later kelyphitic assemblage of grt + spl + am ± opx ± ol (700–750°C; 12–18 kbar). A CHUR Hf model age indicates a period of melt extraction at ca. 3.3 Ga for garnet peridotite, reflecting extremely high Lu/Hf ratios and very radiogenic present-day 176Hf/177Hf (εHf=+2,165). Lu–Hf garnet-cpx-whole rock ages of two olivine-bearing samples (garnet peridotite and garnet-olivine pyroxenite) from the outcrop are ca. 1,255 Ma, whereas two olivine-free garnet pyroxenites yield Lu–Hf ages of ca. 1,185 Ma. All Sm–Nd garnet-cpx-whole rock ages of these samples are significantly younger (ca. 1,150 Ma for garnet peridotite and ca. 1,120 Ma for garnet pyroxenite). The isotope systematics indicate that the Lu–Hf ages represent cooling from an earlier period of formation/recrystallization for garnet peridotite whereas they probably reflect formation/recrystallization ages of the garnet pyroxenite. The Sm–Nd ages and isotope systematics of the garnet peridotite samples are consistent with an episode of LREE metasomatism, perhaps facilitated by a fluid of carbonatitic composition that strongly decoupled Sm–Nd and Lu–Hf. The Sm–Nd ages of the garnet pyroxenite may represent either LREE metasomatism or cooling, and, like the peridotites, Lu–Hf ages are older than Sm–Nd ages. The age data, as well as the inferred Nd isotope composition of the fluid that affected the olivine-bearing samples, suggest that these rocks were not in contact during the LREE metasomatic event. Moreover, the pyroxenite layers cannot have been emplaced as magmas into the host peridotite. The pyroxenite layers are interpreted to be tectonically juxtaposed with the host olivine-bearing samples sometime after 1,150 Ma but before development of kelyphite.  相似文献   

3.
A low-angle thrust fault places high-PT granulites (hangingwall) of the Internal Zone of the Neoproterozoic Brasília Belt (Tocantins Province, central Brazil) in contact with a lower-grade footwall (External Zone) comprised of nappes of distal passive margin- and back-arc basin-related supracrustals. The footwall units were emplaced at  750 Ma onto proximal sedimentary rocks (Paranoá Group) of the São Francisco paleo-continent passive margin. The high-PT belt is comprised of 645–630 Ma granulite-facies paragneiss and orthogneiss, and mafic–ultramafic complexes that include three major layered intrusions and metavolcanic rocks granulitized at  750 Ma. These complexes occur within lower-grade metasedimentary rocks in the hangingwall of the Maranhão River Thrust, which forms the Internal Zone–External Zone boundary fault to the north of the Pirineus Zone of High Strain. Detailed lithostructural studies carried out in Maranhão River Thrust hangingwall and footwall metasedimentary rocks between the Niquelândia and Barro Alto complexes, and also to the east of these, indicate the same lithotypes and Sm–Nd isotopic signatures, and the same D1D2 progressive deformation and greenschist-facies metamorphism. Additionally, footwall metasedimentary rocks exclusively display a post-D2 deformation indicating that the Maranhão River Thrust propagated through upper crustal rocks of the Paranoá Group relatively late during the tectonic evolution of the belt. Fault propagation was a consequence of intraplate underthrusting during granulite exhumation. The results allow for a better tectonic understanding of the Brasília Belt and the Tocantins Province, as well as explaining the presence of the Pirineus Zone of High Strain.  相似文献   

