首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Archean atmospheric oxygen concentration and sulfur cycle was long debated. The banded iron formation (BIF) is a special type of the sedimentary formation, which has truly recorded the atmospheric and oceanic conditions at that time. In this study, the composition of multiple sulfur isotope (δ 34S/δ 33S/δ 32S) for sulfides bedded in the Archean (~2.7 Ga) BIFs, in Anshan-Benxi area of Liaoning Province has been measured. The value of △33S varies from -0.89‰ to 1.21‰, which shows very obvious mass-independent fractionation (MIF) signatures. These non-zero △33S values indicate that the Archean sulfur cycles are different from what it is today, which have been deeply influenced by gas phase photochemical reactions. Algoma-type BIFs which are closely related to the volcanic activity have negative △33S value, however, Superior-type BIFs which are far away from the volcanic center have positive △33S value. The δ 34S varies in a large range from -22.0‰ to 11.8‰, which indicates that the bacteria reduction activity has already existed at that time, and that the oceanic sulfate concentration has at least reached 1 mmol/L in local areas. Combined with the contemporaneous existence of the hematite, magnetite and the occurrence and preservation of the sulfur MIF, it can be inferred that the Archean atmospheric oxygen level must be at 10-2―10-3 of the present atmospheric level (PAL).  相似文献   

2.
Previous studies on multiple sulfur isotopes (32S, 33S, and 34S) in sedimentary pyrite at the end-Permian suggested a shoaling of anoxic/sulfidic deep-water contributing to the extinction. This scenario is based on an assumption that the sedimentary sulfur cycle was largely controlled by benthos activity, though a stratigraphic correlation between the sulfur records and ichnofabrics of the sediments at the end-Permian has not yet been examined. We report the multiple sulfur isotopic composition of pyrite in the Permian–Triassic boundary interval at Chaotian, South China. Our data can be generally explained by a mixing of sulfur in sulfide from two different sources: one produced via sulfate reduction in an open system with respect to sulfate and the other produced in a closed system. In particular, the former with the substantially low δ34S (<−40 ‰) and high ∆33S (up to +0.100 ‰) values was likely produced via water-mass sulfate reduction or via sulfate reduction in oxic sediments with common burrows. The frequent occurrence of small pyrite framboids (mostly <5 μm in diameter) in the Lopingian (Late Permian) Dalong Formation of deep-water facies supports the enhanced water-mass sulfate reduction in an anoxic deep-water mass. The negative ∆33S values are observed only in the oxic limestones, and no substantial ∆33S change is observed across the extinction horizon despite of the disappearance of bioturbation. Our results are apparently inconsistent with the previous shoaling model. We expand the model and infer that, when the deep-water was sulfidic and its shoaling rate was high, a substantial amount of hydrogen sulfide (H2S) was supplied onto the shelf via the shoaling; that resulted in the positive ∆33S value of the bulk sediments. The observed ∆33S variation on a global scale suggests a substantial variation in H2S concentration and/or in upwelling rate of shoaling deep-waters during the Permian–Triassic transition.  相似文献   

3.
Pyrite (FeS2) oxidation in modern sedimentary environments is neither a purely chemical nor purely microbial process, but it is significantly enhanced by the activity of microorganisms that use reduced forms of iron and sulphur in their metabolisms. On the early Earth, where oxygen levels were thought to be < 10?5 of the present atmospheric level and chemical oxidants scarce, such biological mediation may have been critical in the redox cycles of iron and sulphur. Here, we show that detrital sedimentary pyrite grains in a ~ 3.4 billion-year-old sandstone were colonised by microbial communities. The detrital pyrite comes from the basal quartz arenite member of the 3.43–3.35 Ga Strelley Pool Formation (SPF) in the East Strelley greenstone belt of the Pilbara Craton, Western Australia. Rock chips and petrographic thin sections of black sandstones occurring on two ridges close to the SPF type locality of Strelley Pool were investigated using optical microscopy, SEM, TEM, laser Raman and NanoSIMS. The detrital pyrite grains exhibit laminated carbonaceous coatings of early Archean age, with localised enrichments of nitrogen that are interpreted as the in situ remains of biofilms growing on these nutrient-rich minerals. Pyrite surfaces contain spherical pits, chains of pits and channels that are morphologically distinct from abiotic alteration features. The pits and channels are widespread, have a clustered distribution typical of microbial colonisation, and are closely comparable to biologically mediated microstructures in the younger rock record and those created by extant Fe- and S-oxidising microbes in the laboratory. They are thus interpreted as trace fossils formed by the attachment of bacteria to the pyrite surfaces. A nano-layer and discreet nano-grains of secondary mineral precipitates, namely Fe-oxides belonging to the magnetite-maghaemite group, attest to pyrite oxidation. These are intimately associated with the biofilms and trace fossils, and are interpreted to represent the fossilised mineral products of biologically mediated pyrite oxidation. These data extend the geological range of microbes capable of metabolising reduced Fe and/or S compounds back to the early Archean and indicate that pyrite-rich sedimentary rocks provide promising targets in the search for extraterrestrial life.  相似文献   

