首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of an internal boundary layer and a roughness sublayer on flux–profile relationships for momentum and sensible heat have been investigated for a closed beech forest canopy with limited fetch conditions. The influence was quantified by derivation of local scaling functions for sensible heat flux and momentum (h and m) and analysed as a function of atmospheric stability and fetch. For heat, the influences of the roughness sublayer and the internal boundary layer were in agreement with previous studies. For momentum, the strong vertical gradient of the flow just above the canopy top for some wind sectors led to an increase in m, a feature that has not previously been observed. For a fetch of 500 m over the beech forest during neutral atmospheric conditions, there is no height range at the site where profiles can be expected to be logarithmic with respect to the local surface. The different influence of the roughness sublayer on h and m is reflected in the aerodynamic resistance for the site. The aerodynamic resistance for sensible heat is considerably smaller than the corresponding value for momentum.  相似文献   

2.
Surface renewal analysis for sensible and latent heat flux density   总被引:1,自引:1,他引:0  
High frequency temperature measurements were recorded at five heights and surface renewal (SR) analysis was used to estimate sensible heat flux density (H) over 0.1 m tall grass. Traces of the temperature data showed ramp-like structures, and the mean amplitude and duration of these ramps were used to calculate H using structure functions. Data were compared with H values measured with a sonic anemometer. Latent heat flux density (E) was calculated using an energy balance and the results were compared with E computed from the sonic anemometer data. SR analysis provided good estimates of H for data recorded at all heights but the canopy top and at the highest measurement level, which was above the fully adjusted boundary layer.  相似文献   

3.
Roughness length for heat over an urban canopy   总被引:1,自引:0,他引:1  
The roughness length for heat zT was evaluated over an urban canopy, using the measured sensible heat flux and radiometric temperature. To overcome thermal heterogeneity in the urban area, the measured radiometric temperature was transformed into the equivalent temperature of an upward longwave radiation flux. The equivalent temperature was found to provide an effective parameterization of the radiometric temperature. The daytime average of the resulting ln(zT/z0) was 10, where z0 is the aerodynamic roughness length. This result generally agrees with previous studies; however, the anthropogenic heat is a large uncertainty, which could cause an error at least 240% in zT.  相似文献   

4.
Several formulations and proposals to determine the value of the radiometric scalar roughness for sensible heatz 0h,r are tested with respect to their performance in the estimation of the sensible heat flux by means of the profile equations derived from Monin-Obukhov similarity theory. The equations are applied to the data set of spatially averaged surface skin temperature and profiles of wind speed and temperature observed in a pasture field during a growing season. The use of a physical model developed for a dense canopy to estimate scalar roughness for sensible heatz 0h,r produced sensible heat fluxH with a correlation coefficientr=0.884, the ratio of means being H s /H=1.19 in a comparison with reference values ofH s . In comparison, a proposal for a fixed value ofz 0h yieldedr=0.887, H s /H=0.879. In both cases, the validity ofz 0h =z 0h,r was assumed. All expressions derived to estimatez 0h,r from a multiple linear regression with such predictors as leaf area index, solar radiation and the ratio of solar radiation to extraterrestrial radiation, were found to produce a better result, withr better than 0.90 and H s /H around 1.0. However, when the constantsc andf of a linear regression equationHs=cH+f are used to evaluate the equations, a marked difference in performance of each formulation appeared. In general, equations with smaller numbers of predictors tend to produce a biased result, i.e., an overestimation ofH at largeH s . These values ofH are used in conjunction with the energy balance equation to derive values of the latent heat fluxLE, which are shown to be in good agreement with the reference valuesLE s , withr greater than 0.97.  相似文献   

5.
In the framework of an international field program for the study of semi-arid areas, observations were done in the region called La Crau in southern France. In this paper, the use of the surface radiative temperature for the determination of the sensible heat flux is addressed. We found that, once proper values of the roughness length of momentum (z 0) and heat (z 0h) are set, the sensible heat flux can be reliably predicted with a one-layer resistance model using standard observations of wind speed and air temperature, together with the surface temperature. The latter quantity has to be known with a precision better than ±2°C. From our observations, the value of the parameterB –1k –1 In (z 0 z 0h) was found to be 9.2, which falls between values quoted by Brutsaert (1982) for grass and bluff bodies.  相似文献   