4.
The Higo Complex of west-central Kyushu, western Japan is a 25 km long body of metasedimentary and metabasic lithologies that increase in metamorphic grade from schist in the north to migmatitic granulite in the south, where granitoids are emplaced along the southern margin. The timing of granulite metamorphism has been extensively investigated and debated. Previously published Sm–Nd mineral isochrons for garnet-bearing metapelite yielded ca.220–280 Ma ages, suggesting high-grade equilibration older than the lower grade schist to the north, which yielded ca.180 Ma K–Ar muscovite ages. Ion and electron microprobe analyses on zircon have yielded detrital grains with rim ages of ca.250 Ma and ca.110 Ma. Electron microprobe ages from monazite and xenotime are consistently 110–130 Ma. Two models have been proposed: 1) high-grade metamorphism and tectonism at ca.115 Ma, with older ages attributed to inheritance; and 2) high-grade metamorphism at ca.250 Ma, with resetting of isotopic systems by contact metamorphism at ca.105 Ma during the intrusion of granodiorite. These models are evaluated through petrographic investigation and electron microprobe Th–U–total Pb dating of monazite in metapelitic migmatites and associated lithologies. In-situ investigation of monazite reveals growth and dissolution features associated with prograde and retrograde stages of progressive metamorphism and deformation. Monazite Th–U–Pb isochrons from metapelite, diatexite and late-deformational felsic dykes consistently yield ca.110–120 Ma ages. Earlier and later stages of monazite growth cannot be temporally resolved. The preservation of petrogenetic relationships, coupled with the low diffusion rate of Pb at < 900 °C in monazite, is strong evidence for timing high-temperature metamorphism and deformation at ca.115 Ma. Older ages from a variety of chronometers are attributed to isotopic disequilibrium between mineral phases and the preservation of inherited and detrital age components. Tentative support is given to tectonic models that correlate the Higo terrane with exotic terranes between the Inner and Outer tectonic Zones of southwest Japan, possibly derived from the active continental margin of the South China Block. These terranes were dismembered and translated northeastwards by transcurrent shearing and faulting from the beginning to the end of the Cretaceous Period.  相似文献   

5.
L. Millonig  A. Zeh  A. Gerdes  R. Klemd 《Lithos》2008,103(3-4):333-351
The Bulai pluton represents a calc-alkaline magmatic complex of variable deformed charnockites, enderbites and granites, and contains xenoliths of highly deformed metamorphic country rocks. Petrological investigations show that these xenoliths underwent a high-grade metamorphic overprint at peak P–T conditions of 830–860 °C/8–9 kbar followed by a pressure–temperature decrease to 750 °C/5–6 kbar. This P–T path is inferred from the application of P–T pseudosections to six rock samples of distinct bulk composition: three metapelitic garnet–biotite–sillimanite–cordierite–plagioclase–(K-feldspar)–quartz gneisses, two charnoenderbitic garnet–orthopyroxene–biotite–K-feldspar–plagioclase–quartz gneisses and an enderbitic orthopyroxene–biotite–plagioclase–quartz gneiss. The petrological data show that the metapelitic and charnoenderbitic gneisses underwent uplift, cooling and deformation before they were intruded by the Bulai Granite. This relationship is supported by geochronological results obtained by in situ LA-ICP-MS age dating. U–Pb analyses of monazite enclosed in garnet of a charnoenderbite gneiss provide evidence for a high-grade structural-metamorphic–magmatic event at 2644 ± 8 Ma. This age is significantly older than an U–Pb zircon crystallisation age of 2612 ± 7 Ma previously obtained from the surrounding, late-tectonic Bulai Granite. The new dataset indicates that parts of the Limpopo's Central Zone were affected by a Neoarchaean high-grade metamorphic overprint, which was caused by magmatic heat transfer into the lower crust in a ‘dynamic regional contact metamorphic milieu’, which perhaps took place in a magmatic arc setting.  相似文献   

6.
《Precambrian Research》2005,136(2):139-157
Early structures in the central part of the Kaoko orogenic belt of NW Namibia suggest that the initial stage of collision was governed by underthrusting of the medium-grade Central Kaoko zone below the high-grade Western Kaoko zone, resulting in the development of an inverted metamorphic gradient. In the Western zone, early structures were overprinted by a second phase of deformation, which is associated with localization of the transcurrent Puros shear zone along the contact between the Western and Central zones. During this second phase, extensive partial melting and intrusion of ∼550 Ma granitic bodies occurred in the high-grade Western zone. In the Central zone, the second phase of deformation led to complete overprinting of the early foliation in the zone adjacent to the Puros shear zone, and to the development of kilometre-scale folds in the more distal parts. Strain partitioning into transcurrent deformation along the Puros shear zone and NE–SW oriented shortening in the Central zone is consistent with a sinistral transpressional regime during the second phase of deformation. Transcurrent deformation continued during cooling of the entire belt, giving rise to the localized low-temperature Village Mylonite Zone that separates a segment of elevated Mesoproterozoic basement from the rest of the Western zone in which only Pan-African ages have so far been observed. The data suggest that the boundary between the Western and Central Kaoko zones represents a modified thrust zone controlling the tectonic evolution of the Pan-African Kaoko belt.  相似文献   