4.
New paleomagnetic investigation was carried out on the late Neogene fluviolacustrine sequence of the Yuanmou Basin, located near the southeastern margin of the Tibetan Plateau. Magnetostratigraphic results indicate nine reverse magnetozones (R1 to R9) and eight normal magnetozones (N1 to N8) in the sedimentary profile, which can be correlated to the geomagnetic polarity timescale from C3n.3r to C1r.1r. The age of the sedimentary sequence of the Yuanmou Basin can thus be paleomagnetically constrained to an interval from early Pliocene to Pleistocene, with sedimentation rates varying from 12.5 to 55 cm/kyr. In addition to its highly resolved magnetostratigraphic sequence, the Yuanmou Basin provides a record of Plio-Pleistocene tectono- and climato-sedimentary processes. The mean declinations of the seventeen polarity units (excluding samples with transitional directions) can be grouped into three distinct directional intervals, Group I (2.58–1.37 Ma), Group II (4.29–2.58 Ma) and Group III (4.91–4.29 Ma). These directions indicate that the Yuanmou Basin has probably experienced vertical-axis clockwise rotation of about 12° from 1.4 Ma to 4.9 Ma, which may be related to slip activity of the Red River fault to the southwest and the Xianshuihe–Xiaojiang fault to the east.  相似文献   

5.
To improve our knowledge about the geochemical and environmental aftermath of Neoproterozoic global glaciations, we analyzed stable isotopes (δ13C, δ18O, δ34S) and elemental concentrations (Ca, Mg, S, Sr, Fe, and Mn) of the ~ 10-m-thick Zhamoketi cap dolostone atop the Tereeken diamictite in the Quruqtagh area, eastern Chinese Tianshan. Available chemostratigraphic data suggest that the Tereeken diamictite is probably equivalent to the Marinoan glaciation. Our new data indicate that organic and carbonate carbon isotopes of the Zhamoketi cap dolostone show little stratigraphic variations, averaging ? 28.2‰ and ? 4.6‰, respectively. In contrast, sulfur isotopes show significant stratigraphic variations. Carbonate associated sulfate (CAS) abundance decreases rapidly in the basal cap dolostone and δ34SCAS composition varies between + 9‰ and + 15‰ in the lower 2.5 m. In the overlying interval, CAS abundance remains low while δ34SCAS rises ~ 5‰ and varies more widely between + 10‰ and + 21‰. The range of δ34Spy of the cap dolostone overlaps with that of δ34SCAS, but direct comparison shows that δ34Spy is typically greater than δ34SCAS measured from the same samples. Hypotheses to explain the observations must account for both the remarkable sulfur isotope enrichment of pyrites and the inverse fractionation. We propose that CAS and pyrite were derived from two isotopically distinct reservoirs in a chemically stratified basin or a basin with a sulfate minimum zone. In this model, CAS was derived from shallow, oxic surface waters with moderate sulfate concentration and depleted in 34S due to the post-glacial influx of sulfur from continental weathering. In contrast, pyrite was derived from anoxic bottom waters (or a sulfate minimum zone) with low sulfate concentration and 34S enrichment due to long-term syn-glacial sulfate reduction. The rapid shift in CAS abundance and sulfur isotope composition within the cap dolostone is interpreted to reflect the mixing of the two reservoirs after initial deglaciation. Comparison with other post-Marinoan cap carbonates shows significant spatial heterogeneity in δ34SCAS, which together with strong temporal variation in δ34SCAS, points to generally low sulfate concentrations in post-Marinoan oceans.  相似文献   