6.
The budgets of water vapor and sensible heat in the convective atmospheric boundary (mixed) layer are analyzed by means of a simple slab approach adapted to steady large-scale advective conditions with radiation and cloud activity. The entrainment flux for sensible heat is assumed to be a linear function of the surface flux. The flux of water vapor at the top of the mixed layer is parameterized by extending the first-order Betts-Deardorff approach, i.e., by adopting linear changes for both the specific humidity and the flux across the mixed layer and across the inversion layer of finite thickness. In this way the dissimilarity of sensible heat and water vapor transport in the mixed layer can be taken into account. The experimental data were obtained from the Air Mass Transformation Experiment (AMTEX). The entrainment constant for sensible heat at the top of the mixed layer was found to have values similar to those observed in other weakly convective situations, i.e., around 0.4 to 0.6. This appears to indicate that the effect of mechanical turbulence was not negligible; however, the inclusion of this effect in the formulation did not improve the correlation. In contrast to the first-order approach, the zero-order approach, i. e., the jump equation commonly used for the flux of a scalar at the inversion, (ovwc ) h = we c (where w e is the entrainment velocity and c the concentration jump across the inversion), was found to be invalid and incapable of describing the data.  相似文献   

7.
Comparisons between sensible heat flux measured using eddy correlation instrumentation and estimated using the temperature fluctuation method are presented for four types of surface in West Africa. Agreement between measured and estimated values is good. Regression of estimated on measured sensible heat flux gave a mean slope of 0.98 with a mean r 2 of 0.94 for bare soil, mature millet, fallow savannah and tiger bush. Estimates of heat flux from temperature fluctuations measured by an instrument mounted beneath a tethered balloon are also shown to be in close agreement with eddy correlation measurements made at the surface (regression slope = 0.98, r 2 = 0.84). The results provide evidence that the ratio /×is indeed a universal function of z/L for all the surface types considered.  相似文献   

8.
A model is developed to simulate the potential temperature and the height of the mixed layer under advection conditions. It includes analytic expressions for the effects of mixed-layer conditions upwind of the interface between two different surfaces on the development of the mixed layer downwind from the interface. Model performance is evaluated against tethersonde data obtained on two summer days during sea breeze flow in Vancouver, Canada. It is found that the mixed-layer height and temperature over the ocean has a small but noticeable effect on the development of the mixed layer observed 10 km inland from the coast. For these two clear days, the subsidence velocity at the inversion base capping the mixed layer is estimated to be about 30 mm s–1 from late morning to late afternoon. When the effects of subsidence are included in the model, the mixed-layer height is considerably underpredicted, while the prediction for the mean potential temperature in the mixed layer is considerably improved. Good predictions for both height and temperature can be obtained when values for the heat entrainment ratio,c, 0.44 and 0.68 for these two days respectively for the period from 1000 to 1300 LAT, were used. These values are estimated using an equation including the additional effects on heat entrainment due to the mechanical mixing caused by wind shear at the top of the mixed layer and surface friction. The contribution of wind shear to entrainment was equal to, or greater than, that from buoyant convection resulting from the surface heat flux. Strong wind shear occurred near the top of the mixed layer between the lower level inland flow and the return flow aloft in the sea breeze circulation.Symbols c entrainment parameter for sensible heat - c p specific heat of air at constant pressure, 1010 J kg–1 K–1 - d 1 the thickness of velocity shear at the mixed-layer top, m - Q H surface sensible heat flux, W m–2 - u m mean mixed-layer wind speed, m s–1 - u * friction velocity at the surface, m s–1 - w subsidence velocity, m s–1 - W subsidence warming,oC s–1 - w e entrainment velocity, m s–1 - w * convection velocity in the mixed layer, m s–1 - x downwind horizontal distance from the water-land interface, m - y dummy variable forx, m - Z height above the surface, m - Z i height of capping inversion, m - Z m mixed-layer depth, i.e.,Z i–Zs, m - Z s height of the surface layer, m - lapse rate of potential temperature aboveZ i, K m–1 - potential temperature step atZ i, K - u h velocity step change at the mixed-layer top - m mean mixed-layer potential temperature, K  相似文献   