7.
Zircon SHRIMP U–Pb and in-situ Lu–Hf isotopic analyses via laser ablation microprobe-inductively coupled plasma mass spectrometer (LAM-ICPMS) of a tuff within the Upper Paleozoic from Western Beijing were carried out to give new constraints on volcano eruption ages and source area of the tuffs within the North China block (NCB). SHRIMP U–Pb zircon dating of the tuff yielded a 206Pb/238U weighted mean age of 296 ± 4 Ma (95% confidence, MSWD = 3.3), which is very similar to the emplacement age of the newly discovered Carboniferous calc-alkaline, I-type continental arc granitoid plutons in the Inner Mongolia Paleo-uplift (IMPU) on the northern margin of the NCB. In-situ Lu–Hf analysis results of most zircons from the tuff yielded initial 176Hf/177Hf ratios from 0.282142 to 0.282284 and εHf(t) values from − 15.9 to − 10.7. These Lu–Hf isotopic compositions are very similar to those of the Late Carboniferous granitoids in the IMPU, but are very different to those of the Central Asian Orogenic Belt (CAOB). Together with the sedimentary and tectonic analyses results, we inferred that the source area of the tuffs within the NCB is the IMPU instead of the CAOB. Therefore, some arc volcanoes once existed in the IMPU on northern margin of the NCB during the Late Carboniferous, but they were entirely eroded due to strong exhumation and erosion of the IMPU during the Late Carboniferous to Early Jurassic.  相似文献   

8.
The Late Precambrian–Early Paleozoic metamorphic basement forms a volumetrically important part of the Andean crust. We investigated its evolution in order to subdivide the area between 18 and 26°S into crustal domains by means of petrological and age data (Sm–Nd isochrons, K–Ar). The metamorphic crystallization ages and tDM ages are not consistent with growth of the Pacific margin north of the Argentine Precordillera by accretion of exotic terranes, but favor a model of a mobile belt of the Pampean Cycle. Peak metamorphic conditions in all scattered outcrop areas between 18 and 26°S are similar and reached the upper amphibolite facies conditions indicated by mineral paragensis and the occurrence of migmatite. Sm–Nd mineral isochrons yielded 525±10, 505±6 and 509±1 Ma for the Chilean Coast Range, the Chilean Precordillera and the Argentine Puna, and 442±9 and 412±18 Ma for the Sierras Pampeanas. Conventional K–Ar cooling age data of amphibole and mica cluster around 400 Ma, but are frequently reset by Late Paleozoic and Jurassic magmatism. Final exhumation of the Early Paleozoic orogen is confirmed by Devonian erosional unconformities. Sm–Nd depleted mantle model ages of felsic rocks from the metamorphic basement range from 1.4 to 2.2 Ga, in northern Chile the average is 1.65±0.16 Ga (1σ; n=12), average tDM of both gneiss and metabasite in NW Argentina is 1.76±0.4 Ga (1σ; n=22), and the isotopic composition excludes major addition of juvenile mantle derived material during the Early Paleozoic metamorphic and magmatic cycle. These new data indicate a largely similar development of the metamorphic basement south of the Arequipa Massif at 18°S and north of the Argentine Precordillera at 28°S. Variations of metamorphic grade and of ages of peak metamorphism are of local importance. The protolith was derived from Early to Middle Proterozoic cratonic areas, similar to the Proterozoic rocks from the Arequipa Massif, which had undergone Grenvillian metamorphism at ca. 1.0 Ga.  相似文献   