6.
Kawah Putih is a summit crater of Patuha volcano, West Java, Indonesia, which contains a shallow, 300 m-wide lake with strongly mineralized acid–sulfate–chloride water. The lake water has a temperature of 26–34°C, pH=<0.5–1.3, Stot=2500–4600 ppm and Cl=5300–12 600 ppm, and floating sulfur globules with sulfide inclusions are common. Sulfur oxyanion concentrations are unusually high, with S4O62−+S5O62−+S6O62−=2400 – 4200 ppm. Subaerial fumaroles (<93°C) on the lake shore have low molar SO2/H2S ratios (<2), which is a favorable condition to produce the observed distribution of sulfur oxyanion species. Sulfur isotope data of dissolved sulfate and native sulfur show a significant 34S fractionation (ΔSO4–Se of 20‰), probably the result of SO2 disproportionation in or below the lake. The lake waters show strong enrichments in 18O and D relative to local meteoric waters, a result of the combined effects of mixing between isotopically heavy fluids of deep origin and meteoric water, and evaporation-induced fractionation at the lake surface. The stable-isotope systematics combined with energy-balance considerations support very rapid fluid cycling through the lake system. Lake levels and element concentrations show strong seasonal fluctuations, indicative of a short water residence time in the lake as well.Thermodynamic modeling of the lake fluids indicates that the lake water is saturated with silica phases, barite, pyrite and various Pb, Sb, Cu, As, Bi-bearing sulfides when sulfur saturation is assumed. Precipitating phases predicted by the model calculations are consistent with the bulk chemistry of the sulfur-rich bottom sediments and their identified mineral phases. Much of the lake water chemistry can be explained by congruent rock dissolution in combination with preferential enrichments from entering fumarolic gases or brines and element removal by precipitating mineral phases, as indicated by a comparison of the fluids, volcanic rocks and lake bed sediment.Flank springs on the mountain at different elevations vary in composition, and are consistent with local rock dissolution as a dominant factor and pH-dependent element mobility. Discharges of warm sulfate- and chloride-rich water at the highest elevation and a near-neutral spring at lower level may contain a small contribution of crater-lake water. The acid fluid-induced processes at Patuha have led to the accumulation of elements that are commonly associated with volcano-hosted epithermal ore deposits. The dispersal of heavy metals and other potentially toxic elements from the volcano via the local drainage system is a matter of serious environmental concern.  相似文献   

7.
The influence of a further developed inlake restoration method on the P-immobilisation and microbial activities, especially under anoxic conditions was investigated. The impact of nitrate and iron dosing with a newly developed nitrate storage compound (Depox®Fe) was tested in enclosures in the eutrophic dimictic Lake Dagowsee, Germany. Additions of 50 g m−2 of NO3–N and 66 g m−2 of Fe3+ ensured availability of nitrate at the sediment surface during a 2-months period.As a result the phosphate release from the anoxic sediments was completely suppressed even 1 year after the application. The hypolimnetic deoxygenation was unaffected by the Depox®Fe addition. However, sulfur reduction and methanogenesis were inhibited and the phosphatase activity increased.  相似文献   