9.
This paper evaluates convective boundary layer (CBL) budget methods as a tool for estimating regionally averaged sensible and latent heat fluxes for the study region used in OASIS (Observations at Several Interacting Scales). This is an agricultural region of mixed cropping and grazing extending about 100 km west of the town of Wagga Wagga, NSW, Australia.The analysis proceeds in three stages: first, a simpleone-dimensional model of the well-mixed layer (the CBL slab model), forced with measurements of the surface heat and evaporation fluxes, is evaluated by comparing measured and modelled CBL temperature, humidity and depths. A comparison of several entrainment schemes shows that a simple model, where the entrainment kinetic energy is parameterised as a fraction (3) of the surface sensible heat flux, works well if is set to 0.5. Second, the slab model is coupled to a Penman–Monteith model of surface evaporation to predict regional scale evaporation and thence heat fluxes. Finally, the integral CBL budget approach, which is an inverse method using theone-dimensional slab model, is used to infer regional heat and evaporation fluxes from measured time series of CBL temperature and humidity.We find that the simple CBL slab model works reasonably well for predicting CBL depth and very well for CBL temperature, especially if approximate estimates of subsidence velocity and warming due to advection are included. Regional sensible heat fluxes estimated from the integral CBL method match those measured, although the method is very sensitive to measurement errors. Measurement-model differences were larger for short integration times, because the well-mixed assumptions are violated at particular times of the day. The corollary is that `whole-day' (0530–1530 h) estimates are in reasonable agreement with measured values. Integral methods could not be used to infer the regional evaporation flux directly because CBL humidity profiles were complex and often not well mixed until mid-afternoon. We recommend that regional evaporation fluxes be predicted either from a coupled Penman–Monteith – CBL slab model, or inferred as a residual term from estimates of the regionally averaged available energy and sensible heat flux. Furthermore, we show that inferring fluxes via integral methods will always be difficult when the scalar concentrations have either a large surface source and free atmosphere sink (in the case of water vapour and methane), or a large surface sink and upper level source (in the case of CO2).  相似文献   

10.
When applied to a sea surface, shortcomings are noted for the ordinary classification of drag conditions at rigid underlying surfaces according to the Reynolds roughness number Re s . It is shown that in the case of mobile underlying surfaces, it would be more natural to use the dynamical classification of drag conditions according to the order of magnitude of the ratio ( = /) of the momentum flux toward the waves ( w) to the viscous momentum flux through the surface ( w). The relevant estimates of for the main stages of development of the wind waves indicate that the observed values of the drag coefficient of the sea surface correspond to the case of underdeveloped roughness.  相似文献   

11.
The turbulent heat flux from arctic leads   总被引:2,自引:0,他引:2  
The turbulent transfer of heat from Arctic leads in winter is one of the largest terms in the Arctic heat budget. Results from the AIDJEX Lead Experiment (ALEX) suggest that the sensible component of this turbulent heat flux can be predicted from bulk quantities. Both the exponential relation N = 0.14R x 0.72 and the linear relation N = 1.6 × 10–3 R x+ 1400 fit our data well. In these, N is the Nusselt number formed with the integrated surface heat flux, and R x is the Reynolds number based on fetch across the lead. Because of the similarity between heat and moisture transfer, these equations also predict the latent heat flux. Over leads in winter, the sensible heat flux is two to four times larger than the latent heat flux.The internal boundary layer (IBL) that develops when cold air encounters the relatively warm lead is most evident in the modified downwind temperature profiles. The height of this boundary layer, , depends on the fetch, x, on the surface roughness of the lead, z 0 and on both downwind and upwind stability. A tentative, empirical model for boundary layer growth is % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4baFfea0dXde9vqpa0lb9% cq0dXdb9IqFHe9FjuP0-iq0dXdbba9pe0lb9hs0dXda91qaq-xfr-x% fj-hmeGabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWcaaqaaiabes% 7aKbqaaiaadQhadaWgaaWcbaGaaGimaaqabaaaaOGaeyypa0JaeqOS% di2aaeWaaeaacqGHsisldaWcaaqaaiaadQhadaWgaaWcbaGaaGimaa% qabaaakeaacaWGmbaaaaGaayjkaiaawMcaamaaCaaaleqabaGaaGim% aiaac6cacaaI4aaaaOWaaeWaaeaadaWcaaqaaiaadIhaaeaacaWG6b% WaaSbaaSqaaiaaicdaaeqaaaaaaOGaayjkaiaawMcaamaaCaaaleqa% baGaaGimaiaac6cacaaI0aaaaaaa!472D!\[\frac{\delta }{{z_0 }} = \beta \left( { - \frac{{z_0 }}{L}} \right)^{0.8} \left( {\frac{x}{{z_0 }}} \right)^{0.4} \] where L is the Obukhov length based on the values of the momentum and sensible heat fluxes at the surface of the lead, and is a constant reflecting upwind stability.Velocity profiles over leads are also affected by the surface nonhomogeneity. Besides being warmer than the upwind ice, the surface of the lead is usually somewhat rougher. The velocity profiles therefore tend to decelerate near the surface, accelerate in the mid-region of the IBL because of the intense mixing driven by the upward heat flux, and rejoin the upwind profiles above the boundary layer. The profiles thus have distinctly different shapes for stable and unstable upwind conditions.  相似文献   