9.
Mafic xenoliths from the Paleozoic Fuxian kimberlites in the North China craton include garnet granulite, and minor pyroxene amphibolite, metagabbro, anorthosite and pyroxenite. The formation conditions of the amphibolites are estimated at 745–820 °C and 7.6–8.8 Kb (25–30 km); the granulites probably are derived from greater depths in the lower crust. LAM-ICPMS U–Pb dating of zircons from four granulites reveals multiple age populations, recording episodes of magmatic intrusion and metamorphic recrystallisation. Concordant ages and upper intercept ages, interpreted as minimum estimates for the time of magmatic crystallisation, range from 2,620 to 2,430 Ma in three granulites, two amphibolites and two metagabbros. Lower intercept ages, represented by near-concordant zircons, are interpreted as reflecting metamorphic recrystallisation, and range from 1,927 to 1,852 Ma. One granulite contains two metamorphic zircon populations, dated at 1,927±55 Ma and 600–700 Ma. Separated minerals from one granulite and one amphibolite yield Sm–Nd isochron ages of 1,619±48 Ma (143Nd/144Nd)i=0.51078), and 1,716±120 Ma (143Nd/144Nd)i=0.51006), respectively. These ages are interpreted as recording cooling following metamorphic resetting; model ages for both samples are in the range 2.40–2.66 Ga. LAM-MC-ICPMS analyses of zircon show a range in 176Hf/177Hf from 0.28116 to 0.28214, corresponding to a range of Hf from –34 to +12. The relationships between 207Pb/206Pb age and Hf show that: (1) the granulites, amphibolites and metagabbro were derived from a depleted mantle source at 2.6–2.75 Ga; (2) zircons in most samples underwent recrystallisation and Pb loss for 100–200 Ma after magmatic crystallisation, consistent with a residence in the lower crust; (3) metamorphic zircons in several samples represent new zircon growth, incorporating Hf liberated from breakdown of silicates with high Lu/Hf; (4) in other samples metamorphic and magmatic zircons have identical 176Hf/177Hf, and the younger ages reflect complete resetting of U–Pb systems in older zircons. The Fuxian mafic xenoliths are interpreted as the products of basaltic underplating, derived from a depleted mantle source in Neoarchean time, an important period of continental growth in the North China craton. Paleoproterozoic metamorphic ages indicate an important tectonic thermal event in the lower crust at 1.8–1.9 Ga, corresponding to the timing of collision between the Eastern and Western Blocks that led to the final assembly of the North China craton. The growth of metamorphic zircon at 600–700 Ma may record an asthenospheric upwelling in Neoproterozoic time, related to uplift and a regional disconformity in the North China craton.  相似文献   

10.
U–Pb (TIMS–ID and SIMS) and Sm–Nd analyses of zircons and garnet-whole rock pairs were applied on high-pressure granulite facies metapelites and metagranodiorite from Tcholliré and Banyo regions, respectively in the Adamawa–Yadé and Western Domains of the Central-African Fold Belt (CAFB) of Cameroon. Cathodoluminescence (CL) images of zircons reveal that they are made up of ubiquitous magmatitic xenocrystic cores, surrounded and/or overprinted by light unzoned recrystallized domains. U–Pb data on cores yield ages ranging from Paleoproterozoic to Neoproterozoic, which we consider as dating inheritances. Data on overgrowths and recrystallized domains give ages ranging between 594 and 604 Ma, interpreted as the time of HP granulite-facies metamorphism in the Tcholliré and Banyo regions. This is also supported by ages derived from Sm–Nd garnet-whole rock pairs. Sediments of the Tcholliré region were deposited after ca. 620 Ma from Paleoproterozoic, Mesoproteroszoic and Neoproterozoic protoliths, while those from the Banyo region were deposited after 617.6 ± 7.1 Ma essentially from Neoproterozoic protoliths.  相似文献   