8.
Immediately before the extinction of the end‐Guadalupian (Middle Permian; ca 260 Ma), a significant change to the global carbon cycle occurred in the superocean Panthalassa, as indicated by a prominent positive δ13C excursion called the Kamura event. However, the causes of this event and its connection to the major extinction of marine invertebrates remain unclear. To understand the mutual relationships between these changes, we analyzed the sulfur isotope ratio of the carbonate‐associated sulfate (CAS) and HCl‐insoluble residue, as well as the carbon isotope ratio of bulk organic matter, for the Middle‐Upper Permian carbonates of an accreted mid‐oceanic paleo‐atoll complex from Japan, where the Kamura event was first documented. We detected the following unique aspects of the stable carbon and sulfur isotope records. First, the extremely high δ13C values of carbonate (δ13Ccarb) over +5 ‰ during the Capitanian (late Guadalupian) were associated with large isotopic differences between carbonate and organic matter (Δ13C = δ13Ccarb ? δ13Corg). We infer that the Capitanian Kamura event reflected an unusually large amount of dissolved organic matter in the expanded oxygen minimum zone at mid‐depth. Second, the δ34S values of CAS (δ34SCAS) were inversely correlated with the δ13Ccarb values during the Capitanian to early Wuchiapingian (early Late Permian) interval. The Capitanian trend may have appeared under increased oceanic sulfate conditions, which were accelerated by intense volcanic outgassing. Bacterial sulfate reduction with increased sulfate concentrations in seawater may have stimulated the production of pyrite that may have incorporated iron in pre‐existing iron hydroxide/oxide. This stimulated phosphorus release, which enhanced organic matter production and resulted in high δ13Ccarb. Low δ34SCAS values under high sulfate concentrations were maintained and the continuous supply of sulfate cannot by explained only by the volcanic eruption of the Emeishan Trap, which has been proposed as a cause of the extinction. The Wuchiapingian δ34SCAS–δ13Ccarb correlation, likely related to low sulfate concentration, may have been caused by the removal of oceanic sulfate through the massive evaporite deposition.  相似文献   

9.
Cinder Pool is an acid-sulfate-chloride boiling spring in Norris Geyser Basin, Yellowstone National Park. The pool is unique in that its surface is partially covered with mm-size, black, hollow sulfur spherules, while a layer of molten sulfur resides at the bottom of the pool (18 m depth). The sulfur speciation in the pool was determined on four different days over a period of two years. Samples were taken to evaluate changes with depth and to evaluate the importance of the sulfur spherules on sulfur redox chemistry. All analyses were conducted on site using a combination of ion chromatography and colorimetric techniques.Dissolved sulfide (H2S), thiosulfate (S2O32−), polythionates (SxO62−), and sulfate were detected. The polythionate concentration was highly variable in time and space. The highest concentrations were found in surficial samples taken from among the sulfur spherules. With depth, the polythionate concentrations dropped off. The maximum observed polythionate concentration was 8 μM. Thiosulfate was rather uniformly distributed throughout the pool and concentrations ranged from 35 to 45 μM. Total dissolved sulfide concentrations varied with time, concentrations ranged from 16 to 48 μM. Sulfate was relatively constant, with concentrations ranging from 1150 to 1300 μM. The sulfur speciation of Cinder Pool is unique in that the thiosulfate and polythionate concentrations are significantly higher than for any other acid-sulfate spring yet sampled in Yellowstone National Park. Complementary laboratory experiments show that thiosulfate is the intermediate sulfoxyanion formed from sulfur hydrolysis under conditions similar to those found in Cinder Pool and that polythionates are formed via the oxidation of thiosulfate by dissolved oxygen. This last reaction is catalyzed by pyrite that occurs as a minor constituent in the sulfur spherules floating on the pool's surface. Polythionate decomposition proceeds via two pathways: (1) a reaction with H2S, yielding thiosulfate and elemental sulfur; and (2) by disproportionation to sulfate and thiosulfate.This study demonstrates that the presence of a subaqueous molten sulfur pool and sulfur spherules in Cinder Pool is of importance in controlling the pathways of aqueous sulfur redox reactions. Some of the insights gained at Cinder Pool may be relevant to acid crater lakes where sulfur spherules are observed and variations in polythionate concentrations are used to monitor and predict volcanic activity.  相似文献   