12.
Turbulence measurements above a pine forest   总被引:1,自引:0,他引:1  
Eddy fluxes of momentum, sensible and latent heat, and turbulence spectra measured over the Thetford Forest during 10 days in the Spring of 1973 are described. The measured total heat flux (H + E) for 122 20-min periods agreed closely on average with independent estimates from an energy balance method. There was evidence that the energy balance data gave small systematic overestimates of available energy during the hours before noon, compensated by slight underestimates for the remainder of the day. A comparison of measured wind speeds and friction velocities in neutral stability confirmed the validity of the aerodynamic method for estimating momentum fluxes at heights of a few roughness lengths above the canopy. In stable conditions the log-linear wind profileU = (u */k)(ln ((z -d)/z o) + (z -d -z o)/L) with = 3.4 ± 0.4 provided a good fit to the data. Spectra in unstable conditions were generally more sharply peaked than those measured by other workers over smoother terrain: differences were less marked in the case of vertical velocity in stable conditions. Temperature spectra in these stable conditions showed high energy at relatively low wavenumbers, andwT cospectra showed a cospectral gap; both of these results were associated with an intermittent sawtooth structure in the temperature fluctuations.Now at the Meteorological Office, Bracknell  相似文献   

13.
The estimation of the surface-layer parameters u * (friction velocity), * and q * (temperature and humidity scales), r and q r (temperature and humidity reference values), z o (roughness length) and d (zero-displacement) from vertical profiles of wind velocity, temperature and humidity by least-squares methods is described. The estimation is based on the flux-gradient relationships and the constant flux assumption for the transfer of momentum, sensible heat and matter near the Earth's surface.Test calculations were carried out with the vertical profile data from the GREIV I 1974 experiment and the Great Plains Turbulence Project.  相似文献   

14.
An experiment was conducted to study turbulent transport processes of scalar quantities within and above a rice plant canopy. A sonic anemometer-thermometer and a Lyman- humidiometer were used to measure the turbulent fluxes of sensible and latent heat and related turbulence statistics within a paddy field. The sensible and latent heat fluxes measured at two heights within and above the plant canopy showed that the upper layer of this plant canopy was an active source region and that the source strength of sensible and latent heat depended on the solar radiation and physiology of rice plants. Analysis of joint probability distributions of w and T and of w and q within this plant canopy showed that downdrafts were remarkably efficient for upward transport of sensible and latent heat in the daytime. The vertical fluxes of temperature and humidity variance were also divergent from the upper layer of plant canopies. The power spectra of temperature and humidity within the plant canopy decreased rapidly in the high frequency range, compared with the - 2/3 law relationship of nS(n) vs log n observed above plant canopies.  相似文献   

15.
Concurrent measurements of the surface energy balance components (net radiation, heat storage, and sensible and latent heat fluxes) were made in three communities (open water, Phragmites australis, Scirpus acutus) in a wetland in north-central Nebraska, U.S.A., during May-October, 1994. The Bowen ratio – energy balance method was used to calculate latent and sensible heat fluxes. This paper presents results from the open water area. The heat stored in water (G) was found to play a major role in the energy exchange over the water surface. During daytime, G consumed 45–60% of R n , the net radiation (seasonally averaged daytime G was about 127 W m–2). At night, G was a significant source of energy (seasonally averaged nighttime G was about -135 Wm). The diurnal pattern of latent heat flux ( E) did not follow that of R n . On some days, E was near zero during midday periods with large R n . The diurnal variability in E seemed to be significantly affected by temperature inversions formed over the cool water surface. The daily evaporation rate (E) ranged from 2 to 8 mm during the measurement period, and was generally between 70 and 135% of the equilibrium rate.  相似文献   