11.
The crustal structure of the Dabie orogen was reconstructed by a combined study of U–Pb ages, Hf and O isotope compositions of zircons from granitic gneiss from North Dabie, the largest lithotectonic unit in the orogen. The results were deciphered from metamorphic history to protolith origin with respect to continental subduction and exhumation. Zircon U–Pb dating provides consistent ages of 751 ± 7 Ma for protolith crystallization, and two group ages of 213 ± 4 to 245 ± 17 Ma and 126 ± 4 to 131 ± 36 Ma for regional metamorphism. Majority of zircon Hf isotope analyses displays negative εHf(t) values of − 5.1 to − 2.9 with crust Hf model ages of 1.84 to 1.99 Ga, indicating protolith origin from reworking of middle Paleoproterozoic crust. The remaining analyses exhibit positive εHf(t) values of 5.3 to 14.5 with mantle Hf model ages of 0.74 to 1.11 Ga, suggesting prompt reworking of Late Mesoproterozoic to Early Neoproterozoic juvenile crust. Zircon O isotope analyses yield δ18O values of − 3.26 to 2.79‰, indicating differential involvement of meteoric water in protolith magma by remelting of hydrothermally altered low δ18O rocks. North Dabie shares the same age of Neoproterozoic low δ18O protolith with Central Dabie experiencing the Triassic UHP metamorphism, but it was significantly reworked at Early Cretaceous in association with contemporaneous magma emplacement. The Rodinia breakup at about 750 Ma would lead to not only the reworking of juvenile crust in an active rift zone for bimodal protolith of Central Dabie, but also reworking of ancient crust in an arc-continent collision zone for the North Dabie protolith. The spatial difference in the metamorphic age (Triassic vs. Cretaceous) between the northern and southern parts of North Dabie suggests intra-crustal detachment during the continental subduction. Furthermore, the Dabie orogen would have a three-layer structure prior to the Early Cretaceous magmatism: Central Dabie in the upper, North Dabie in the middle, and the source region of Cretaceous magmas in the lower.  相似文献   

12.
The Transcaucasian Massif (TCM) in the Republic of Georgia includes Neoproterozoic–Early Cambrian ophiolites and magmatic arc assemblages that are reminiscent of the coeval island arc terranes in the Arabian–Nubian Shield (ANS) and provides essential evidence for Pan-African crustal evolution in Western Gondwana. The metabasite–plagiogneiss–migmatite association in the Oldest Basement Unit (OBU) of TCM represents a Neoproterozoic oceanic lithosphere intruded by gabbro–diorite–quartz diorite plutons of the Gray Granite Basement Complex (GGBC) that constitute the plutonic foundation of an island arc terrane. The Tectonic Mélange Zone (TMZ) within the Middle-Late Carboniferous Microcline Granite Basement Complex includes thrust sheets composed of various lithologies derived from this arc-ophiolite assemblage. The serpentinized peridotites in the OBU and the TMZ have geochemical features and primary spinel composition (0.35) typical of mid-ocean ridge (MOR)-type, cpx-bearing spinel harzburgites. The metabasic rocks from these two tectonic units are characterized by low-K, moderate-to high-Ti, olivine-hypersthene-normative, tholeiitic basalts representing N-MORB to transitional to E-MORB series. The analyzed peridotites and volcanic rocks display a typical melt-residua genetic relationship of MOR-type oceanic lithosphere. The whole-rock Sm–Nd isotopic data from these metabasic rocks define a regression line corresponding to a maximum age limit of 804 ± 100 Ma and εNdint = 7.37 ± 0.55. Mafic to intermediate plutonic rocks of GGBC show tholeiitic to calc-alkaline evolutionary trends with LILE and LREE enrichment patterns, Y and HREE depletion, and moderately negative anomalies of Ta, Nb, and Ti, characteristic of suprasubduction zone originated magmas. U–Pb zircon dates, Rb–Sr whole-rock isochron, and Sm–Nd mineral isochron ages of these plutonic rocks range between  750 Ma and 540 Ma, constraining the timing of island arc construction as the Neoproterozoic–Early Cambrian. The Nd and Sr isotopic ratios and the model and emplacement ages of massive quartz diorites in GGBC suggest that pre-Pan African continental crust was involved in the evolution of the island arc terrane. This in turn indicates that the ANS may not be made entirely of juvenile continental crust of Neoproterozoic age. Following its separation from ANS in the Early Paleozoic, TCM underwent a period of extensive crustal growth during 330–280 Ma through the emplacement of microcline granite plutons as part of a magmatic arc system above a Paleo-Tethyan subduction zone dipping beneath the southern margin of Eurasia. TCM and other peri-Gondwanan terranes exposed in a series of basement culminations within the Alpine orogenic belt provide essential information on the Pan-African history of Gondwana and the rift-drift stages of the tectonic evolution of Paleo-Tethys as a back-arc basin between Gondwana and Eurasia.  相似文献   