10.
Stable isotope ratios of S, O and Sr have been measured for active vent materials which were first found and sampled in April 1987 from the Mariana backarc spreading axis at 18°N. Chimneys consisted mostly of barite with a lesser proportion of sulfide minerals such as sphalerite, galena, chalcopyrite and pyrite. Theδ34S values of sphalerite and galena taken from several chimneys and various parts of a chimney showed a narrow range from 2.1 to 3.1‰, suggesting uniform conditions of fluid chemistry during chimney growth. The sulfur isotopic results imply a contribution of hydrogen sulfide reduced from seawater sulfate in the deep hydrothermal reaction zone, considering that fresh glasses of the Mariana Trough basalts haveδ34S= −0.6 ± 0.3‰. Sulfur isotopic compositions of hydrogen sulfide in the high temperature vent fluids (δ34S= 3.6–4.8‰) which are higher than those of the sulfide minerals suggest the secondary addition of hydrogen sulfide partially reduced from entrained seawater SO42− at a basal part of the chimneys. This interpretation is consistent with theδ34S values of barite (21–22‰) that are higher than those of seawater sulfate. The residence time of the entrained SO42− was an order of an hour on a basis of oxygen isotopic disequilibrium of barite. Strontium isotopic variations of barite and vent waters indicated that Sr in barite was mostly derived from the Mariana Trough basalts with a slight contribution from Sr in circulating sea-water, and that 10–20% mixing of seawater with ascending hydrothermal fluids induced precipitation of barite at the sea-floor.  相似文献   

11.
New high resolution carbon isotope stratigraphies from two basinal pelagic carbonate successions in northern Germany (Halle and Oerlinghausen, Münsterland Cretaceous Basin) resolve late Cenomanian to early Mid-Turonian carbon cycle variations at timescales of less than 100 kyr. Beside the major carbon isotope excursion of the late Cenomanian oceanic anoxic event (OAE 2), 11 small-scale distinct features are precisely resolved in the δ13C carbonate curve and related to boreal macrofossil zonations. The small-scale carbon isotope events correspond to secular δ13C carbonate variations identified previously in the English Chalk. The boreal high-resolution δ13C carbonate curve shows a detailed coincidence with two Tethyan δ13C curves from Italy, what demonstrates the interregional significance of the δ13C dates and allows their correlation within error limits of ± 40 kyr. Furthermore, the new δ13C curve enables the calibration of boreal and tethyan macro- and microfossil zonations. Accordingly, the Tethyan calcareous nannoplankton boundary NC13/NC14 corresponds to the boreal FO of C. woollgari, the index taxon for the Lower-Middle Turonian boundary. The cyclic appearance and the temporal spacing of the small-scale carbon isotope events suggest that orbital forcing exerted control on surface water productivity and organic matter preservation at the sea floor.  相似文献   

12.
An 8-m continuous sediment core, approximately 250-ky-old at the bottom, from Academician Ridge in Lake Baikal, has been analyzed for the stable isotopes of carbon, nitrogen and sulfur, in order to study the paleoclimatic and paleobiological changes that occurred in the Eurasian continental interior. These isotopic changes are closely related to changes in vertical lake-water circulation between glacial and interglacial periods. Sedimentary organic carbon in cool periods is more enriched in 13C (−23.8‰ on average) than that in warm periods (−27.0‰ on average). The 13C-enrichment of organic carbon suggests a decrease of land-derived organic matter influx to the lake, less precipitation, and loss of terrestrial vegetation around Lake Baikal in cool periods. Pyrite in high total sulfur/total organic carbon (TS/TOC) layers shows strong depletion in 34S (−20.8‰ to −32.4‰) during climate transitions from glacial to interglacial periods at the beginning of oxygen isotope stages (OIS) 1, 5 and 7. The 34S-depleted pyrite indicates augmentation of dissimilatory sulfate reduction by sulfate reducing bacteria (SRB) at the sediment-water interface. Enhancement of aqueous sulfate concentrations and limitation of oxygen circulation to the surface sediments might also occur in the climate transition periods. The δ15N values of total nitrogen increase abruptly by ∼2‰ just after the δ34S negative peaks, which may result from low nutrient concentrations in the euphotic zone associated with water circulation changes in Lake Baikal.  相似文献   