16.
Flux densities of carbon dioxide were measured over an arid, vegetation-free surface by eddy covariance techniques and by a heat budget-profile method, in which CO2 concentration gradients were specified in terms of mixing ratios. This method showed negligible fluxes of CO2, consistent with the bareness of the experimental site, whereas the eddy covariance measurements indicated large downward fluxes of CO2. These apparently conflicting observations are in quantitative agreement with the results of a recent theory which predicts that whenever there are vertical fluxes of sensible or latent heat, a mean vertical velocity is developed. This velocity causes a mean vertical convective mass flux (= cw for CO2, in standard notation). The eddy covariance technique neglects this mean convective flux and measures only the turbulent flux c w. Thus, when the net flux of CO2 is zero, the eddy covariance method indicates an apparent flux which is equal and opposite to the mean convective flux, i.e., c w = – c w. Corrections for the mean convective flux are particularly significant for CO2 because cw and c w are often of similar magnitude. The correct measurement of the net CO2 flux by eddy covariance techniques requires that the fluxes of sensible and latent heat be measured as well.  相似文献   

17.
The impact of sea waves on sensible heat and momentum fluxes is described. The approach is based on the conservation of heat and momentum in the marine atmospheric surface layer. The experimental fact that the drag coefficient above the sea increases considerably with increasing wind speed, while the exchange coefficient for sensible heat (Stanton number) remains virtually independent of wind speed, is explained by a different balance of the turbulent and the wave-induced parts in the total fluxes of momentum and sensible heat.Organised motions induced by waves support the wave-induced stress which dominates the surface momentum flux. These organised motions do not contribute to the vertical flux of heat. The heat flux above waves is determined, in part, by the influence of waves upon the turbulence diffusivity.The turbulence diffusivity is altered by waves in an indirect way. The wave-induced stress dominates the surface flux and decays rapidly with height. Therefore the turbulent stress above waves is no longer constant with height. That changes the balance of the turbulent kinetic energy and of the dissipation rate and, hence the diffusivity.The dependence of the exchange coefficient for heat on wind speed is usually parameterized in terms of a constant Stanton number. However, an increase of the exchange coefficient with wind speed is not ruled out by field measurements and could be parametrized in terms of a constant temperature roughness length. Because of the large scatter, field data do not allow us to establish the actual dependence. The exchange coefficient for sensible heat, calculated from the model, is virtually independent of wind speed in the range of 3–10 ms-1. For wind speeds above 10 ms-1 an increase of 10% is obtained, which is smaller than that following from the constant roughness length parameterization.The investigation was in part supported by the Netherlands Geosciences Foundation (GOA) with financial aid from the Netherlands Organization for Scientific Research (NWO).  相似文献   

18.
The aerodynamic classification of the resistance laws above solid surfaces is based on the use of a so-called Reynolds roughness number Re s =h s u */, whereh s is the effective roughness height, -viscosity,u *-friction velocity. The recent experimental studies reported by Toba and Ebuchi (1991), demonstrated that the observed variability of the sea roughness cannot be explained only on the basis of the classification of aerodynamic conditions of the sea surface proposed by Kitaigorodskii and Volkov (1965) and Kitaigorodskii (1968) even though the latter approach gains some support from recent experimental studies (see for example Geernaertet al. 1986). In this paper, an attempt is made to explain some of the recently observed features of the variability of surface roughness (Toba and Ebuchi, 1991; Donelanet al., 1993). The fluctuating regime of the sea surface roughness is also described. It is shown that the contribution from the dissipation subrange to the variability of the sea surface can be very important and by itself can explain Charnock's (1955) regime.  相似文献   