13.
The Yaoundé belt (Cameroon) and the Sergipano belt (NE Brazil) belonged to a major and continuous Neoproterozoic orogen at the northern margin of the ancient Congo-São Francisco craton. The Yaoundé belt comprises schists, quartzites, gneisses and migmatitic gneisses grouped into three domains; the low-grade Mbalmayo Group in south and the medium- to high-grade Yaoundé and Bafia Group in north. The Sergipano belt is divided into six domains, the three southernmost of which are mostly made up of clastic and chemical metasedimentary rocks whereas the others are more diverse with a migmatite–gneiss complex, and two metavolcanicplutonic complexes. In general, the two belts show structural vergence and decrease of metamorphic grade towards the craton; three main deformation phases are recognized in the Sergipano belt in contrast with two described in the Yaoundé belt. The minimum age of Pan-African-Brasiliano collision in the Sergipano belt is constrained at 628 ± 12 Ma on syn-collision granites, whereas in the Yaoundé belt collision took place between 620 and 610 Ma, i.e. the age of granulite facies metamorphism. Sm–Nd isotope geochemistry and U–Pb age dating indicate that most clastic metasedimentary rocks in both belts were derived from sources to the north and, to a lesser degree, from the cratons to the south.  相似文献   

14.
Precise U–Pb geochronology and Hf isotope tracing of zircon is combined with whole-rock geochemical and Sr and Nd isotope data in order to unravel processes affecting mafic to felsic calcalkaline magmas prior to and during their crystallization in crustal magma chambers along the southern border of Central Srednogorie tectonic zone in Bulgaria (SE Europe). ID-TIMS U–Pb dating of single zircons from felsic and mixed/mingled dioritic to gabbroic horizons of single plutons define crystallization ages of around 86.5–86.0, 85.0–84.5 and 82 Ma. Concordia age uncertainties are generally less than 0.3 Ma (0.35%–2σ), and as good as 0.08 Ma (0.1%), when the weighted mean 206Pb/238U value is used. Such precision allows the distinction of magma replenishment processes if separated by more than 0.6–1.0 Ma and when they are marked by newly saturated zircons. We interpret zircon dates from a single sample that do not overlap to reflect new zircon growth during magma recharge in a long-lived crustal chamber. Mingling/mixing of the basaltic magma with colder granitoid mush at mid- to upper-crustal levels is proposed to explain zircon saturation and fast crystallization of U- and REE-rich zircons in the hybrid gabbro.Major and trace-element distribution and Sr and Nd whole-rock isotope chemistry define island arc affinities for the studied plutons. Slab derived fluids and a sediment component are constrained as enrichment sources for the mantle wedge-derived magma, though Hf isotopes in zircon suggest crustal assimilation was also important. Inherited zircons, and their corresponding ε-Hf, from the hybrid gabbroic rocks trace the lower crust as possible source for enrichment of the mantle magma. These inherited zircons are about 440 Ma old with ε-Hf of − 7 at 82 Ma, whereas newly saturated concordant Upper Cretaceous zircons reveal mantle ε-Hf values of + 7.2 to + 10.1. The upper and middle crusts contribute in the generation of the granitoid rocks. Their zircon inheritance is Lower Palaeozoic or significantly older and crustal dominated with 82–85 Ma corrected ε-Hf values of − 28. The Cretaceous concordant zircons in the granitoids are mantle dominated with a ε-Hf values spreading from + 3.9 to + 7.  相似文献   

15.
The basement in the ‘Altiplano’ high plateau of the Andes of northern Chile mostly consists of late Paleozoic to Early Triassic felsic igneous rocks (Collahuasi Group) that were emplaced and extruded along the western margin of the Gondwana supercontinent. This igneous suite crops out in the Collahuasi area and forms the backbone of most of the high Andes from latitude 20° to 22°S. Rocks of the Collahuasi Group and correlative formations form an extensive belt of volcanic and subvolcanic rocks throughout the main Andes of Chile, the Frontal Cordillera of Argentina (Choiyoi Group or Choiyoi Granite-Rhyolite Province), and the Eastern Cordillera of Peru.Thirteen new SHRIMP U–Pb zircon ages from the Collahuasi area document a bimodal timing for magmatism, with a dominant peak at about 300 Ma and a less significant one at 244 Ma. Copper–Mo porphyry mineralization is related to the younger igneous event.Initial Hf isotopic ratios for the ~ 300 Ma zircons range from about − 2 to + 6 indicating that the magmas incorporated components with a significant crustal residence time. The 244 Ma magmas were derived from a less enriched source, with the initial Hf values ranging from + 2 to + 6, suggestive of a mixture with a more depleted component. Limited whole rock 144Nd/143Nd and 87Sr/86Sr isotopic ratios further support the likelihood that the Collahuasi Group magmatism incorporated significant older crustal components, or at least a mixture of crustal sources with more and less evolved isotopic signatures.  相似文献   