13.
We use sulfur (S) isotope signatures within ancient sediments and a photochemical model of sulfur dioxide (SO2) photolysis to interpret the evolution of the atmosphere over the first half of Earth's history. A decrease in mass-independent sulfur isotope fractionation has been reported in Archean rocks deposited between ~ 2.7 Ga and ~ 3.2 Ga, and is reinforced by new S isotope data that we report here. This pattern has been interpreted by some as evidence that atmospheric oxygen (O2) was elevated during this time. In this paper, we argue against that conclusion, and show that it is inconsistent with other geochemical data. In its place, we propose a new model that can explain the sulfur isotope record that can also avoid conflicts with independent constraints on O2 and account for concurrent glacial deposits. Specifically, we suggest that prior to the rise of O2 excursions in the sulfur isotope record were modulated by the thickness of an organic haze. This haze would have blocked the lower atmosphere from the UV fluxes responsible for the anomalous sulfur photochemistry and would have caused an anti-greenhouse effect that triggered the glaciations. We used a photochemical model to verify that a haze could have affected the isotopic signal in this manner, and to examine how changes in atmospheric methane (CH4) and carbon dioxide (CO2) concentrations could have controlled haze thickness. Finally, we combined the resulting relationships with climate models and sulfur isotope and glacial records to deduce a new evolutionary sequence for Archean climate, surface chemistry, and biology.  相似文献   

14.
There are different sulfur forms in the black shales from the Early Cambrian of the Yangtze platform. With its emphasis on pyrite and organosulfur, this paper discusses their distribution and formation. The research shows that sulfur phases take regular variations laterally as well as vertically in the research areas. In western researched profile with high terrigenous supply at the time it formed, there exists a larger amount of pyrite and less organosulfur, and pyrite amount declines while organosulfur content increases upwards along the profile. This black shale profile is characterized by relatively light sulfur isotope composition with evolution trend of becoming heavier both for pyrite and organosulfur from bottom to top along the profile. Opposite situation occurs in eastern profiles which were located farther away from terrigenous land. Here pyrite amount obviously decreases and organic matter has combined more sulfur, although these two kinds of sulfur species take similar trend in content variation along profiles to that for western profile. At the same time more34S is accumulated in sulfur species of black shale samples from eastern profile, and sulfur isotope composition gradually turns lighter from bottom to top. In combination with other information of iron, organic carbon contents and petrographic features, it can be established that sea-level change, supply of terrigenous matters, tectonic background and natures of paleoceanic chemistry have exerted great influence on the distribution of sulfur species in these black shales.  相似文献   

15.
The chemical composition and D/H, and ratios have been determined for the acid hot waters and volcanic gases discharging from Zaō volcano in Japan. The thermal springs in Zaō volcano issue acid sulfate-chloride type waters (Zaō) and acid sulfate type waters (Kamoshika). Gases emitted at Kamoshika fumaroles are rich in CO2, SO2 and N2, exclusive of H2O. Chloride concentrations and oxygen isotope data indicate that the Zaō thermal waters issue a fluid mixture from an acid thermal reservoir and meteoric waters from shallow aquifers. The waters in the Zaō volcanic system have slight isotopic shifts from the respective local meteoric values. The isotopic evidence indicates that most of the water in the system is meteoric in origin. Sulfates in Zaō acid sulfate-chloride waters with δ34S values of around +15‰, are enriched in 34S compared to Zaō H2S, while the acid sulfate waters at Kamoshika contain supergene light sulfate (δ34S = + 4‰) derived from volcanic sulfur dioxide from the volcanic exhalations. The sulfur species in Zaō acid waters are lighter in δ34S than those of other volcanic areas, reflecting the difference in total pressure.  相似文献   

16.
The Ediacaran Doushantuo Formation with well-preserved fossil record in South China provides a rare window for our understanding of biological evolution,global carbon cycle,and oceanic redox states.Prominent negativeδ~(13)C anomalies(i.e.,the Shuram excursion)in Ediacaran successions worldwide fundamentally challenge the traditional models of isotopic mass balance.Additionally,conflicting opinions of both oxic and anoxic conditions have been proposed for the deep waters during this period.Here,we present a detailed study of pyrite morphology and carbonate carbon isotope data documented from drill core samples at Songtao County,northeastern Guizhou.Framboid aggregates are the dominant pyrite form in black shale and they can transfer to euhedral crystals through continuous growth of the constituent microcrystals.A positive correlation between microcrystal sizes(d)and framboid diameters(D)is observed,while the different D/d ratios of framboids in argillaceous dolostone and black shale reflect different substrate availability.Electron microprobe analyses reveal no consistent compositional patterns between framboidal and euhedral pyrites.Framboid size distributions of the investigated drill core,in combination with previously published redox data from the intra-shelf Jiulongwan section,shelf margin Zhongling section,and lower slope Wuhe section,suggest that three episodes of marine euxinia have been established throughout the deposition of the Doushantuo Formation.The time lag between the uppermost euxinic interval and the Shuram excursion may arise from the depression of sulfate reduction maintained by other oxidants.  相似文献   