19.
A two-dimensional mesoscale model has been developed to simulate the air flow over the Gulf Stream area where typically large gradients in surface temperature exist in the winter. Numerical simulations show that the magnitude and the maximum height of the mesoscale circulation that develops downwind of the Gulf Stream depends on both the initial geostrophic wind and the large-scale moisture. As expected, a highly convective Planetary Boundary Layer (PBL) develops over this area and it was found that the Gulf Stream plays an important role in generating the strong upward heat fluxes causing a farther seaward penetration as cold air advection takes place. Numerical results agree well with the observed surface fluxes of momentum and heat and the mesoscale variation of vertical velocities obtained using Doppler Radars for a typical cold air outbreak. Precipitation pattern predicted by the numerical model is also in agreement with the observations during the Genesis of Atlantic Lows Experiment (GALE).List of Symbols u east-west velocity [m s–1] - v north-south velocity [m s–1] - vertical velocity in coordinate [m s–1] - w vertical velocity inz coordinate [m s–1] - gq potential temperature [K] - q moisture [kg kg–1] - scaled pressure [J kg–1 K–1] - U g the east-south component of geostrophic wind [m s–1] - V g the north-south component of geostrophic wind [m s–1] - vertical coordinate following terrain - x east-west spatial coordinate [m] - y north-south spatial coordinate [m] - z vertical spatial coordinate [m] - t time coordinate [s] - g gravity [m2 s–1] - E terrain height [m] - H total height considered in the model [m] - q s saturated moisture [kg kg–1] - p pressure [mb] - p 00 reference pressure [mb] - P precipitation [kg m–2] - vertical lapse rate for potential temperature [K km–1] - L latent heat of condensation [J kg–1] - C p specific heat at constant pressure [J kg–1 K–1] - R gas constant for dry air [J kg–1 K–1] - R v gas constant for water vapor [J kg–1 K–1] - f Coriolis parameter (2 sin ) [s–1] - angular velocity of the earth [s–1] - latitude [o] - K H horizontal eddy exchange coefficient [m2 s–1] - t integration time interval [s] - x grid interval distance inx coordinate [m] - y grid interval distance iny coordinate [m] - adjustable coefficient inK H - subgrid momentum flux [m2 s–2] - subgrid potential temperature flux [m K s–1] - subgrid moisture flux [m kg kg–1 s–1] - u * friction velocity [m s–1] - * subgrid flux temperature [K] - q * subgrid flux moisture [kg kg–1] - w * subgrid convective velocity [m s–1] - z 0 surface roughness [m] - L Monin stability length [m] - s surface potential temperature [K] - k von Karman's constant (0.4) - v air kinematic viscosity coefficient [m2 s–1] - K M subgrid vertical eddy exchange coefficient for momentum [m2 s–1] - K subgrid vertical eddy exchange coefficient for heat [m2 s–1] - K q subgrid vertical eddy exchange coefficient for moisture [m2 s–1] - z i the height of PBL [m] - h s the height of surface layer [m]  相似文献   

20.
Line-averaged measurements of the structure parameter of refractive index (C n 2 ) were made using a semiconductor laser diode scintillometer above two markedly different surfaces during hours of positive net radiation. The underlying vegetation comprised in the first instance a horizontally homogeneous, pasture sward well-supplied with water, and in the second experiment, a sparse thyme canopy in a semi-arid environment. Atmospheric stability ranged between near neutral and strongly unstable (–20). The temperature structure parameterC T 2 computed from the optical measurements over four decades from 0.001 to 2 K2 m–2/3 agreed to within 5% of those determined from temperature spectra in the inertial sub-range of frequencies. Spectra were obtained from a single fine thermocouple sensor positioned near the midway position of the 100m optical path and at the beam propagation height (1.5m).With the inclusion of cup anemometer measurements, rule-of-thumb assumptions about surface roughness, and Monin-Obukhov similarity theory, path-averaged optical scintillations allow calculation of surface fluxes of sensible heat and momentum via a simple iterative procedure. Excellent agreement was obtained between these fluxes and those measured directly by eddy correlation. For sensible heat, agreement was on average close to perfect over a measured range of 0 to 500 W m–2 with a residual standard deviation of 30 W m–2. Friction velocities agreed within 2% over the range 0–0.9 m s–1 (residual standard deviation of 0.06 m s–1). The results markedly increase the range of validation obtained in previous field experiments. The potential of this scintillation technique and its theoretical foundation are briefly discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号