16.
The Permian–Jurassic Mahanadi and Pranhita–Godavari Rifts are part of a drainage system that radiated from the Gamburtsev Subglacial Mountains in central Antarctica. From 12 samples we analysed detrital zircons for U–Pb ages, Hf-isotopes, and trace elements to determine the age, rock type and source of the host magma, and TDM model age. Clusters, in decreasing order of abundance, are (1) 820–1000 Ma, host magmas felsic granitoids with alkaline rock, (2) 1500–1700 Ma felsic granitoids, (3) 500 to 700 Ma mafic granitoids with alkaline rock, (4) 2400–2550 Ma granitoids, and (5) 1000–1200 Ma felsic and mafic granitoids, mafic rock, and alkaline rock. TDM ranges from 1.5 to 3.5 Ga. Joint paleoslope measurements and zircon ages indicate that the Eastern Ghats Mobile Belt (EGMB) and lateral belts and conjugate Antarctica are potential provenances. Zircons from the Gondwana Rifts differ from those in other Gondwanaland sandstones in their predominant 820–1000 Ma and 1500–1700 Ma ages (from the EGMB and conjugate Rayner–MacRobertson Belt) that dilute the 500–700 Ma (Pan-Gondwanaland) ages. The 1000–1200 Ma zircons reflect the assembly of Rodinia, the 500–700 Ma ones that of Gondwanaland; the other ages reflect collisions in the region.  相似文献   

17.
Reconnaissance zircon U/Pb SHRIMP, Ar–Ar, and Sm–Nd geochronology, petrological, and geochemical data were obtained from selected localities of two pre-Mesozoic metamorphic belts from the northern termination of the Colombian Andes in the Caribbean region. The older Proterozoic belt, with protoliths formed in a rift- or backarc-related environment, was metamorphosed at 6–8 kb and 760–810 °C during Late Mesoproterozoic times. This belt correlates with other high-grade metamorphic domains of the Andean realm that formed a Grenvillian-related collisional belt linked to the formation of Rodinia. The younger belt was formed over a continental arc at <530–450 Ma in a Gondwanide position and metamorphosed at 5–8 kb and 500–550 °C, probably during the Late Paleozoic–Triassic, as part of the terranes that docked with northwestern South America during the formation of Pangea. A Mesozoic Ar–Ar tectonothermal evolution can be related to regional magmatic events, whereas Late Cretaceous–Paleocene structural trends are related to the accretion of the allocthonous Caribbean subduction metamorphic belts. Lithotectonic correlations with other circum-Caribbean and southern North American pre-Jurassic domains show the existence of different terrane dispersal patterns that can be related to Pangea’s breakup and Caribbean tectonics.  相似文献   