17.
The Flin Flon Belt of Canada contains Paleoproterozoic volcanic–sedimentary sequences that are related to the Trans‐Hudson Orogeny. The sequences include island arc volcanic and volcaniclastic rocks (Amisk Group) that are unconformably overlain by subaerial sedimentary rocks (Missi Group), and younger deep facies sediments. In the Flin Flon area, several north–south trending faults divide the sequences into blocks and obscure the depositional environment of the deep facies sediments. Locally, within the Flin Flon area, the Embury Lake Formation is in fault contact with island arc volcanic–sedimentary sequences of the Amisk and Missi Groups. To identify the depositional environment of the Embury Lake Formation, we used lithologic and geochemical approaches. Here, we report carbon isotopic values in organic matter (δ13Corg) and sulfur isotopes (δ34S), as well as total organic carbon and total sulfur measurements for the black shale in the formation. Samples were taken from a drill core that contains alternating bands of sandstone and black shale. Pyrite in the black shale is divided into four textural types: euhedral, vein‐type, elliptical, and microcrystalline. Microcrystalline pyrite is typically generated by microbially mediated sulfate reduction. An extremely low S/C ratio (avg. = 0.04) is consistent with lacustrine deposition. The ranges of δ13Corg (?36 ‰ to ?27 ‰) and δ34S (+3.0 ‰ to +7.7 ‰) values can be explained by bacterial photosynthesis that involved Calvin cycle and acetyl CoA pathways, and sulfate reduction in a low‐sulfate environment. Considering the depositional age reported in a previous study of < 1.84 Ga, the Embury Lake Formation was likely emplaced in a lacustrine setting during the Trans‐Hudson Orogeny.  相似文献   

18.
Cave air PCO2 at two Irish sites varied dramatically on daily to seasonal timescales, potentially affecting the timing of calcite deposition and consequently climate proxy records derived from stalagmites collected at the same sites. Temperature-dependent biochemical processes in the soil control CO2 production, resulting in high summer PCO2 values and low winter values at both sites. Large Large-amplitude, high-frequency variations superimposed on this seasonal cycle reflect cave air circulation. Here we model stalagmite growth rates, which are controlled partly by CO2 degassing rates from drip water, by considering both the seasonal and high-frequency cave air PCO2 variations. Modeled hourly growth rates for stalagmite CC-Bil from Crag Cave in SW Ireland reach maxima in late December (0.063 μm h− 1) and minima in late June/early July (0.033 μm h− 1). For well-mixed ‘diffuse flow’ cave drips such as those that feed CC-Bil, high summer cave air PCO2 depresses summer calcite deposition, while low winter PCO2 promotes degassing and enhances deposition rates. In stalagmites fed by well-mixed drips lacking seasonal variations in δ18O, integrated annual stalagmite calcite δ18O is unaffected; however, seasonality in cave air PCO2 may influence non-conservative geochemical climate proxies (e.g., δ13C, Sr/Ca). Stalagmites fed by ‘seasonal’ drips whose hydrochemical properties vary in response to seasonality may have higher growth rates in summer because soil air PCO2 may increase relative to cave air PCO2 due to higher soil temperatures. This in turn may bias stalagmite calcite δ18O records towards isotopically heavier summer drip water δ18O values, resulting in elevated calcite δ18O values compared to the ‘equilibrium’ values predicted by calcite–water isotope fractionation equations. Interpretations of stalagmite-based paleoclimate proxies should therefore consider the consequences of cave air PCO2 variability and the resulting intra-annual variability in calcite deposition rates.  相似文献   

19.
Changes in oceanic O–Sr isotopic compositions and global cooling beginning in the Eocene are considered to have been caused by the uplift of the Tibetan Plateau. The specific timing and uplift mechanism, however, have long been subjects of debate. We investigated the Duogecuoren lavas of the central-western Qiangtang Block, which form the largest outcrops among Cenozoic lavas in northern-central Tibet and have widely been considered as shoshonitic. Our study demonstrates, however, that most of these lavas are high-K calc-alkaline andesites, dacites and rhyolites. Moreover, they are characterized by high Sr (367–2472 ppm) and Al2O3 (14.55–16.86 wt.%) and low Y (3.05–16.9 ppm) and Yb (0.31–1.48 ppm) contents and high La/Yb (27–100) and Sr/Y (48–240) ratios, similar to adakitic rocks derived by partial melting of an eclogitic source. They can be further classified as either peraluminous and metaluminous subtypes. The peraluminous rocks have relatively high SiO2 (> 66 wt.%) contents, and low MgO (< 1.0 wt.%), Cr (4.94–23.3 ppm) and Ni (2.33–17.0 ppm) contents and Mg# (20–50) values, while the metaluminous rocks exhibit relatively low SiO2 (55–69 wt.%) contents, and high MgO (1.41–6.34), Cr (25.7–383 ppm), Ni (14.13–183 ppm) and Mg# (46–69) values, similar to magnesian andesites. 40Ar/39Ar and SHRIMP zircon U–Pb dating reveal that both peraluminous and metaluminous adakitic rocks erupted in the Eocene (46–38 Ma). Paleocene–Early Miocene thrust faults and associated syn-contractional basin deposits in the Qiangtang Block suggest that this region was undergoing crustal shortening within a continent during the Eocene. The low εNd (− 2.81 to − 6.91) and high 87Sr/86Sr (0.7057–0.7097), Th (11.2–32.3 ppm) and Th/La (0.23–0.88) values in the Duogecuoren adakitic rocks further indicate that they were not derived by partial melting of subducted oceanic crust. Taking into account tectonic and geophysical data and the compositions of xenoliths in Cenozoic lava in northern-central Tibet, we suggest that the peraluminous adakitic rocks were most probably derived by partial melting of subducted sediment-dominated continent of the Songpan-Ganzi Block along the Jinsha suture to the north at a relatively shallow position (the hornblende + garnet stability field), but the metaluminous adakitic rocks likely originated from the interaction between peraluminous adakitic melts generated at greater depths (the garnet + rutile stability field) and mantle. Because the Duogecuoren adakitic rocks must have originated from a garnet-bearing (namely, eclogite facies) source, Eocene continental subduction along the Jinsha suture caused the thickening of the Qiangtang crust. Given that crustal thickening generally equates with elevation, the uplift of the Central Tibetan Plateau probably began as early as 45–38 Ma, which provides important evidence for tectonically driven models of oceanic O–Sr isotope evolution during global cooling and Asian continental aridification beginning in the Eocene.  相似文献   

20.
A detailed oxygen and carbon isotope record has been obtained from benthic Foraminifera in core V19-30 from the Carnegie Ridge on the south side of the Panama Basin. Expressing these records and the oxygen and carbon isotope records previously published for Atlantic core M-12392 on a common timescale, it is apparent that the oxygen isotope records are very similar but that the carbon isotope records are quite different. By obtaining the carbon isotope gradient between the two sites as a function of time we show that the production of North Atlantic Deep Water has varied over a wide range during the late Pleistocene, and that the pattern of variation is not simply related to the well known oxygen isotope record. Although the two oxygen isotope records are very similar, changes in the interoceanic gradient are detectable and support the hypothesis that in the glacial mode the North Atlantic was colder, and less oxygenated, than it is today.Shackleton's [1] 1977 interpretation whereby the carbon isotope record from the Atlantic core reflects changes in the terrestrial biomass, is an over-simplification. However, the record from the Pacific core V19-30 probably can be explained in these terms since it probably approximates the carbon isotope record of global mean oceanic dissolved CO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号