18.
Detrital zircon provides a powerful archive of continental growth and recycling processes. We have tested this by a combined laser ablation ICP-MS U–Pb and Lu–Hf analysis of homogeneous growth domains in detrital zircon from late Paleozoic coastal accretionary systems in central Chile and the collisional Guarguaráz Complex in W Argentina. Because detritus from a large part of W Gondwana is present here, the data delineate the crustal evolution of southern South America at its Paleopacific margin, consistent with known data in the source regions.Zircon in the Guarguaráz Complex mainly displays an U–Pb age cluster at 0.93–1.46 Ga, similar to zircon in sediments of the adjacent allochthonous Cuyania Terrane. By contrast, zircon from the coastal accretionary systems shows a mixed provenance: Age clusters at 363–722 Ma are typical for zircon grown during the Braziliano, Pampean, Famatinian and post-Famatinian orogenic episodes east of Cuyania. An age spectrum at 1.00–1.39 Ga is interpreted as a mixture of zircon from Cuyania and several sources further east. Minor age clusters between 1.46 and 3.20 Ga suggest recycling of material from cratons within W Gondwana.The youngest age cluster (294–346 Ma) in the coastal accretionary prisms reflects a so far unknown local magmatic event, also represented by rhyolite and leucogranite pebbles. It sets time marks for the accretion history: Maximum depositional ages of most accreted metasediments are Middle to Upper Carboniferous. A change of the accretion mode occurred before 308 Ma, when also a concomitant retrowedge basin formed.Initial Hf-isotope compositions reveal at least three juvenile crust-forming periods in southern South America characterised by three major periods of juvenile magma production at 2.7–3.4 Ga, 1.9–2.3 Ga and 0.8–1.5 Ga. The 176Hf/177Hf of Mesoproterozoic zircon from the coastal accretionary systems is consistent with extensive crustal recycling and addition of some juvenile, mantle-derived magma, while that of zircon from the Guarguaráz Complex has a largely juvenile crustal signature. Zircon with Pampean, Famatinian and Braziliano ages (< 660 Ma) originated from recycled crust of variable age, which is, however, mainly Mesoproterozoic. By contrast, the Carboniferous magmatic event shows less variable and more radiogenic 176Hf/177Hf, pointing to a mean early Neoproterozoic crustal residence. This zircon is unlikely to have crystallized from melts of metasediments of the accretionary systems, but probably derived from a more juvenile crust in their backstop system.  相似文献   

19.
Zircon fission-track (FT) and U–Pb analyses were performed on zircon extracted from a pseudotachylyte zone and surrounding rocks of the Asuke Shear Zone (ASZ), Aichi Prefecture, Japan. The U–Pb ages of all four samples are  67–76 Ma, which is interpreted as the formation age of Ryoke granitic rocks along the ASZ. The mean zircon FT age of host rock is 73 ± 7 (2σ) Ma, suggesting a time of initial cooling through the zircon closure temperature. The pseudotachylyte zone however, yielded a zircon FT age of 53 ± 9 (2σ) Ma, statistically different from the age of the host rock. Zircon FTs showed reduced mean lengths and intermediate ages for samples adjacent to the pseudotachylyte zone. Coupled with the new zircon U–Pb ages and previous heat conduction modeling, the present FT data are best interpreted as reflecting paleothermal effects of the frictional heating of the fault. The age for the pseudotachylyte coincides with the change in direction of rotation of the Pacific plate from NW to N which can be considered to initialize the NNE–SSW trending sinistral–extensional ASZ before the Miocene clockwise rotation of SW Japan. The present study demonstrates that a history of fault motions in seismically active regions can be reconstructed by dating pseudotachylytes using zircon FT thermochronology.  相似文献   

20.
The Ballantrae ophiolite in southern Scotland includes a NEE–SWW-trending serpentinite mélange that contains blocks of mafic blueschist and high-pressure, granulite facies, metapyroxenite (Sm–Nd metamorphic age: 576 ± 32 and 505 ± 11 Ma). Tectonic blocks of mafic schist are less than 3 × 3 m in size, and have greenschist, blueschist or epidote amphibolite facies assemblages corresponding to the high-pressure intermediate-type metamorphic facies series.Adjacent rocks of the serpentinite mélange are hydrothermally-altered MORB-like ophiolitic basalt (prehnite–pumpellyite facies), dolerite (actinolite–oligoclase sub-facies) and gabbro (amphibolite facies), all with assemblages that are diagnostic of the low-pressure metamorphic facies series.The difference in metamorphic facies series and parageneses of minerals between the high-pressure mafic blocks and the adjacent, low-pressure ophiolitic meta-basic rocks suggests that the former were exhumed from > 25 km depth within a cold subducted slab, and were juxtaposed with the latter, the bottom of a MORB-like ophiolite in the hanging wall of a trench. An ENE–WSW-trending, 501 ± 12 Ma volcanic arc belt extends for 3 km south of the serpentinite mélange. We suggest that ridge subduction associated with a slab window created arc-related gabbro (483 ± 4 Ma) at Byne Hill and within-plate gabbro (487 ± 8 Ma) at Millenderdale. Final continental collision created the duplex structure of the Ballantrae complex that includes the HP blocks and serpentinite mélange. These relations define diapiric exhumation in the Caledonian orogen of SW Scotland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号